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ABSTRACT

a strong importance for the underlying words contained intber-
ance — a perhaps better approach would be to concentratettedsn

We propose a model for speech recognition that consists dfepresentational power on those most informative mochriatands.

multiple semi-synchronized recognizers operating on ypiase
decomposition of standard speech features. Specificallycan-
sider multiple out-of-phase downsampled speech featsresgarate
streams which are modeled separately at the lowest level agn
then integrated at the higher level (words) during firstspascod-
ing. Our model lessens the severity of the oversamplinglpnob
in many speech recognition systems — i.e., that speech wtoatul
energy is most important below 25Hz but a 100Hz frame ratesgiv
modulation bandwidth of 50Hz. Our polyphase approach maneo
captures wider and more diverse dynamics within the spagohls
Our integrative network is high-level, namely it couplegdther and
decodes word strings from different recognizers simubast and
asynchronously. We provide preliminary results on the tehwo-
cabulary version of the SVitchboard (small-vocabularytsihboard)
task and show that our polyphase recognition system signific
outperforms an optimized baseline (HMM) approach.

Third, oversampling might lead to speech recognition sgstéhat
are more computationally expensive than necessary.

To address this problem, we introduce a novel polyphasechpee
recognition model. The model operates on multiple streafns o
speech features, each of which derived from a downsampling o
phase-shifted original speech features. These multipbasis are
then modeled separately at the lowest level, and are no¢doi@
remain fully synchronized with each other. A higher leveintina-
tion strategy is used to integrate the word hypotheses ofalieus
polyphase recognizers together to arrive at a final hypethedVve
moreover perform this representation entirely within otagistical
system, so that a single first-pass decoding procedure s tase
produce final word hypotheses.

Our approach is indeed a form of classifier combination for
speech recognition. Indeed, many ASR approaches have been p
posed in the past for the combination of multiple recognizeputs,

Index Terms— polyphase speech recognition, dynamic Bayesialyhere each base recognizer extracts some unique chastctefi

network

1. INTRODUCTION

Perceptual experiments! [1, 2] have shown that the moduldite
quency band between 1 and 16Hz is where the most importamt inf
mation lies for speech intelligibility. This fact is furtheonfirmed by
automatic speech recognition (ASR) experimenis [3] whiobws
that the low modulation frequency bands (0-1Hz) and highuieed
tion frequency bands (16-50Hz) are harmful (or uselessAfBR.
The most widely used cepstral-based features in statet@&SR
system, however, are typically sampled at a rate of 100Hm@ia
50Hz bandwidth for representing modulation energy, somettinat
is overkill. In other words, most speech features oversarirpthe
modulation domain.

Acoustic frame oversampling can have several deleterifus e semi-synchronous streams of articulatory gestures.

fects. First, the effect of the acoustics can dominate tlsé oé
the model (pronunciation and length scores, language nsodeés,
etc.). This can be corrected to some extent by language an-ac
tic model scaling factors to counter balance the dominarideeo
acoustics. The extent to which these factors can fully cofae this
imbalance is not fully known, however — an alternative appig
as presented here, would lessen the imbalance in the ficst. fhec-
ond, by representing modulation energy in the (appareetlg In-
formative) bands between 25Hz and 50Hz, there is a dangethiha
model may become sensitive to aspects of the signal thattdwane
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the speech signal. These aspects of speech might be refesen
the acoustic level (multiple observation streams), theldndlevel
(multiple hidden Markov chains), or both. One popular camatibn
method is the multi-stream approach, where the speechldigsa
been divided into multiple, possibly semi-independenteans of
partially coupled information. For instance, in the midénd ap-
proach [4], the speech signal is divided spectrally, andrevieach
speech stream represents a different spectral sub-bandhich an
independent recognizer is applied. The different recagsiare
the combined at a later stage. [n [5], heterogeneous acausth-
surements are proposed to increase the amount of acotstie{ic
information extracted from the speech signal, and phonrssiiars
utilizing these heterogeneous measurements are combineagh
hierarchical and committee-based techniques. At the hidalger,
articulatory-based approaches to speech recognition exenting
more popular[6], where the speech signal is represented.ittjphe
Baliti-
stream work also includes that of HMM decompositibh [7], vehe
both speech and noise are consider a separate stream. Rynami
Bayesian networks (DBNs) have also been used for multastre
[8], including audio-visual speech recognitidn [9.| 10] .11fven
HTK has the ability to represent multiple synchronous atous
streams.

Our approach is novel, in that our streams are in fact derived
from a polyphase decomposition of some original featureastr.
For example, one instance of our approach divides the even nu
bered and odd numbered frames into separate streams. Alige,
method might not be useful, but we use the framework of DBNs
[12,[13] to represent a partially-synchronous integragivecedure
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(\/\P/\/Www\/v/\/wv\/\w In our polyphase ASR framework, we apply the concept of
Combination Network polyphase decomposition onto the speech feature streanb-to o

= tain so calledpolyphase features. Specifically, letz(1 : T) =
++ te (z(1),z(2),...,z(T)) be a sequence of speech feature vectors.
[HDDUUUU]]DDUUUH R The M-component polyphase decomposition of this sequerstdts
in M separate sequences, (t) = z(m+tM),form=1,..., M,
O each of approximate lengfi’ = T'/M.
&
H 1 H i H 1 H i 2.2. Generation of Polyphase Features
D U U |:| D U U |:| © The generation of polyphase features is straightforwand,idil-
I:I D U U I:I D I] U e E H E H E H E H “o lustrated in Fig[lL for the case dff = 2. For example, a basic
cepstral-based feature sequentge) is first extracted from speech
Polyphase Decompostion Time diviatives. Normalization using a common frame rate (e.g., 100Hz). As mentioned in Sec-
tion[d, such a sample rate oversamples in the modulation itiofha
Fig. 1. Diagram of polyphase speech recognition. overcome this problem;(n) is decomposed into two sub-sequences

with even and odd numbered framesadf), sayz.(n) = x(2n)

andz,(n) = z(2n 4+ 1). Both z.(n) andz,(n) are sequences

sampled at the rate of 50Hz. With a bandwidth of 25Hz(n)
between these polyphase streams. In particular, the siragngom- ~ @nd,(n) do not contain high modulation frequency energy (above
bined at the word level, but the word hypotheses are allowed t25H2), which as mentioned above is less useful for speeetigit
desynchronize from one another to a certain extent. Moreowe  Dility. Speech features are augmented with delta and deidites.
decoder jointly decodes from all streams simultaneouatier than e apply the delta-computation onéfter the downsampling has
having a first pass for each individual downsampled recegnizhe ~ OCcurred, so that each stream has its own unique delta segjuen
benefits of such joint decoding is that it has the ability tecdiver ~ (derivatives are applied te,(n) andz.(n) separately). When uti-
desynchronized hypotheses that look good in tandem. Mergov iZing the same absolute delta window size (as measuredrben

our approach allows us to simultaneously train each sufastrec-  Of frames), these new deltas therefore integrate infoonatier a
ognizer with respect to each other. larger time span compared to the derivatives of the origieaiure

sequence:(n). This might itself have benefit, as it has been shown
that long-time features can be quite usefull [16]. We refathtse

2. POLYPHASE FEATURES extended features g@slyphase features, and to each sub-feature se-
- guence as a polyphase component.
2.1. Polyphase Decompositions Of course, the generation of polyphase features are ndelimi

to the M = 2 case. For higher values @ff, however, we would
start with a higher initial sampling rate to avoid repregantoo low
a modulation bandwidth range. For instance, we can decianhf®
Hz feature sequence by a factdf = 3 to obtained another group
of polyphase features with 3 components each at 50Hz.

Polyphase decompositions [14] are fundamental to manyicgppl
tions in multirate digital signal processing [15]. The lasbncept

is briefly reviewed here. Lét(n) be a discrete sequence. We can
write its z-transform as follows:

oo oo

Z h(2n)z"2" + Z h(2n +1)z "1
ne oo i @) 3. STATISTICAL POLYPHASE MODELING
Eo(2*) 4+ 2 'Ei(2%)

H(z)

One way to deal with the multi-stream features produced @bov
whereEo(z) = 320 h(2n)z " andEi(z) = >0 __ h(2n+ would be to haveM separate recognizers, each separately trained
1)z and separately decoded, and then whose hypotheses woutdrbe ¢

bined using a standard method, say using ROVER [17]. We pmpo
an alternative “polyphase” statistical model that essdigtconsists
eof M separate recognizers, one for each polyphase component, an
then an integration network that allows for the asynchreniote-
gration of multiple word hypotheses. This model therefdtens
a joint-decision to be made regarding the best word hypathds
allows each polyphase component recognizer to be trairiatlyjo

This representation is called the two-component polyplagse
composition ofH (z). Eo(z), E1(z) are called polyphase compo-
nents, which are the z-transforms of the even and odd numiber
sampled sequences(n) = h(2n) andei(n) = h(2n+1), respec-
tively. Similarly, it is possible to represeti (z) in M-component
polyphase form:

M as well. We utilize dynamic Bayesian networks (DBN)/[12, 18]
H(z) = Z 2 *Ep(2M) (2) torepresent, encode, and implement this model — DBNs peovid
o a flexible and powerful representational framework with ebhone
may describe an enormous family of models, polyphase speech
The sequencéi(n) is divided into M sub-sequences,(n) =  recognition included.
h(nM + k),k = 0,..., M — 1, and each of them is merely & - Before describing our DBN, we first provide a simple overview

fold decimated version ok(n + k). One benefit of a polyphase of our model when\/ = 2. We have a feature stream.r, a high-
decomposition is that the computation is reduced whenmtgalith level “integrative” set of hidden variablés .7, and two lower-level
sub-sequences, while computation/memory can be sharedgamopolyphase component hidden variables; and h{... Letr. =
polyphase components. 2:2:T andr, = 1:2:T denote the even and odd frame indices
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Fig. 2. A fragment of four frames of our DBN showing the asyn-
chronous integration between twd = 2 polyphase components.
The graph expresses word-level asynchrony, and allowsiscewd
ery of the best joint-hypotheses between the two separétphzse
component recognizers. In this figure, all nodes corresporttis-
crete random variables, arrows point from parents to ofildand
dashed arrows indicate switching parents. Other partseoDfBN
(e.g., the polyphase features) are not shown for simplibity the
parts missing are similar to two out-of-phase copies of vihate-
scribed in detail in[[183]

respectively. We have that:

p(z1T) = Z p(z1.r|h1:7)p(hiT)

hi:m

= Z p(x2:2:7, T1:2:7|h1r)p(har)

hi.m

=Y p(har) [ plar,lhar)

hi.T j€{e,0}

:Zp(hl:T) H Zp(wrﬁhij,hl:T)P(hij|h1:T)~

hi:m j€{e0} pd
J

We see that the polyphase component features are assunepéind
dent given the high-level integrative combination mo#lelr and
that each individual polyphase component model may havaits
asynchronous evolution. Of course, the nature and extetheof
asynchrony, and the details of the component models areivat g
here, which is where we resort to a DBN description.

3.1. Joint Decoding with Word-level Asynchrony

In this work, word-level asynchrony means that the evertaabded
word strings of all recognizers are consistent, but thatsthet/end
time points of the words within each string may differ to amdegTo
achieve word-level asynchrony during decoding, a higlelleem-
bination network is expressed using DBNs. Unlike previpysb-
posed DBNSs for representing asynchrony between multigltufes
[6], our network not only constrains the degree of asynchrioe-
tween strings but also makes sure that there is consistertayebn
them.

For simplicity, we describe our combination network for tase

of an M = 2-component polyphase model, but it is easily generated

show. FiguréP shows a fragment of our DBN (the full DBN is not
shown here for simplicity and space limitations). The gaherech-
anism to achieve word-level asynchrony is as follows. Attibgin-
ning of the utterance, all streams are synchronized — irrotbeds,
the values of the word variablesdr d_even andwor d_odd in the
graph) are the same at the first frafheAs time progresses, sup-
posewor d_even transfers to another word “right”, while the best
hypothesis fomor d_odd is still “silence”. Since asynchrony is al-
lowed in our modelwor d_odd is not forced to transfer to the word
“right” immediately; meanwhile there are variablessf/n_even
andasyn_odd) that keep track of the number of frames of asyn-
chrony. When this number reaches a maximum threshold (define
as MAX_ASYN), wor d_odd is forced to be the value “right”. If a
word transition is triggered fonor d_odd during the allowed pe-
riod of asynchronywor d_odd will also be forced to transfer to the
value “right”. This ensures the consistency of the word seges.
Several additional variables, along with their dependesci
are described next. Variableor d: wor d_even exists only
in even frames anawr d_odd exists only in odd frames. The
wor d variable always copies the value of the existing word vari-
able (wor d_even or wor d_odd) at the current frame as long as
their asynchrony variable is zero; otherwise, it will cope tvalue
of itself from the previous frame. This variable is reduridéor
the 2-component case since the word variable of one componen
can always copy the value from the other one who is ahead of
time. It is necessary, however, when combining more than two
recognizers and is used to keep a record of the current décode
word value. Variablemsyn_even andasyn_odd: The degree
of asynchrony is calculated by comparing the indexes of word
from all components (the indexes are presented by the counte
variable,wor dCount er _even andwor dCount er _odd). This
asynchrony variable has three parents. &yn_even, its parents
are wor dCount er _,even(0), wor dCount er _odd(-1), and
asyn_even( - 1), where 0 indicates current frame and -1 indicates
previous frame. Ifwor dCount er _even( 0) equals the maximum
value of all countersasyn_even(0) is set to zero; otherwise,
1 will be added to its previous value. Variablesr d_even and
wor d_odd: The major change is in the dependencies, so the logic
behind the interaction between these variables is destnibest
simply in Algorithm[1

Algorithm 1

if wor dTransi ti on_even(-2)==0then
if asyn_even(-1) < MAX_ASYN then
No transition:wor d_even( 0) =wor d_even( - 2)
else
Force transitionwor d_even( 0) =wor d( - 1)
end if
else
if asyn_even(-1) == 0then
An usual transition using bigram
else
Force transitionwor d_even( 0) =wor d( - 1)
end if
end if

4. EXPERIMENTS

Our experiments were performed on SVitchboard 1, a set oflsma
vocabulary tasks from Switchboard[1 [19]. In particular, wee the

1For the even stream, the first frame is frame 0, and for the trddrs,

into M > 2 multiple components, as our results in a later sectionthe first frame is frame 1.



10-word vocabulary task. The “ABC” sets are used for trajniiD”
set for development and “E” for the final testing. All of our deis
were implemented using GMTKT13].

The baseline features were generated by framing the wamsfor
with a 25ms length window and 10ms shift. For each frame, 12 pe
ceptual linear prediction (PLP) coefficients plus log-eyerere ex-
tracted along with their first and second derivatives, gjh\arfeature
vector of 39 dimensions. Speaker normalization was theheapio
the feature vector, with the statistics of each speakerfraed vari-
ance) estimated from Switchboard 1. A monophone HMM system[ ]
was trained with word alignments. The baseline result issithted
in Table[1, and it already significantly outperforms presigupub-
lished baselines [19, 20] due to the newly generated (afiereliftly
normalized) features.

To obtain 50Hz polyphase features, two approaches were used
The first is by decimating the 100Hz 13-dim base PLP features,[4]
which were generated with 25ms window lengths and 10mssshift
The other method is to apply a 3-component polyphase decompol5]
sition of the 150Hz 13-dim base PLP features generated \itins2
window lengths and 6.666ms shifts. These extracted featueze

(1]

(3]

then expanded with their first and second derivatives, fognd9- [6]
dim polyphase features. Speaker normalization was alsiedpp
all the polyphase features by using statistics estimateah fall of 7

Switchboard 1 data. The results using these polyphaserésate
shown in Tabl&ll. All polyphase component systems outpertoe
baseline consistently. g

The 2-component decomposed polyphase features were com[-]
bined for joint decoding using the graph described in Be¢ 3.1
Polyphase 3-component decomposed features were also renbi
for joint decoding. MAXASYN was set to 5, which means ap-
proximately up to 100ms asynchrony between word boundanes
allowed. Results (in Tablg] 1) show that polyphase combonati
further improves the performance, and the joint decodisg alit-
performs ROVER, implemented using the NIST ROVER program[11]
which combined the outputs of the individual polyphase congmt
recognizers.

9]

(10]

(12]

Table 1. Word Error Rate on SVitchboard 10-word vocabulary Task.[13]

Dev. | Test
Baseline 165 | 16.7 [14]
even 15.3 | 16.3
2-comp. decomposition _0dd | 14.6 | 15.9
100Hz | 50Hz ROVER | 15.0 | 16.2 [15]
joint 13.9 | 15.0
3-1 14.8 | 16.4
. 3-2 15.1 | 16.1 [16]
3-comp. decompositio 33 14.4 | 15.6
150Hz | 50Hz ROVER | 14.0 | 15.6
joint | 13.6 | 154 (17]

[18]
5. DISCUSSION AND FUTURE WORK

[19]
We have introduced a new polyphase representation for Bpeec
recognition where a polyphase decomposition is applietetodsard
speech features, and a novel semi-synchronous integisiisech  [20]
recognition model, expressed as a DBN, allows each polgphas
component feature set to evolve separately from each obur,
where word-hypotheses are jointly decoded. Results shgmifisi
cant improvements over an optimized SVitchboard-10 taskure

(21]

work will investigate further variations of our polyphasecompo-
sition, will use improved modulation featurés [21], andlwilaluate
on larger speech corpora.
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