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ABSTRACT

We introduce a novel method for adapting discriminative classi-
fiers (multi-layer perceptrons (MLPs) and support vector machines
(SVMs)). Our method is based on the idea of regularization, whereby
an optimization cost criterion to be minimized includes a penalty in
accordance to how “complex” the system is. Specifically, our reg-
ularization term penalizes depending on how different an adapted
system is from an unadapted system, thus avoiding the problem of
overtraining when only a small amount of adaptation data is avail-
able. We justify this approach using a max-margin argument. We
apply this technique to MLPs and produce a working real-time sys-
tem for rapid adaptation of vowel classifiers in the context of the
Vocal Joystick project. Overall, we find that our method outper-
forms all other MLP-based adaptation methods we are aware of.
Our technique, however, is quite general and can be used whenever
rapid adaptation of MLP or SVM classifiers are needed (e.g., from
a speaker-independent to a speaker-dependent classifier in a hybrid
MLP/HMM or SVM/HMM speech-recognition system).

1. INTRODUCTION

The idea of adaptation in automatic speech recognition (ASR) has
become one of the crucial techniques that any state-of-the-art ASR
system cannot do without. Why adaptation works rests on the as-
sumption that test data Dre = {(x¢, y¢)|(x¢, yt) ~ PTE}LZTE‘
is drawn from an inherently different probability distribution than
that of (most of) the training data Drr = {(x¢,y:)|(x¢,y¢) ~
PTR}LZfR‘ i.e., a training-data distribution Prr and a test-data
distribution Prg are different. Only a small or a fixed-size amount
of data from the test distribution, called the adaptation data, Dap =
{(xe,y0)|(x¢, ) ~ Pre} 24P is available (for unsupervised adap-
tation, we do not know the y; values in Dap). Therefore, no mat-
ter how much data is available from the training-data distribution,
|Drr| — oo, it will not be possible to obtain an asymptotically
consistent estimate of Prg. On the other hand, training a model us-
ing only the adaptation data would [1] either lead to: 1) overfitting,
due to a high-variance parameter estimate of a complex model, or 2)
high-bias due to estimating the parameters of an excessively simple
model.

Many techniques for adaptation (often applied to hidden Markov
models) have been proposed in the past. This includes MLLR and
MAP methods (summarized in [2]) and Eigenvoice methods [3].
Many methods for the adaptation of discriminatively trained multi-
layer perceptrons (MLPs) have also been proposed [4, 5, 6, 7, 8].
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In this paper, we make the observation that the notion of “reg-
ularization” can be applied to the adaptation framework. Regular-
ization is a general idea applicable to regression, classification, ma-
chine learning, and statistical model selection, and is an example of
Occam’s razor, Kolmogorov complexity, Bayesian parameter esti-
mation, and the principles of both maximum entropy and minimum
description length. The essential component is that one desires a
model, on the one hand, to achieve a low empirical error on training
data, but on the other hand, one wishes that model to be as simple
as possible. Typically, one has control over the tradeoff between
these two (often conflicting) goals using a tradeoff coefficient which
carves out what is now called the regularization path [9] or more
recently the “accuracy-regularization frontier.” Indeed, this is the
essence behind the success of the support-vector and Kernel meth-
ods [10], where the function to minimize is a sum of a (hinge) loss
function and a regularizer (typically the £,-norm, where p = 2).

We extend this idea to that of “adaptation”, where we produce
an adapted model (e.g., a speaker-dependent model) by training us-
ing a regularizer that penalizes distance from an unadapted model
(e.g., a speaker-independent (SI) model) rather than from the sim-
plest model possible. The unadapted model is one that presumably
will have been robustly trained using a large amount of training data
Drr — thus, the unadapted model becomes our exemplar of sim-
plicity. Our tradeoff coefficient, moreover, controls the degree of
adaptation. We call this general idea regularized adaptation.

Note that there are a number of ways this can be applied. For
example, in the context of a maximum entropy estimation, we maxi-
mize entropy of some distribution (regularizer) subject to some con-
straints (training data). This is equivalent to minimizing over P in
the Kullback-Leibler (KL) divergence D(P||Py) with respect to a
uniform distribution Py (regularizer) subject to the same constraints.
We alternatively could minimize the KL-divergence relative to some
unadapted distribution P; subject to constraints corresponding to
adaptation data. MLLR [2] itself can be seen as regularized adapta-
tion, where the number of regression classes is viewed as the tradeoff
coefficient. In previous work, moreover, we [8] demonstrated how
regularized adaptation can be applied in the support vector machine
framework, where some of the support vectors produced from the
training set are included within the adaptation data, to produce a re-
sulting support vector machine (SVM) that is both trained on the
adaptation data and regularized towards the training set.

We have empirically found, however, that SVM training is com-
putationally expensive, especially given the large training set sizes
that we have (many hundreds of thousands of many hundred dimen-
sional feature vectors). MLPs [11], however, can be rapidly and
discriminatively trained even when the training sets are extremely
large [12] and even when using only simple first-order (e.g., gradi-
ent descent) training methods [11]. Moreover, ¢2-regularization of
the MLP parameters is easily applicable to MLP training [13, 11].



Therefore, regularized adaptation also works under the MLP frame-
work.

This paper applies regularized adaptation to MLPs — our ap-
proach produces an adaptation strategy that is both rapid (requires
only a small amount of adaptation data, and the adaptation algo-
rithm is fast) and that works well. Indeed, our method outperforms
all other MLP-based adaptation methods we are aware of.

2. ACCURACY, REGULARIZATION, MLPS, & SYMS

The accuracy-regularization view of classification establishes strong
relationships between MLPs and SVMs [14]. For a binary classifi-
cation problem, the discriminant functions of both SVMs and MLPs
take on the same general form:

d(xt) = (w, Pg(x1)) + b )

where ®(+) is a nonlinear transformation, parameterized by 6, from
the input space x to a feature space where linear classification takes
place. Given this mapping, and considering only the optimization of
the last layer, the training objectives for regularized MLPs [11] and
SVMs can be written as a regularized error function as follows:

min WP R T Qo d) @

where ||w]|? is the squared 2 norm, Q(-) is a loss function, and
u is an accuracy-regularization tradeoff coefficient. Note d(-) is a
function of (w, b) defined in Equation (1).

For SVMs, ®g(-) is a particular input-to-feature space map-
ping that implicitly defines a reproducing kernel [15] k(x,x’) =
(o (x), Po(x")). For binary SVMs, moreover, we typically assume
a hinge loss function, where:

& 2 Qye, f(xe)) = max(0, 1 — yed(xy)). ©)

Since this is not a continuous function, it cannot be solved using
stochastic gradient descent (as can an MLP) but it can readily be
solved using quadratic programming with linear constraints to ex-
press the error:

ft > 0 and ft > 1-— ytd(Xt). (4)
This can be formulated as a constrained convex optimization prob-
lem solved in the dual space with a unique optimal solution, and the
“kernel trick” can be used so that @ (-) is never explicitly evaluated.

For MLPs, on the other hand, Equation (2) is equivalent to train-
ing the last layer of an MLP with “weight decay” [11] which serves
as the regularization term. Here, ®4(-) corresponds to the mapping
produced by the input-to-hidden layer of the network:

Dy (xe) = he = [pr(xe),..., r(xt)]”

where ¢r(x:) = g({vk,xt) + di)) is a non-linearity (typically as
sigmoid function) applied to (v, x:), and 6 = [v1...vk]|" is the
MLP’s input-to-hidden weight matrix, and where vi* is the k"
row of this matrix. Cross entropy is most popularly used as the er-
ror function Q(-) due to the desirable property that in such a case
the trained MLP outputs can be interpreted as posterior probabili-
ties [11]. In fact, in previous work [8], an MLP-trained ®4(-) func-
tion was used as an input-to-feature space mapping for subsequent
max-margin training using an SVM, producing what we now call the
“MLP-kernel.”

Indeed, as the community learns more about both MLPs and
SVMs, their interpretation appears to be converging towards one

idea. A key difference is training, e.g., with MLPs, both layers are
trained; and from the SVM perspective, the MLP simultaneously
learns both the linear separator and the parameterized kernel. With
an SVM, however, the kernel is fixed at training time. Moreover, [14]
proved that an MLP trained with either weight decay or early stop-
ping can be viewed as max-margin training, and [16] showed that
the use of cross-entropy as an error function also has a max-margin
interpretation.

3. REGULARIZED ADAPTATION

We next introduce justification for regularized adaptation from a
SVM/max-margin viewpoint and the ideas of Section 2 show that
our results apply just as easily to MLPs.

Let (w*,b*) be the optimum parameters found (either using

SVM or MLP training) for the unadapted model and let d*(x+) £
(W™, ®g(x¢)) + b" be the discriminant function for this unadapted
model. These parameters are presumed to be constants during any
adaptation data training.

We generalize the constraints in an SVM as follows:

min Slwl® ++ X &
subjectto & > 0; ®)
& > Y(xe);

In this equation, we depict the minimization of w subject to various
constraints over only the adaptation data Dap. The forms of ¥ (-)
yield various forms of adaptation strategies as we next show.

First, if we let ¢ (x¢) = 1 —y+d(x¢), then Equation (5) is equiv-
alent to Equation (2) under the hinge loss, but where the adaptation
process only uses the adaptation data and entirely ignores informa-
tion from the training data. This means that if the adaptation sample
has a large margin (y:d(x:) is large and positive), then there is no
additional charge to the error penalty.

Next, if we let ¢ (x¢) = d(yed™ (x¢) < 0)(1 — yed(x¢)), an
adaptation sample is used only when it is misclassified by the un-
adapted model, creating a form of “hard boosting.”

Finally, our new approach combines the margins of the unadapted
and adapted model. Specifically, we let ¥(x¢) = 1 — yed(x¢) —
ay:d* (x¢) where o > 0. Intuitively, if an adaptation sample has a
large margin with respect to the decision boundary of the unadapted
model, we decrease the importance of any margin error made by the
adapted model in its total contribution to the loss. In other words, if
ay:d™ (x¢) is large and positive, then we do not incur a penalty even
if y:d(x¢) is less than one. We next see that this yields a generalized
objective that can avoid overfitting on adaptation data.

We rewrite the above constraint as:

P(xt) L=y (((W+ aw”), ¢(x¢)) + b+ ab”) (
1=y (W', ¢(x¢)) + ')

where w' = w + aw™ and b’ = b + ab* are the new adapted pa-
rameters. Therefore, minimizing over (w,b) with (aw™*, b*) fixed
(Equation (5)) is equivalent to minimizing over (w’, b") with a reg-
ularizer of ||w’ — aw™||?, yielding the objective criterion:

6)

min- Slw — aw*|*+ £ 30, &
subjectto & > 0; (7
&> 1 —y((W, d(xt)) +b);

In other words, we no longer minimize the ¢5 norm of the weight
vector alone, but rather the complexity penalty comes from the normed
difference from the scaled unadapted model aw*. Therefore, we



have proven that regularized adaptation corresponds to max-margin
training with modified constraints. Note that we have recently dis-
covered a similar formulation (where o = 1) referred to as “biased
regularization” [17] but which was not used for adaptation.

From Equation (2), we easily see how our objective function
extends to MLPs (we continue this discussion with o = 1 for sim-
plicity), where we get:

min 4w - w' P+ T Qundix))  (9)

As with the above, instead of regularizing towards zero, we do so
towards an unadapted model, and we incur a penalty in accordance to
large deviations from this model. Moreover, we can extend this to a
multi-class two-layer MLP where we regularize each of the input-to-
hidden W5, and the hidden-to-output W2, weight matrices with
separate tradeoff coefficients v and p:

. M « 5  V . 12

min —||W - W — W95, — W
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where ||A||? = tr(AAT). Due to the mathematical tractability of
the £2-norm, all of the above MLP objectives can be easily optimized
using stochastic gradient descent [11], which is typically much faster
than the quadratic-programming-like procedures needed for SVM
optimization.

There have in fact been a number of adaptation methods for
MLPs introduced in the past. First, there is RLL (Retrained only
Last-Layer), discussed in [6, 7, 8]. This approach starts from the
SI model and retrains only the last layer of the MLP. In [7], a por-
tion of the last layer is adapted to minimize cross-entropy, while in
[6] and [8], the last layer is re-estimated, under a maximal margin
objective, by combining adaptation data with support vectors of the
user-independent system. Note that this approach is akin to our ap-
proach where p, = 0 and v — oo thereby disallowing any change in
the first layer. Next, there is RSI (Retrained Spoeaker-Independent),
discussed in [4]. This approach starts from the SI model and retrains
the entire network, usually with early stopping applied to avoid over-
fitting. This is akin to u = v = 0. Last, there is LIN (Linear Input
Network), discussed in [4, 5] where an MLP is augmented with an
additional linear transformation input layer, keeping the rest of the
network fixed. The number of free parameters is often further re-
duced using parameter tying. Since a cascade of linear transforms is
a linear transform, this method is also akin to © — oo and v = 0.
We also define in this paper a new method, entitled RFL (Retrained
First Layer) which also corresponds to 4 — oo and v = 0. Of
course, all of these methods are generalized by varying the p and v
tradeoff coefficients.

4. APPLICATION: THE VOCAL JOYSTICK

The above procedure was developed in the context of the Vocal Joy-
stick (VJ) project [18], which is a human-computer interface system
that enables individuals with motor impairments to control comput-
ing devices (mice pointers, etc.) with continuous aspects of their
voice (pitch, vowel quality). Within this project, we needed a frame-
level vowel-classifier: 1) that had real-time performance, 2) that was
extremely accurate and robust, and where 3) speaker adaptation was
fast and consumed few computational resources. Our regularized
adaptation approach meets all of these requirements and is now in
use in our most up-to-date VJ engine.

5. EXPERIMENTS

We compared our approach (in all cases, & = 1) to a number of
standard MLP adaptation techniques as outlined earlier. The Vocal
Joystick project contains training/test sets for two vowel classifica-
tion tasks, a 4-class case (vowels [ae], [uw], [aa], and [iy]) and an
8-class case (the addition of vowels [a], [ow], [ey], and [ix]) which
we use for all evaluations. The training/test data, 15 speakers total,
was collected as part of the project since there was no clean collec-
tion of vowel data that did not exhibit significant amounts of coar-
ticulation. Unlike in ASR, heavily coarticulated vowels in training
are less desirable since vowels uttered during VJ control are typi-
cally not heavily coarticulated. In addition to the above 15 speakers
above, we have very recently collected an additional 10 speakers of
data that we here used only as a development set (used to produce
values for tradeoff coefficients, learning rates, and number of hidden
units). Note that the data we use in this work is different than in [8].

In all experiments, we produced standard MFCC speech fea-
ture vectors with a window size of 25ms and 10ms frame step size,
and computed the MFCC deltas producing a 26-dimensional feature
vector. A simple form of online (i.e., a causal filter) mean and vari-
ance normalization was applied to the features. Each classifier has
as input features a window of 7 such frames (empirically determined
to be optimal) leading to an x¢ of size 7 x 26 = 182. Also, each
MLP used 50 hidden units (also empirically optimal) sigmoidal non-
linearity, and used a softmax non-linearity at the last layer.

Ten of the speakers were allocated to the training set, and 5
speakers were used for testing (adaptation and evaluation). There
are 180 utterances in the training set for each vowel, giving a to-
tal of 4*180 (85k frames) and 8*180 (174k frames) training utter-
ances for the 4- and 8-class systems respectively, excluding silence.
Each vowel class for each speaker has 18 utterances spoken in var-
ious ways (rising/falling pitch, etc.). For a particular test speaker,
the 18 utterances for each vowel were further divided into 6 sub-
sets with 3 utterances each. Each subset (3 utterances) was used
for adaptation and the remaining subsets (15 utterances in total) for
evaluation. We calculated the mean of the error rates over these 6
adaptation/evaluation subsets, and repeated this for each speaker, so
the classification error rates reported below are an average over the 5
test speakers, and hence an average of 30 subsets. For each speaker,
this yields an evaluation subset of 8K (resp. 16K) frames for the 4-
class (resp. 8-class) system for each test speaker, and we multiply
these numbers by 5 to get the overall effective evaluation set size.

There are several ways to measure the amount and type of adap-
tation data. For example, one way measures the amount (in seconds)
of adaptation data available balanced across all classes. An alterna-
tive approach is to measure the data as a fraction of the number of
different class categories available to adapt on (e.g., for an 8 class
classifier, it may be desirable to adapt using data from only the un-
balanced instances of 3 of those 8 classes). This latter approach is
more like adaptation in ASR, where limited adaptation data almost
assuredly means that certain categories (phones or words) are not
available. We evaluate both approaches below.

Classification error rate baseline (unadapted model) results on
the test set are show in Table 1. The results show that involving an
SVM always hurts performance relative to the MLP. Since the MLPs
train so much faster, we were able to perform a more thorough search
of the tuning parameters (learning rates, tradeoff coefficients, etc)
than we could with the SVMs. Note also, the MLPs were trained
using cross-entropy on the soft-max output layer, and thus directly
optimized a multi-class error objective function. Each of the SVMs
were trained using n one-vs-all schemes (where n is the number of
classes) so this may also have given the MLP an advantage (even



under its harder task of non-convex optimization).

4 classes 8 classes

SVM(RBF kernel) 9.0 1Ihr 412 2hr

SVM(2nd-order poly kernel) 9.4  1hr 40.3  2hr
MLP 89 2min | 40.0 5min

MLP-SVM(linear)[8] 8.8 1Ihr 39.8 2hr
REG (MLP with weight decay) | 85 2min | 39.0 5min

Table 1. Error rate results for various unadapted models, and their
approximate training times. In this and other tables, we highlight the
best error rate, and also the cases that are not significantly different
at the p < 0.002 level relative to this best.

We next compared a number of adaptation strategies including:
LIN, RLL, RFL, RSI (retrain both MLP layers using only adaptation
data starting from the SI model), RRI (differs from RSI by starting
from random initial parameters), and REG (regularized adaptation).
We vary the amount of adaptation data that was available on all 4 or 8
classes (so all classes in each case had an equal amount of adaptation
data). The results are shown in Table 2. Results show that RSI, RFL,
and REG are all the best performing methods when the adaptation
data is balanced among the classes.

4 classes 8 classes

amount of data/class 1sec 2sec | 3sec 1sec | 2sec | 3sec
RRI 10.62 | 8.62 5.4 332 | 29.0 | 249

RLL 8.34 7.99 7.1 318 | 284 | 265
MLP-SVM [8] 8.74 6.80 5.7 32.1 | 28.0 | 26.0
LIN 755 | 5.69 51 326 | 299 | 281

RSI 7.09 | 550 4.6 284 | 248 | 229

RFL 7.16 | 5.46 45 282 | 247 | 225

REG 705 | 5.42 45 281 | 244 | 224

Table 2. 4- and 8-class test results, in % error rate, with varying
amounts of class-balanced adaptation data.

# classes 1 2 3 4 5 6 7 8

RLL 48.8 | 485 | 49.1 | 422 | 46.2 | 41.7 | 340 | 265

LIN 46.1 | 49.8 | 49.1 | 455 | 421 | 37.7 | 35.7 | 28.1

RSI 46.1 | 453 | 474 | 410 | 435 | 38.3 | 30.6 | 229

RFL 414 1393 [ 379 | 331 | 335 | 31.7 | 276 | 225

REG 396 | 383 | 360 | 323 | 308 | 288 | 263 | 224

Table 3. 8-class test results, in % error rate, with different number
of classes of adaptation data available (unbalanced classes). Three
seconds of data is used for each class.

Table 3 shows results when the amount of adaptation data is un-
balanced across the classes. Column ¢ means a system is adapted
only with ¢ out of the 8 possible number of classes. These results are
therefore more akin to the situation in ASR where a limited amount
of adaptation data corresponds to a very small number of the possi-
ble classes that can exist. We experimented with different orders that
the vowel classes are available for adaptation and observed similar
patterns in results, and here we only report the results for one such
order. As the table shows, the REG approach performs significantly
(at the p < 0.002 level) better than any of the other approaches for
all classes up to all 8 classes at which time it performs identically
(statistically) with the RFL and RSI approaches.

6. CONCLUSION

We have introduced regularized adaptation as a framework for mov-
ing from an unadapted (speaker-independent) to an adapted (speaker-
dependent) discriminative classifier and have shown that it achieves
results that improve on all other MLP adaptation schemes we are
aware of. In addition, the adaptation scheme works particularly well
when the data is unbalanced, and it yields a relatively simple and
computationally cheap adaptation algorithm that does not require a
large amount of adaptation data. Our approach, moreover, could eas-
ily be applied to adapt the front ends of a hybrid HMM/ANN [12] or
HMM/SVM ASR system. Lastly, we wish to thank Jon Malkin for
both Vocal Joystick development and idea contribution, and thank
Kelley Kilanski for data collection.
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