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Abstract— With the skyrocketing popularity of mobile devices,
new processing methods tailored to a specific application have
become necessary for low-resource systems. This work presents a
high-speed, low-resource speech recognition system using custom
arithmetic units, where all system variables are represented by
integer indices and all arithmetic operations are replaced by
hardware-based table lookups. To this end, several reordering
and rescaling techniques, including two accumulation structures
for Gaussian evaluation and a novel method for the normalization
of Viterbi search scores, are proposed to ensure low entropy
for all variables. Furthermore, a discriminatively inspired distor-
tion measure is investigated for scalar quantization of forward
probabilities to maximize the recognition rate. Finally, heuris-
tic algorithms are explored to optimize system-wide resource
allocation. Our best bit-width allocation scheme only requires
59kB of ROMs to hold the lookup tables, and its recognition
performance with various vocabulary sizes in both clean and
noisy conditions is nearly as good as that of a system using a 32-
bit floating-point unit. Simulations on various architectures show
that on most modern processor designs, we can expect a cycle-
count speedup of at least 3 times over systems with floating-point
units. Additionally, the memory bandwidth is reduced by over
70% and the offline storage for model parameters is reduced by
80%.

Index Terms— Speech recognition, custom arithmetic, high
speed, low resource, quantization, normalization, bit-width al-
location, discriminative distortion measure, forward probability
normalization and scaling, alpha recursion

I. INTRODUCTION

THE burgeoning development of mobile devices has
brought about a great need for a more friendly and con-

venient user interface. Automatic speech recognition (ASR)
has unquestionable utility when used in environments without
a keyboard, or where hands are unavailable. To take full
advantage of the envisioned “smart home” of the future, in
which most appliances are online and connected, we will want
a fully-functioning ASR system on a highly portable device,
such as a watch, necklace, or pendant. However, unlike desk-
top applications with ample memory and a perpetual power
supply, portable devices suffer from limited computational and
memory resources and strict power consumption constraints.
Most state-of-the-art ASR systems running on desktops use
continuous-density HMMs (CHMM with floating-point arith-
metic. These systems are computationally expensive, posing
potential problems for real-time processing and battery life.
The development of a high-speed, low-resource ASR system,
therefore, becomes crucial to the prevalence of speech tech-
nologies on mobile devices.
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In the literature, there are many techniques to speed up com-
putation at the algorithmic level, among which quantization
with table lookups has been extensively used. First, observa-
tion vectors or sub-vectors can be quantized and their state or
Gaussian mixture component likelihoods can be obtained effi-
ciently via pre-computed tables. A discrete-density HMM, for
example, applies vector quantization (VQ) to the observations
and approximates the state likelihood computation by lookup
operations. As a further improvement, a discrete mixture
HMM assumes discrete distributions at the scalar or sub-
vector level of a mixture model, and applies scalar quantization
or sub-vector quantization to the observations [1], [2]. Even
in a CHMM, the computational load can be greatly reduced
by restricting the precise likelihood computation to the most
relevant Gaussians using VQ [3], [4]. Second, quantization
techniques also contribute to a compact representation of
model parameters, which not only saves memory but also
reduces computational cost [5]–[9].

The problem can also be approached from the hardware
side. A floating-point unit is power-hungry, and requires a
rather large chip area when implemented. Software implemen-
tation of floating-point arithmetic takes less power and chip
area, but has significantly higher latencies [10]. Additionally,
speech recognizers usually do not use the precision of a
floating-point representation efficiently. Fixed-point arithmetic
offers only a partial solution. Operations can be much faster
using a fixed-point implementation [11]–[13]. But this method
often cuts the available dynamic range without having its
representation precision fully utilized. Additionally, some op-
erations can still take numerous processor cycles to complete.
Fixed-point ALUs, therefore, are often combined with rescal-
ing and table lookup techniques for better performance.

With 32-bit computing having reached the embedded market
and after years of finding ways to make general purpose
chips more powerful, the use of custom logic might seem
a rather curious choice [14]. Many signal processing appli-
cations produce system variables (system inputs, outputs and
all intermediate values) with very low entropy. It would be
beneficial to “record” these computation results so that they
may be reused many times in the future, thereby amortizing
the cost of computation. [15] uses cache-like structures they
call memo-tables to store the outputs of particular instruction
types. It performs a table lookup in parallel with conventional
computation which is halted if the lookup succeeds. The
paper argues that the cycle time of a memo-table lookup is
comparable to that of a cache lookup.

Generally speaking, quantization on a lower-entropy vari-
able, using a fixed number of bits, has a smaller expected
quantization distortion. Motivated by empirically observed low
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entropy of the variables within several speech recognition sys-
tems, we present a novel custom arithmetic architecture based
on high-speed lookup tables (LUTs). Therein, each system
variable is quantized to low precision and each arithmetic
operation is pre-computed for each of its input and output
codewords vectors. The goal is appealing, considering the high
speed and low power consumption of a hardware-based lookup
compared to that of a complicated arithmetic function. On the
other hand, the objective also looks daunting, since an ASR
system might have dozens of variables and operations, leading
to a prohibitive amount of storage for tables. Therefore, to
implement an ASR system using custom arithmetic units, the
first and foremost assumption is that the value distributions
of such a system have entropy low enough for low-precision
quantization. Second, the quantization of a specific variable
should ideally be consistent with minimizing the degradation
in recognition performance. Finally, a bit-width allocation
algorithm must be provided to optimize the resource perfor-
mance. While in [16] and [17] we proposed a general design
methodology for custom arithmetic and reported preliminary
results for system development, this paper approaches the
problem systematically, discusses the solutions in great detail
and presents new evaluation results with different vocabulary
sizes and in different noisy conditions.

We choose to apply custom arithmetic to the back-end but
not to the front-end for several reasons. The back-end accounts
for most of the computational load of an ASR system, but
it has fewer variables than the front-end since many of its
operations are repetitive. By contrast, the front-end has rela-
tively low computational cost but a large variety of variables
and operations which would quickly complicate the lookup
table design. In addition, the fixed-point arithmetic for feature
extraction has been well studied and can be implemented by
DSPs very efficiently [18]. Therefore, we envision a chip using
a combination of both standard fixed-point arithmetic for the
front-end, and custom arithmetic for the back-end.

The rest of the paper is organized as follows. Section II
discusses the general mechanism of custom arithmetic. Sec-
tion III and Section IV present our computation reorder-
ing technique for Gaussian evaluation and our normalization
method for Viterbi search respectively. Section V formulates
a discriminatively inspired distortion measure for quantizing
forward probabilities. Section VI investigates several heuristics
for bit-width allocation. Section VII describes our system
organization, and Section VIII reports our word error rate
(WER) and cycle time experiments and results, followed by
concluding remarks.

II. GENERAL DESIGN METHODOLOGY

In this section we present an ASR system driven by cus-
tom arithmetic, where all floating-point calculations are pre-
computed. In addition, we address several potential issues
associated with custom arithmetic design for an ASR system.

A. General Arithmetic Mechanism
A high-level programming language allows complex ex-

pressions involving multiple operands. We split all such com-
plex expressions into sequences of two-operand operations by

introducing intermediate variables. We can then express any
operation on scalar variables Vi and Vj , with the result saved
as Vh, by a function, Vh = Fk(Vi, Vj), where i, j, h ∈ {1..L}.
The function Fk(·), k ∈ {1..K}, can be an arbitrary arithmetic
operation or sequence of operations, e.g. Vh = (Vi − Vj)

2.
The first step of custom arithmetic design is to create a

codebook for each scalar variable. The codewords are the
quantized values of that variable, and the indices of those
codewords are consecutive integers. For a variable with value
Vl = x, the closest codeword in the codebook is denoted as
QVl

(x), and its associated index is denoted as IVl
(x).

Second, a table TFk
is created to store all allowable values

for the function Fk(·), as defined by the input and output
codebooks. Each address in the table is determined by the
indices of the input operand codewords and the output is the
index of the result’s codeword. Equationally, for z = Fk(x, y),
we have IVh

(z) = TFk
(IVi

(x), IVj
(y)). If the output and the

two inputs have bit-widths of n0, n1, and n2, respectively,
then the table requires a total storage of n0 · 2

n1+n2 bits.
The final step in designing this custom arithmetic system

is to replace all floating-point values with the corresponding
integer indices and approximate all two-operand arithmetic
operations with table lookups. Note that the output index is
used as the input of the next table lookup, so that all data flow
and storage are represented in integer form, and all complex
operations become a series of simple table accesses.

The physical device realization of the LUTs is beyond the
scope of this work. The implementation of custom arithmetic
units can be simplified using reconfigurable logic [19], [20],
although at the expense of increased power consumption.

B. Design Issues for ASR

In spite of the attractiveness of custom arithmetic, such a
system becomes unrealistic if the table size gets too large. This
poses several challenges to the custom arithmetic design for
an ASR system:

1) How to modify the decoding algorithm to ensure low
entropy for all system variables.

2) What are quantization methods consistent with recogni-
tion rate maximization.

3) How to allocate bit-widths among system variables to
optimize resource performance.

As stated in the introduction, the foremost assumption of a
custom arithmetic based system is the low entropy of all sys-
tem variables. Most variables in a state-of-the-art ASR back-
end, as will be seen in Section VIII, can be quantized to low
precision without loss of recognition accuracy. However there
do exist several variables with high entropy, which must be
tackled by algorithmic level modification. In the Mahalanobis
distance calculation of Gaussian evaluation, for example, the
distance is accumulated along the dimension of the features,
resulting in a relatively spread-out distribution covering all
partial accumulations. Additionally, the forward probability α
in decoding possesses a potentially more fatal problem —
the forward pass computes over an arbitrarily long utterance
in real applications, making α’s value distribution unknown
to the quantizer at the codebook design stage. Consequently,
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the designed codebook may not cover all values that may
occur at decode time, leading to poor recognition performance.
Although certain normalization techniques have been proposed
in the literature, they can not essentially solve the problem for
custom arithmetic design. Potential solutions to this first issue
will be discussed in Section III and Section IV.

The second issue is in fact a quantization problem. Since the
bit-width of each variable directly influences the table size, we
want each variable to be scalar quantized to as low precision as
possible without degradation in recognition rate. The distortion
measure should ideally be consistent with minimizing recog-
nition degradation. In this work, we are particularly interested
in further compressing the forward probability α, which has
the highest entropy even after rescaling, as will be shown in
Section VIII. Section V presents a discriminatively inspired
distortion measure to quantize this variable.

Finally, the last issue is a search problem for optimally
allocating memory resources among tables. Since the search
space could be quite large for an ASR system, we investigate
several heuristics in Section VI to find the best search scheme
within the existing computational capacity.

III. COMPUTATION REORDERING FOR GAUSSIAN
LIKELIHOOD EVALUATION

Gaussian evaluation can dominate the operational load by
taking up to 96% of the total computation for a typical small
vocabulary application [3], and 30% to 70% of the total
computation for LVCSR tasks [4]. However, the nature of
Gaussian evaluation makes this task particularly suited to our
custom arithmetic, as will be seen in this section. As a side
note, the required memory footprint for these calculations can
also be reduced through the use of lookup tables, providing
an added benefit.

A. Problem Formulation

Log arithmetic is widely used in practical ASR systems to
achieve numerical values with a very wide dynamic range. In
this paper, a variable with a bar denotes its log value. For
example, x̄ = log x. Also, ⊕ denotes log addition where x̄ ⊕
ȳ = log(ex̄ + eȳ)1. To this end, the log state likelihood b̄j(t)
of the tth observation vector (x1(t), x2(t), ..., xD(t)), given a
certain state qt = j, can be expressed as

b̄j(t) =
⊕

i∈Mj

(w̄i + ci −
1

2

D
∑

k=1

(xk(t) − µi,k)2

σ2
i,k

), (1)

where Mj is the subset of diagonal Gaussians belonging to
state j; the variables µi,k and σi,k are the mean and variance
scalars of a Gaussian respectively; w̄i is the log value of the
ith component responsibility (or mixture weight) and ci is a
constant, both of which can be computed offline.

As mentioned earlier, many operations in Gaussian eval-
uation are repetitive: to evaluate the observation probabili-
ties for an utterance with T frames in a system with M
different Gaussian components, the operation of the form
(xk(t) − µi,k)2/σ2

i,k will be performed T × M × D times,

1Log addition in our system was implemented in a more efficient way.

which easily could indicate millions of floating-point multi-
plications. Similarly, the more expensive log addition may be
performed thousands of times. Substituting in simple LUTs
can provide substantial benefit.

A crucial problem inherent to Gaussian likelihood evalu-
ation is that there are two iterative operations suggested by

(1). One is ei(t)
∆
=

D
∑

k=1

di,k(t), where di,k(t)
∆
= (xk(t) −

µi,k)2/σ2
i,k, and the other is b̄j(t) associated with the log

addition. The accumulations associated with these operations
may produce high-entropy variables, making codebook design
difficult. For example, in the above calculation, consider the
distribution of the partial accumulation at different points
in the summation calculation. Using a temporary value to
store the result of the partial accumulation, we initially have
tmp = di,1(t) + di,2(t). If we assume that the di,k(t) values
are identically distributed, then tmp at this point will have
a dynamic range of twice that of di,k(t). At the next step,
tmp = tmp+di,3(t), tmp will have a dynamic range of three
times that of di,k(t), and so forth.

Before moving on, there is a subtle but important distinction
to make between the entropy and the dynamic range of a ran-
dom variable. These two concepts are related in accumulation.
If all input values to be summed are identically distributed,
an accumulation will see many partial accumulative values at
each portion of its dynamic range. The resulting distribution
will have probability for values in the dynamic ranges of all
partial accumulations, and so the larger dynamic range will
imply high entropy.

B. Computation Reordering Strategies

There are two natural strategies for performing quantized
accumulation: a linear accumulation and a binary tree. Each
corresponds to a data-flow diagram and consequently to a
precedence order for the operations. They are “natural” in
that they closely parallel common data structures used for
dealing with an array of values, and in fact represent the
extremes of a large set of possibilities. Linear accumulation
is a straightforward accumulative algorithm, where the next
value of a variable equals the current value plus an additional
value as depicted on the left in Figure 1. In the case of
ei(t), the accumulator needs to be initialized to zero. ei(t) =
ei(t) + di,k(t) is then consecutively performed for k = 1..D.
An alternative to linear accumulation is to use a binary tree
as depicted on the right in Figure 1, where the original inputs
are combined separately and the outputs are again combined
separately.

There are different ways of implementing these two schemes
with LUTs. First, a separate table could be used for each
circle, where each table would be customized to its particular
distribution of input and output values. This would lead to
small tables since each table would be customized for the
typical dynamic range of its operands, but D−1 distinct tables
would be needed.

At the other extreme, a single table could be used for all
circles but it must account for enough values to adequately
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result

result
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resultresult

Fig. 1. Linear accumulation vs. tree-structure accumulation. Squares refer
to operands; circles refer to arithmetic operators to be implemented by table
lookup. Note that a separate LUT could be used for each circle, one large
LUT could be used for all circles, or some subset of circles could share from
a set of LUTs.

represent the value range produced by the operation. There-
fore, the table itself might be very large since the distributions
of its inputs and output would have much higher entropy.
Using a single table, however, may work well in cases such
as b̄j(t) =

⊕

(·), where the log addition operator does not
dramatically change the value range between inputs and output
at each iteration. Similarly, if an operation is iterated only a
small number of times, a single table may also be sufficient.

Between these two extremes, fewer than D − 1 tables can
account for all D − 1 circles. There is a tradeoff between the
number of tables and table size — a smaller number of tables
requires larger but shared codebooks. One solution in the tree
case is to use a separate table for each tree level, leading to
dlog De tables. The potential advantage here is that each tree
level can expect to see input operands with a similar dynamic
range and output operand distributions with lower entropy. As
a result, the total table size may be minimized.

This work compares three strategies in computing ei(t).
First, we implemented the linear case using one shared oper-
ator (LUT). Second, we tried two different tree accumulation
patterns, both with dlog De operators as mentioned above. The
two tree strategies differ only at the top level. As shown on
the left in Figure 2, the first case adds adjacent elements of
the vector {di,k(t)}D

k=1, but at the next tree level half the
inputs consist of combined static features and the other half
consist of combined deltas. The second case, depicted on
the right in Figure 2, instead combines the di,k(t) of each
feature with its corresponding delta. This idea is based on
the empirical observation that the dynamic range of di,k(t) is
similar between the static features after mean subtraction and
variance normalization, and similar also between the deltas.
This will cause the outputs of the top level to be more ho-
mogeneous, leading to better quantization and representation.
When dealing with an incomplete tree (D is not a power of
2), some values are allowed to pass over levels and are added
to lower levels of the tree, as shown on the right in Figure 1.
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Fig. 2. Adding adjacent elements vs. re-ordering elements to add MFCCs
and corresponding deltas; only the first level of the accumulation is shown,
with the array elements corresponding to the boxes of Fig. 1.

IV. NORMALIZATION OF VITERBI SEARCH

Viterbi search is another heavy load for an ASR engine. A
key goal of this work is for custom arithmetic to be applicable
to Viterbi search as well.

A. Problem Formulation

In decoding, the forward probability αj(t) = P (O1:t, qt =
j) is calculated as

ᾱj(t) = [
∑

i

(ᾱi(t − 1) + āij)] + b̄j(t) (2)

or, using the Viterbi approximation to exact inference,

φ̄j(t) = [max
i

(φ̄i(t − 1) + āij)] + b̄j(t) (3)

with the final score approximated as log P (O1:T ) ≈
max

j
[φ̄j(T ) + ājN ]. Here we let states 1 and N denote the

beginning and ending non-emitting states respectively.
As can be seen in Equation (2) and Equation (3), neither

ᾱ nor φ̄ has a bounded dynamic range. Specifically, as T
increases these log Viterbi scores will decrease, causing severe
problems in codebook design. Since the utterance length in
real applications is unknown at the system design stage, the
ᾱ (or φ̄) values at decode time might not lie in the dynamic
range of those values used for quantization at codebook design
time. Essentially, the distribution over ᾱ has high entropy
since the values decrease unboundedly with T . While we
could assume some upper bound on T and quantize with
ᾱ distributed accordingly, this would yield an exponentially
larger and wasteful codebook with many values seldom used
by short utterances. Therefore, we need a normalized version
of the forward probability, where inference is still valid but
the dynamic range is restricted regardless of utterance length.

B. Within-word Normalization

In this subsection we modify the notation by adding a
subscript k to distinguish between values associated with
different word models Wk, k = 1..K. Also, Qk denotes the
set of states in word Wk.

In the literature, α′
j,k(t)

∆
= P (qt = j|O1:t,Wk) has com-

monly served as a normalized forward probability to solve the
underflow problem that occurs in the Baum-Welch algorithm
using fixed-precision floating-point representation [21], [22].
This is equivalent to rescaling αj,k(t) by P (O1:t|Wk), pro-
ducing a quantity with a representable numerical range. The
recursion then becomes

α′
j,k(t) =

P (O1:t−1|Wk)

P (O1:t|Wk)





∑

i∈Qk

α′
i,k(t − 1)aij,k



 bj,k(t) (4)

=
1

Rk(t)





∑

i∈Qk

α′
i,k(t − 1)aij,k



 bj,k(t), (5)

where Rk(t) = P (Ot|O1:t−1,Wk) is computed as

Rk(t) =
∑

j∈Qk

[
∑

i∈Qk

α′
i,k(t − 1)aij,k]bj,k(t). (6)
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However, computing α′
j,k(T ) = P (qT = j|O1:T ,Wk) alone

is insufficient to obtain the final likelihood score P (O1:T |Wk)
needed in decoding. Obtaining this score requires log Rk(t) to
be stored during the forward pass and be summed up over t
at the end, again giving an ever growing dynamic range.

C. Cross-word Normalization

The essential problem with within-word normalization is
that the scaling factor is different for different word models at
each frame. The final α′ scores, therefore, are not comparable
to each other. One standard approach [21] to circumvent this
problem is to use the same scaling factor at each frame for all
word models. Formally, we introduce α′′

j,k(t) with a recursion

α′′
j,k(t) =

1

S(t)
[
∑

i∈Qk

α′′
i,k(t − 1)aij,k]bj,k(t). (7)

where

S(t) =
∑

k

∑

j∈Qk
[
∑

i∈Qk
α′′

i,k(t − 1)aij,k]bj,k(t)

≈ maxk,j∈Qk
[
∑

i∈Qk
α′′

i,k(t − 1)aij,k]bj,k(t).
(8)

This scaling factor in α′′’s recursion is independent of Wk,
and it naturally obtains the score for Wk at the end of the
corresponding forward pass:

k̂ = argmax
k

∑

j∈Qk

α′′
j,k(T )ajN,k. (9)

There are potential difficulties, however, with implementing
this recursion. As can be seen in Equations (7) and (8),
computing the scaling factor involves significant additional
operations. When implemented with custom arithmetic, there
is the additional problem that the total table size might still be
large since extra LUTs are needed for the scaling operation.

D. Time-invariant Normalization

Under modest assumptions, we show that the dynamic range
of φ̄ is bounded by linear functions of time. Equation (3)
suggests that

max
j

φ̄j(t) − max
i

φ̄i(t − 1) ≤ max
ij

āij + max
j

b̄j(t)

min
j

φ̄j(t) − min
i

φ̄i(t − 1) ≥ min
ij

āij + min
j

b̄j(t).

(10)
Equation (10) can be written recursively for all frames and
summed up on both sides, leading to

maxj φ̄j(t) ≤ t · max
ij

āij +

t
∑

s=1

max
j

b̄j(s)

minj φ̄j(t) ≥ t · min
ij

āij +

t
∑

s=1

min
j

b̄j(s).

(11)

Assuming max b̄j(t) is a mean ergodic process, namely

1
t

t
∑

s=1

max b̄j(s) = E[max b̄j(t)], and similarly for the min

case, we have
rlt ≤ φ̄j(t) ≤ rht (12)

where rh
∆
= max

ij
āij + E[max

j
b̄j(t)] and rl

∆
= min

ij
āij +

E[min
j

b̄j(t)].

Motivated by Equation (12), we propose a normalized
forward probability ηj(t)

∆
= φj(t)e

rt, where r is a positive
constant. The final Viterbi score consequently becomes

max
j

[η̄j(T ) + ājN ] ≈ log P (O1:T ) + rT (13)

First, Equation (13) is a valid scoring criterion because the
offset rT stays the same for all word candidates and hence has
no impact on the final decision. This allows us to choose the r
that best normalizes the forward probability. Second, dynamic
programming still applies to the inference:

η̄j(t) = max
i

[η̄i(t − 1) + āij ] + b̄j(t) + r. (14)

As shown in Section VII, this normalization does not require
extra table lookup operations. Finally, the dynamic range of
the normalized log forward probability η̄ is controlled by r,
since by Equation (12)

(rl + r)t ≤ η̄j(t) ≤ (rh + r)t. (15)

To choose r, we compute the scores of all utterances from
the training set evaluated on their own generative word models,
and let r = − E [log P (O1:T |correct model)/T ], in an attempt
to normalize to zero the correct model’s log likelihood score
with zero word error. It still might be true that when evaluating
utterances on the test set with respect to a wrong word model,
or if the right model happens to currently be in error, the
score decreases as T increases. When this happens, however,
it will be for those words with lower partial likelihoods, and
are (hopefully) in error. The scheme may act as pruning away
unpromising partial hypotheses by encoding their likelihoods
with a very few number of bits.

V. DISCRIMINATIVELY INSPIRED DISTORTION MEASURE

Lacking an analytically well-defined distortion measure
to maximize recognition rate, conventional discrete-density
HMM based ASR systems often use Euclidean or Mahalanobis
distance for VQ [21]. Here, we present a new metric cus-
tomized to minimize the degradation in recognition accuracy.

As will be shown in Section VIII, the forward probability
requires the highest bit-width among all system variables. We
are therefore particularly interested in further compressing this
variable. Forward probabilities are in fact just likelihoods. The
correct answer will typically have a high likelihood, whereas
very wrong answers will typically have low likelihoods and are
likely to be pruned away. A standard data-driven quantization
scheme, however, tends to allocate more bits to a value range
based only on its probability mass. Since low likelihoods are
more probable (there is only one correct answer and many
wrong ones), more bits will be allocated to these low scores
at quantization time, thereby giving them excessively high
resolution.

Therefore, we propose a discriminatively inspired distortion
measure to penalize low-valued forward probabilities. We
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define the distortion between a sample η̄j(t) = x and its
quantized value Q(x) as

D(x,Q(x)) =
(x − Q(x))2

f(x)
, (16)

where f(x) is strictly positive. In choosing f(x), it is desired
that as x increases, the distance between x and Q(x) will
increase, which will cause more bits to be allocated for higher
likelihood scores. f(x) = s − x is such a function, where
s > max x controls the degree of discrimination with smaller s
implying higher discrimination. In this work, s was determined
empirically from training data.

VI. OPTIMIZATION OF BIT-WIDTH ALLOCATION

So far, we have discussed table construction, but have not
addressed how to determine the size of each table. The goal
is to come up with a system-wide optimization algorithm to
allocate resources among all variables. We aim to find the bit-
width allocation scheme which minimizes the cost of resources
while maintaining baseline recognition performance.

The algorithms will be presented for a system with L
variables {Vi}

L
i=1. We now define the following:

• fp – The bit-width of an unquantized floating-point value.
Typically, fp = 32;

• bwi – the bit-width of Vi. bwi can take any integer value
below fp. When bwi = fp, Vi is unquantized;

• ~bw = (bw1, bw2, ..., bwL) – a bit-width allocation
scheme;

• ∆ ~bwi – an increment of 1 bit for variable Vi, where ~bw+
∆ ~bwi = (bw1, ..., bwi + 1, ..., bwL);

• wer( ~bw) – the word error rate (WER) evaluated at ~bw;
• cost( ~bw) – total cost of resources evaluated at ~bw.
Note that the cost function can be arbitrarily defined de-

pending on the specific goals of the allocation. In this paper,
we use the total storage of the tables as the cost. Additionally,
we define the gradient δ as the ratio of the decrease in WER
to the increase in cost evaluated in a certain axis direction, for
example,

δij( ~bw)
∆
=

wer( ~bw) − wer( ~bw + ∆ ~bwi + ∆ ~bwj)

cost( ~bw + ∆ ~bwi + ∆ ~bwj) − cost( ~bw)
(17)

reflects the rate of improvement along the joint direction of bwi

and bwj . For a single-dimensional increment, we set j = 0:
δi( ~bw) = δi0.

We define a baseline WER BWER
∆
=

wer( ~bw)| ~bw=(fp,fp,...,fp) + ε, with ε a tolerance for increased
error due to quantization. Our goal can be interpreted as

~bw
∗

= argmin
~bw:wer( ~bw)≤BWER

cost( ~bw) (18)

This search space is highly discrete and, due to the effects of
quantization noise, only approximately smooth. An exhaustive
search for ~bw

∗
, evaluating wer( ~bw) and cost( ~bw) at every pos-

sible ~bw, is clearly exponential in L. Even constraining the bit-
width of each variable to a restricted range of possible values
gives a very large search space. In the following subsections,
we present two heuristics that work well experimentally. The

basic idea is that we start with a low-cost ~bw with low enough
a WER that gradients are not meaningless (they provide no
information if bit-widths are too low) and greedily increase
the bit-widths of one or a small group of variables until we
find an acceptable solution. This is similar to the method used
in [23] to optimize floating-point bit-widths.

A. Single-Variable Quantization

Finding a reasonable starting point is an important part
of these algorithms. In general, it is expected that the noise
introduced into the system by quantizing an additional variable
will produce a result that is not better than without the extra
variable quantized. For that reason, we take the starting point
to be the minimum number of bits needed to quantize a
single variable to produce baseline WER results. We call
that result mi, the minimum bit-width of variable Vi. We
determine an upper bound Mi by inspection. Specific methods
for quantizing individual variables have been introduced in the
previous sections.

Once we determine the boundaries for each single variable,
we have constrained our search to the hypercube bounded by
mi ≤ ~bwi ≤ Mi, i = 1..L. We then start each of the following
algorithms at ~bwinit = (bw1 = m1, bw2 = m2, ..., bwL =
mL). In all cases, it is assumed that wer( ~bwinit) > BWER
since the algorithms are designed to stop when they find a ~bw
with a WER as low as the target rate.

B. Single-Dimensional Increment

This algorithm allows only single-dimensional increments.
It uses the gradient δi( ~bw) as a measure of improvement. The
algorithm is described as follows,

1. Evaluate the gradients δi( ~bw), i = 1..L, for the
current ~bw according to Equation (17), where L tests
are needed to obtain the WERs. If δi( ~bw) < 0 ∀i,
return ~bw

∗
= ~bw;

2. Choose the direction k = argmax
i:bwi+1≤Mk

δi( ~bw), and set

~bw = ~bw + ∆ ~bwk;
3. If wer( ~bw) ≤ BWER, return ~bw

∗
= ~bw; otherwise

repeat steps 1 and 2.

For speech recognition, online evaluation for a test takes
a significant amount of time. As this takes place during the
design stage, this is not a problem. Note that there might
exist the case that no improvement exists along each of the L
directions, but that one does exist with joint increments along
multiple dimensions. With this algorithm, the search can easily
become stuck in a local optimum.

C. Multi-Dimensional Increment

To avoid local optimum, the bit-widths of multiple variables
could be increased in parallel. Considering the computational
complexity, we only allow one- or two-dimensional incre-

ments, leading to L +

(

L
2

)

possible candidates. We could

extend this to include triplet increments, but it would take an
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intolerably long time to finish. Only steps 1 and 2 differ from
the above algorithm, becoming:

1. Evaluate the gradients δi( ~bw) and δij( ~bw), i = 1..L,

j = 1..L on current ~bw where L +

(

L
2

)

tests are

needed to obtain the WERs. Return ~bw
∗

= ~bw if all
these gradients are negative;

2. Choose the direction k or a pair of directions {k, l}
where δk( ~bw) or δkl( ~bw) is the maximum among
all the single-dimensional and pair-wise increments.
Increase the bit-width of Vk or those of {Vk, Vl} by
one if no one exceeds its upper bound.

This algorithm is superior to the first one in the sense that
it explores many more candidate points in the search space. It
considers only one additional direction and may still fall into a
local optimum, but is less likely to do so than in the previous
case. The downside is that this algorithm takes substantially
longer to complete.

VII. SYSTEM ORGANIZATION

A. Baseline System Configuration

The database used for system evaluation is NYNEX Phone-
Book [24], a phonetically-rich speech database designed for
isolated-word recognition tasks. It consists of isolated-word
utterances recorded via telephone channels with an 8,000 Hz
sampling rate. Each sample is encoded into 8 bits according
to µ-Law. We set aside 79778 utterances for training, 6598 for
development and 7191 for evaluation.2 The development set
is comprised of 8 different subsets, each with a different 75-
word vocabulary. For a comprehensive testing, the evaluation
set is divided in four ways: a) 8 subsets each with a 75-word
vocabulary; b) 4 subsets each with a 150-word vocabulary;
c) 2 subsets each with a 300-word vocabulary and d) one
set with a 600-word vocabulary. Besides the experiments in
clean conditions, artificial white Gaussian noise is added to
the evaluation set generating utterances with SNRs of 30dB,
20dB and 10dB.

The acoustic features are the standard MFCCs plus the
log energy and their deltas, yielding 26-dimensional vectors.
Each vector has mean subtraction and variance normalization
applied to both static and dynamic features in an attempt to
make the system robust to noise.

The acoustic models are a set of phone-based CHMMs.
This enables a customizable vocabulary, a desirable goal for
an embedded device. Our system has 42 phone models, each
composed of 4 emitting states except for the silence model
which has 1 emitting state. The state probability distribution
is a mixture of 12 diagonal Gaussians.

The front-end and the back-end are two main components
of the recognizer, where the back-end has been discussed in

2Specifically, the training set consisted of subsets aa, ab, ah, ai, am, an, aq,
at, au, ax, ba, bb, bh, bi, bm, bn, bq, bt, bu, bx, ca, cb, ch, ci, cm, cn, cq, ct,
cu, cx, da, db, dh, di, dm, dn, dq, dt, du, dx, ea and eb. The development set
included subsets ad, ar, bd, br, cd, cr, dd and dr. Finally, the evaluation set
was comprised of subsets ao, ay, bo, by, co, cc, do, dy.

previous sections. Our front-end consists of active speech de-
tection and feature extraction. It expands each µ-law encoded
sample into linear 16-bit PCM, and then creates a frame every
10ms (80 samples), each with a length of 25ms (200 samples).
The speech detector used is one of the simplest; it detects
speech when the energy level of the speech signal rises above
a certain threshold. This design uses minimal extra resources
while still accurately detecting speech when noise conditions
are stationary. Feature extraction is triggered immediately
when active speech is detected. It follows a standard procedure
described in [25], We then add the first order dynamic features
followed by mean subtraction and variance normalization. The
feature vectors obtained are fed into the back-end, where the
pattern matching takes place. Since we propose applying our
custom arithmetic to the back-end but not to the front-end, an
interface is necessary. At the interface, the floating-point value
of a feature element is converted into its integer index in the
associated codebook by a binary search. This is in fact the
only place in the system where a software codebook search
is needed, and is the biggest overhead introduced by custom
arithmetic. This overhead is taken into account in our CPU
time simulations.

B. Codebook and Table Definition
Based on the analysis in the previous sections, we defined

13 variables to be quantized which are listed in Table I.
The variable x is the output feature element of the front-
end, m,v, c,w and a are the acoustic model parameters pre-
computed, and s,d, e,p,q,b and η are other intermediate
variables in the back-end system.

TABLE I
SYSTEM VARIABLES AND THEIR CORRESPONDING EXPRESSIONS

symbol in Equation (1) symbol in Equation (1)
x xk(t) s (xk(t) − µi,k)2

m µi,k d di,k(t)
v σ2

i,k
e ei(t)

c ci p ci −
1

2
ei(t)

w w̄i q w̄i − ci −
1

2
ei(t)

b b̄j(t)
a āi,j

η η̄j(t); η̄j(t) + āij

There are 8 functions and hence 8 potential LUTs associated
with these variables:
F1(·) : s = (x − m)2 F5(·) : q = w + p

F2(·) : d = s/v F6(·) : b = b ⊕ q

F3(·) : e = e + d F7(·) : η = η + a

F4(·) : p = c − e/2 F8(·) : η = η + b + r

F1(·) and F2(·) involve floating-point multiplication and
division respectively, and these operations would be performed
millions of times for an ordinary isolated word recogni-
tion task. F6(·) would be executed thousands of times with
even more expensive log computation. We expect the simple
hardware-based lookup operations will dramatically save cy-
cles as well as power on these functions.

Note that the comparison operations implicit in Equation
(14) are easily implemented, since they can be achieved using
low bit-width integer comparisons operations, so no extra
tables are required.
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VIII. EXPERIMENTS AND RESULTS

Before reporting our experiments and results, we would
like to clarify two points. First, the recognition program used
in all our simulations does not utilize purely algorithmic
methodology such as Gaussian selection, beam pruning or
algorithmic-level vector quantization techniques; incorporating
these procedures may indeed affect (and likely improve)
our speedup factors. But in this work we concentrate solely
on architectural customization and enhancement. Second, we
must acknowledge that an alternative architectural strategy
is to utilize a ”hybrid” system consisting of a mix between
floating- and fixed-point arithmetic operations. Our contention,
however, is that when the greatest possible power savings must
be obtained, custom designed arithmetic operations (as we
employ in this work) will yield the best tradeoff between ASR
accuracy and power consumption reduction.

This section first reports the results of system development.
The LBG [26] algorithm was used in all single variable
quantization experiments. These experiments were performed
on the 8 development subsets mentioned in the previous
section. The WERs reported were an average over these
subsets. We also tried 150-, 300- and 600-word vocabulary
cases on the development set and observed similar trends.
Based on the single-variable quantization experiments, we
applied our search algorithms for resource allocation, where
the WERs were again evaluated on the development set. Next
we evaluated the recognition accuracy of the best allocation
scheme in both clean and noisy conditions on our evaluation
set. Finally, we estimated its memory usage and simulated its
speed performance.

A. System development

In the single-variable quantization experiments, we quantize
each variable individually, leaving all other variables at full
precision. The baseline WER of the development set is 2.07%.

Table II shows the minimum bit-width to which a vari-
able can be quantized without any increase in WER on the
development set. Here we report all system variables except
for the accumulated Mahalanobis distance e and the forward
probability η which will be discussed separately later. Note
that we let q and b share the same codebook because their
value ranges have much overlap.

TABLE II
MINIMUM BIT-WIDTH TO WHICH EACH VARIABLE CAN BE INDIVIDUALLY

QUANTIZED WITHOUT INCREASE IN WER

variable m v w a x s d c p b (q)
min bit 4 5 2 2 5 6 5 5 6 5

Section III presented two approaches to quantize variable e.
In our case, the operation e = e + d is repeated 26 times to
get the final value of e. Using linear accumulation, it involves
only two variables e and d and only one table e = e + d.
Alternatively, we can use tree-structure accumulation with
multiple variables and dlog 26e = 5 different tables each of
relatively small size. For simplicity, the variables in each level
of the tree structure are quantized with the same bit-width.

Figure 3 summarizes the results in terms of WER vs. bit-width
of each codebook. Tree-structure 1 denotes the method where
adjacent pairs in the vector are added at all levels to form the
next-level codebook, whereas in tree-structure 2, MFCCs are
added to their corresponding deltas at the first level. It can
be seen that in order to achieve the baseline recognition rate,
linear accumulation needs 7 bits and tree-structure schemes
need 6 bits for each codebook. The total table size, however,
is a different story since the tree-structure schemes require
5 separate LUTs. To compute the total table size, we only
consider the two functions in which e is involved.3 Assuming
nd = 5, nc = 5 and np = 6 according to Table II, 6 kBytes of
LUTs are needed to realize the operations involving e using
linear accumulation, whereas the required space goes up to
almost 10 kBytes for the tree-structure schemes to achieve the
same goal. It is worth noting that the feature dimension is
fixed at 26 and is relatively low, and the addition operation
only changes the dynamic range of the output at a linear
scale. This yields only a mild increase in the entropy of e,
thereby making the linear accumulation an effective approach.
Nevertheless, the tree structure may show advantages for other
types of operations such as a long sequence of multiplications.
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3.5

2 3 4 5 6 7 8 9

%
 W
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BIT-WIDTH OF EACH CODEBOOK

linear quantization
tree-structure I
tree-structure II

Fig. 3. Single-variable quantization for accumulative variable e

Section IV proposed a time-invariant normalization to the
forward probability to reduce its entropy without affecting
recognition decision. To show the advantage of the normaliza-
tion on quantization, we extracted forward probability samples
with and without normalization on the same subset of training
data, and generated codebooks based on the Euclidean distance
distortion measure for each case. We additionally applied
quantization of the normalized forward probabilities using
our discriminatively inspired distortion measure. As shown in
Figure 4, the normalized Viterbi search obviously outperforms
the unnormalized case by saving 1 bit while keeping the
baseline recognition rate (thus nearly halving the total table
size). In fact, we believe the benefits of normalization would
be more pronounced on a task with longer utterances, such as
connected-digit or continuous speech recognition. In addition,

3With e, d, c and p quantized to ne, nd, nc and np bits respectively, all
related tables total ne2nd+ne + np2nc+ne bits.
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the discriminative distortion measure works slightly better than
the normal one.
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Fig. 4. Single-variable quantization for forward probability

We therefore chose linear accumulation in quantizing e

and normalized Viterbi search using our distortion measure
in quantizing the forward probability. Together with other
variable quantization results, codebooks with different reso-
lution were generated for all system variables, to which an
optimization search was applied to find the best bit-width
allocation scheme. The results of running both allocation
algorithms appear in Table III. Recall that the baseline WER
of the development set is 2.07%.

TABLE III
COMPARISON OF TWO BIT-WIDTH OPTIMIZATION ALGORITHMS

WER Table (kB) # Tests
1-D 3.09% 36.44 52
2-D 2.53% 58.75 454

The 1-D (single-dimensional increment) algorithm tested a
total of 52 configurations before it reached a local optimum.
It managed to find a fairly small ROM size but the WER was
not very satisfactory. The 2-D (two-dimensional increment)
algorithm found a much better WER than 1-D, even if its
total table size was larger.

The final bit-width allocation scheme of the last algorithm is
shown in Table IV, where the first row indicates the variable
and the second row shows the corresponding bit-width. As

TABLE IV
THE OPTIMAL BIT-WIDTH ALLOCATION SCHEME

V m v w x s d e c p b a η

BW 6 7 3 7 7 6 7 5 8 5 3 9

shown in the table, all the variables can be compressed to
less than 10 bits, which substantially reduces the memory
band-width. This scheme takes only 59 kBytes of memory for
table storage, an amount affordable for most modern chips. It
is also interesting to see that the responsibility w, transition
probability a, mean scalar m, variance scalar v and constant
c can each be quantized to less than 8 bits, leading to an

80% reduction of model parameter storage as opposed to 32-
bit floating-point representation. In addition, the feature scalar
x and the state likelihood b can be quantized to 7 and 5
bits respectively, resulting in an additional saving in online
memory usage.

For some computer architectures, 8- or 16-bit is the bit-
width that can be most effectively used. For example, the
design of a lookup instruction would be easier if its operands
are uniformly 8 bits (those smaller can be filled with zeros at
the beginning). For this reason, we additionally conducted an
optimization experiment with the constraint that all variables
were quantized to no more than 8 bits. Note that to minimize
the table size, variables with fewer than 8 bits were not
expanded to 8 bits. The resulting bit-width allocation scheme
uses 68.5 kB to achieve a WER of 3.22%. We would also
like to mention that for custom chips and reconfigurable logic
chips, 8- or 16-bit is not always necessary since buses and
registers can have smaller bit-widths.

B. Final system evaluation

We tested the recognition performance of the scheme in
Table IV on our evaluation set for all 75-, 150-, 300- and
600-word vocabulary cases as defined in Section VII. The
experiments were done in both clean and noisy conditions.
We did not apply any noise-robustness techniques except for
mean subtraction and variance normalization to the MFCC and
delta features.

As shown in Table V, for recognition in relatively clean
conditions (clean and SNR=30dB cases), the system using
custom arithmetic units has slight degradation in recognition
rate compared to the baseline system using a floating point
unit. The maximum degradation, an absolute 1.7% increase
in WER, happens in the 600-word and 30dB case. This
is graceful considering the potential speedup that custom
arithmetic brings, which is discussed in the next subsection. It
is interesting to see that in more noisy conditions (SNR=20dB
and SNR=10dB cases), custom arithmetic does not deteriorate
the recognition performance any more, but on the contrary,
slightly enhances it. One explanation is that the quantization
noise introduced may, to some extent, compensate for the more
continuous additive noise in the speech; so quantization then
acts as a regularizer — the decision boundaries are probably
slightly less susceptible to minor perturbations when variables
are so coarsely quantized in the custom arithmetic case.

TABLE V
%WERS ON EVAL SET USING THE SCHEME IN TABLE IV

vocab. 75-word 150-word 300-word 600-word
fp. custom fp. custom fp. custom fp. custom

clean 2.26 2.99 3.23 4.43 5.09 6.70 19.09 20.90
30 dB 2.68 3.46 3.91 4.98 6.26 7.58 20.62 22.33
20 dB 8.55 8.23 11.71 11.13 16.03 15.40 31.14 31.11
10 dB 30.65 29.59 38.36 36.87 46.21 44.44 58.78 57.71

C. CPU Time Simulation

We utilized SimpleScalar [27], an architecture-level
execution-driven simulator, for CPU time simulation. All
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tables were pre-calculated by SimpleScalar at runtime. We
extended the instruction set and modified the assembler to
support our new lookup instructions.

The simulation was targeted for a variety of architectures.
Without a detailed manufacturer-supplied simulator, an in-
depth analysis of any specific architecture is impossible, but
by using a range of simulated architectures we can still
discover meaningful trends in performance. The first is the
SimpleScalar default configuration, roughly akin to a third
generation Alpha, an out-of-order superscalar processor. The
second represents a more modern desktop machine; cache
sizes and latencies have been updated from the defaults, sev-
eral years old, to reflect more current values. Our third configu-
ration attempts to represent a typical high-end DSP chip. Since
most DSP chips are Very Long Instruction Word (VLIW)
architectures, a feature not replicable with SimpleScalar, we
chose instead to force in-order execution with high parallelism
as a very rough approximation of VLIW. Finally, we simulated
a very simple processor with a single pipeline and no cache.
This last case is similar to what could be expected of a low-
power processor designed to run on an extremely portable
device, the expected target platform for custom arithmetic.
In each case, we allowed multiple tables to be accessed in
parallel, although a specific table could be used by only one
instruction at a time.
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Fig. 5. Speedup (in cycles) versus cycles per lookup

We simulated each of the target machines for a range
of table lookup speeds. This is independent of WER since,
assuming the table is not too large, the precision of the output
of a lookup has little to do with the speed of the lookup.
Figure 5 shows the speedup obtained versus the number of
cycles required for each lookup. The speedup ranges from
just under 2.5 to nearly 4 when lookups take only 1 cycle, and
falls off as they become more expensive. If the ROM tables
are small enough to fit on the processor chip, which is the
case using the 59kB results from Table IV, a 1-cycle lookup is
quite realistic for a state-of-the-art system. To be more explicit,
we assume that the ROMs will be on-die and implemented
using either reconfigurable logic or a custom die for embedded
applications. Although this may seem to require a large chip
area, there is substantial savings in the on-chip cache size
resulting from the reduction in the bit-widths of all variables.

As shown in the figure, using a single pipeline and no cache
(simple processor), meaning essentially a cache miss every
time, does reduce the speedup but still provides a significant
gain in speed. Much benefit actually comes from replacing
sequences of instructions with a single lookup, as the dynamic
instruction count falls nearly as much as execution time. Note
that because we did not try to implement a low-power front-
end, a feature that would be necessary for a final realization of
this system, we used pre-calculated MFCCs in floating-point
values and included the time for MFCC quantization when
calculating speedups.

IX. SUMMARY AND CONCLUSION

This paper presented a methodology for the design of high-
speed, low-resource systems using custom arithmetic units.
We focused our attention on the scalar quantization of system
variables with high entropy, involving reordering and rescaling
of the decoding algorithms and a discriminatively inspired
distortion measure. We also demonstrated several resource
allocation search heuristics suitable for finding acceptable
points in an otherwise intractable search space. Our findings
were then applied to a CHMM based ASR system, where
a fully-functioning ASR back-end was achieved by LUTs
without floating-point arithmetic units. The 59kB of tables
is small enough that it can be added to any chip with an
access time of 1 cycle. When implementing this design on
a modern processor, we show that the expected speedup is at
least 3, and possibly larger. Furthermore, the memory required
for parameter storage and online computation can be greatly
reduced. In addition, we are looking forward to hardware
support for our custom arithmetic; the amount of savings in
cycles and power also depends on the physical realization of
the LUTs and the ISA designed to support lookup operations.
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