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ABSTRACT

In this work, we present a simple yet effective technique to
reduce the likelihood computation in ASR systems that use
continuous density HMMs. In a variety of speech recog-
nition tasks, likelihood evaluation accounts for a signifi-
cant portion of the total computational load. Our proposed
method, under certain conditions, only evaluates the compo-
nent likelihoods of certain features, and approximates those
of the remaining (pruned) features by prediction. We in-
vestigate two feature clustering approaches associated with
our pruning technique. While a simple sequential clustering
works remarkably well, a data-driven approach performs
even better in its attempt to save computation while main-
taining baseline recognition accuracy. With the second ap-
proach, we can speed up the likelihood evaluation by 33%
and reduce its power consumption by 27% for an isolated
word recognition task. For a continuous speech recogni-
tion system using either monophone or triphone models, the
speedup and power reduction of the likelihood evaluation
are 50% and 35% respectively.

1. INTRODUCTION

The proliferation of mobile devices has caused a great de-
mand for a more convenient user interface, and speech tech-
nology is widely believed to be an ideal methodology for
this purpose. Portable devices, however, usually do not have
abundant resources to support the heavy computational load
of a speech recognition engine. While computation time
keeps decreasing with the development of modern micro-
processors, power consumption remains an impediment to
the ubiquitous adoption of speech technology for portable
devices.

For ASR systems using continuous HMMs, the state
likelihood evaluation can dominate the operational load by
taking up to 96% of the total computation for a typical small
vocabulary application [1], and 30% to 70% of the total
computation for LVCSR tasks [2]. Since the observation
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distribution is typically represented by a Gaussian mixture,
the computational complexity of the likelihood evaluation is
proportional to the total number of Gaussians in the system
and the dimensionality of these Gaussians. This gives two
potential research directions to improve efficiency: reduc-
ing the number of Gaussians and reducing their dimension-
ality.

The number of Gaussian evaluations can be reduced in
a system that employs state tying since, once evaluated, the
Gaussian score can be stored and utilized multiple times.
Tying has been extensively applied to different levels of the
hierarchical structure of HMMs [3, 4, 5, 6], and tends to
be implemented in even finer units such as subspace dis-
tributions [7, 8]. Alternately, Gaussians can be pruned on-
line using Gaussian selection [1, 2], where only a fraction
of Gaussians with means close to the observation are pre-
cisely computed for each state, and all remaining ones are
assigned approximated values. Taking the other direction,
various feature selection methods [9, 10, 11] tackle the di-
mensionality problem by selecting only the features with the
highest discriminative power. Also, there has been work re-
lated to our method [12], where incremental feature pruning
was applied to discrete-mixture models.

In this paper, we achieve a reduction in likelihood com-
putation and its power consumption by selectively comput-
ing likelihoods of feature subsets. Specifically, we precisely
compute the likelihoods of certain feature subsets first, and
conditionally approximate those of other (pruned) subsets
by prediction. The amount of pruning depends on how the
features are clustered and ordered. We describe the prun-
ing algorithm in detail in section 2, and present two associ-
ated feature clustering schemes in section 3. In section 4,
we show that with data-driven clustering, we can speed up
the likelihood evaluation by 33% to 50% with only a slight
degradation in system accuracy, though the overall speedups
depend on the ratio of search to likelihood evaluation. In ad-
dition, power simulations show a reduction of 27% to 35%
in terms of power consumed by the likelihood evaluation.
As will be seen, independent of the training process, our
technique is easily incorporated into any standard decoder.



2. FEATURE PRUNING

In continuous HMMs, the density bj(O) of the observation
vector O given a certain state j is typically parameterized
by a Gaussian mixture,

bj(O) =
∑

i∈Mj

wiN (O;µi,Σi) (1)

where O = (x(1), x(2), ..., x(D)) with D the dimension-
ality of the features and Mj the subset of Gaussians which
belongs to state j.

If we assume diagonal covariance matrices, the log prob-
ability of a single D-dimensional Gaussian is computed as,

lnN (O;µi,Σi) = −
c0i

2
−

D∑

j=1

(x(j)− µi(j))
2

2σ2
i (j)

(2)

where c0i is a constant independent of the observation, which
can be computed offline. The online computation of the Ma-
halanobis distance for each dimension is usually performed
sequentially.

In a diagonal covariance mixture of Gaussian HMM, it
is implicitly assumed that feature subsets are conditionally
independent given the HMM state and the mixture com-
ponent identity. This property allows the Gaussian over
the full-space to be decomposed into K lower-dimensional
Gaussians over orthogonal subspaces each with dimension
dk, k=1..K, and

∑K

k=1 dk = D. We let qik(O) denote the
kth subspace’s negative log Gaussian probability. Note that
qik(O) in fact uses only a subset of the features within O,
and the features used need not be contiguous. The ith com-
ponent likelihood then becomes

lnN (O;µi,Σi) = −
K∑

k=1

qik(O) (3)

with qik(O) expressed as

qik(O) =
c0ik

2
+

dk∑

j=1

(xk(j)− µik(j))2

2σ2
ik(j)

(4)

The Gaussian mixture model has some interesting nu-
merical properties. If qi1(O) in (3) is small (meaning the
corresponding subspace Gaussian has very high probabil-
ity), qik(O), k = 2..K, would become dominant in deter-
miningN (O;µi,Σi). If, on the other hand, qi1(O) is large,
thenN (O;µi,Σi) would be no higher than exp{−qi1(O)}.
The ith component, as suggested by (1), would have a con-
tribution of at most wi exp{−qi1(O)} to the state likeli-
hood bj(O). That contribution quickly becomes negligible
when qi1(O) gets higher than a threshold, where computing
qik(O), k=2..K would not provide much additional resolu-
tion in the likelihood value.

Therefore, we can achieve a saving by conditional ap-
proximations to the likelihood evaluation. We only com-

pute qik(O), k=2..K, when qi1(O) is small enough. Other-
wise, we ignore the expensive remaining Gaussian probabil-
ity computation and assign approximate values. In fact, the
comparison and approximation can be performed at multi-
ple levels. In this work, we let the indices 1..K indicate the
order in which the subspace likelihoods are computed. The
feature pruning algorithm can be describe as follows,
Input: observation O; Gaussian parameters {µi, Σi }
Output: approximated lnN (O;µi,Σi)

1: a← qi1(O);
2: for k = 2..K do
3: if a < tk−1 then
4: compute qik(O) according to (4);
5: a← a + qik(O);
6: else
7: a← fk−1(a);
8: break;
9: end if

10: end for
11: return −a;
where tk, k = 1..K-1, are a set of thresholds, and fk(·) are
a set of affine approximation functions whose coefficients
can be determined using Least Mean Square (LMS) estima-
tion on the training data. Consequently, only a fraction of
observation vectors are precisely computed to full dimen-
sion. Some of the features are ignored according to the like-
lihoods of the already-computed features.

The tradeoff between recognition accuracy and compu-
tation time or power consumption is controlled by the thresh-
olds, the approximation functions, and the way that the fea-
tures are clustered into subspaces and are ordered. First, the
thresholds control both approximation accuracy and compu-
tation/power by determining how often approximation takes
place. Second, the approximation functions influence the
accuracy by their overall fidelity, but do not affect compu-
tation/power. Third, the feature clustering scheme controls
accuracy by its success in selecting feature subsets that have
high correlation in likelihood (thereby making prediction
easy), and also controls computation/power via the size of
the subsets chosen (which determine the degree of pruning
when it occurs).

3. CLUSTERING OF FEATURES

Ideally the features should be clustered in such a way that
we can prune as much as possible while maintaining base-
line recognition rate. In this section, we present two clus-
tering schemes: the first is purely sequential and the second
uses a data-driven approach.

3.1. Sequential clustering

For recognizers which use both static and dynamic features,
a simple and intuitive way to cluster features is sequential



clustering. More specifically, the static features are allo-
cated to the first group, their deltas to the second, and the
double deltas to the last if available. The advantage is that
the features are very likely to be represented in this order,
which simplifies the incorporation of feature pruning into
an existing ASR system. Furthermore, as is explained in the
following text, we observe a certain degree of correlation
between the component likelihoods of the dynamic features
and those of the static features. And the predictability of the
likelihoods is beneficial to our feature pruning technique.

Dynamic features in conjunction with static features have
long been used in ASR systems. [13] gives a discriminative
explanation of why dynamic features can help in speech
recognition in spite of the fact they are generated merely
from static features. However, such a concatenated feature
vector inevitably contains redundant information and may
introduce a certain degree of correlation between the likeli-
hoods of the static and dynamic features. Furthermore, dy-
namic features improve the recognition rate but at the cost
of doubling or even tripling the computational effort in the
likelihood evaluation. Therefore, it should at least be ques-
tioned whether the improvement in performance is worth
the increase in computational cost.

To illustrate the correlation between the subspace like-
lihoods of static and dynamic features, we observe the joint
distribution of qi1(O) and qi2(O) of certain phonemes. Note
again that large qi1(O) and qi2(O) indicate low likelihoods.
Assuming qi1(O) and qi2(O) were independent random vari-
ables, if O was itself a Gaussian, the value of qi1(O) and
qi2(O) would each have a χ-square distribution. As a sim-
ple demonstration, we draw from two identical and indepen-
dent χ-square random variables, as depicted in the upper-
left plot (Pattern A) of figure 1, where we are unable to
obtain any information about qi1(O) from qi2(O). On the
other hand, if they are fully correlated as in the upper-right
plot (Pattern B), we can estimate the former likelihood com-
pletely from the latter, and the dynamic features are abso-
lutely redundant in this sense. The real joint distribution,
however, lies somewhere between the two above extreme
cases. The bottom plots of figure 1 show the true qi1(O)
and qi2(O), ∀i, with observation O chosen randomly from
various utterances from the TIMIT corpus. The bottom-left
figure plots the data distribution for all states of the vowel /i/
and the bottom-right one for the consonant /C/. As shown
in the figure, the conditional variance VAR[qi2(O)|qi1(O)]
tends to decrease as qi1(O) increases. In other words, if
the component likelihood of the static features is low, the
likelihood of the dynamic features has a relatively narrow
dynamic range, which allows us to more accurately approx-
imate the latter based on the value of the former. The plots
for other phonemes follow the same trend, and we observe
similar patterns for qi3(O) vs. qi2(O) when double deltas
are used.
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Figure 1: qi2(O) vs. qi1(O). Upper: two extreme distribution
patterns; Bottom: two real distributions for vowel and consonant

phonemes respectively

To determine the affine functions fk(·), we assume fk(t) =
rkt+ sk and apply LMS estimation on a subset of the train-
ing data where

∑k

l=1 qil(O) > tk. Experiments show that
rk ≈ 1, and we therefore let rk = 1 for simplicity. In other
words, in the pruning algorithm whenever a > tk, we let
a← a + sk and return −a as the approximated component
likelihood.

3.2. Data-driven clustering

For more general features, we do not have knowledge in ad-
vance about the correlation between their component likeli-
hoods. The complexity of trying every combination to find
the best clustering scheme is factorial in the dimension of
the features. Therefore, we evaluate a data-driven method
to cluster the features according to their statistical proper-
ties. In this work, we only study the case where the features
are grouped into clusters with the same size.

First, we find from empirical experimentation that the
recognition rate depends heavily on the thresholds tk, k =
1..K-1, no matter how the features are clustered. In other
words, given K and a set of tk, we tend to get similar recog-
nition rates for all possible clustering schemes. Secondly,
the clustering does have an impact on the recognition rate,
but at a smaller scale, since it more or less affects the pre-
dictability of the likelihoods and hence the effectiveness of
the approximation functions. Finally, the clustering has a
great impact on the savings in computation and power; dif-
ferent clustering schemes would have different numbers of
feature clusters pruned under the same thresholding value.
Therefore, since the thresholds very much decide the recog-
nition rate, we hope that the clustering will prune as many
features as possible before the critical point where the recog-
nition rate begins to drop from the baseline. If t1 is the crit-
ical threshold point, the first group of features to be com-
puted should be selected to have the maximum probability



of having a score below the threshold, thereby increasing the
chance that the remaining feature likelihoods will not need
to be computed. Specifically, we search for a set of features
that attempts to maximize Pr{qi1(O) > t1}, which can be
estimated non-parametrically using a large amount of data.
While the optimal clustering is intractable, we instead em-
ploy the following greedy algorithm:

1. Determine the number of clusters K according to the
total number of features D. (Note the optimal choice
of K is beyond the scope of our work. There were
experiments related to this topic in [12].) For com-
parison, we set K the same as that used in sequential
clustering, namely 2 or 3, in our work.

2. Randomly cluster the features into K groups with the
same size, perform feature pruning experiments with
decreasing t1 (t2..tK−1 are decreased accordingly),
and find the critical point t1 = t0. Repeat the step for
different random clusterings to get multiple t0’s, and
we simply use the mean, E[t0].

3. Extract a subset of representative training data and
compute the log component likelihoods over all states
in each feature dimension. For each of the D features,
count the number of log likelihoods below E[t0]/D.
List the features in descending order by that number.

4. Sequentially cluster the features into K groups ac-
cording to the new order.

The essential idea of the clustering is that we assign a higher
priority to features with a larger number of low component
likelihoods. Here we mean “low” by comparing it with a
certain threshold.

Note that in the clustering algorithm, we do not take into
consideration the correlation between likelihoods. Experi-
ments show, however, the conditional variances

VAR[qi(k+1)(O)|qik(O) > tk]

are smaller than those obtained from a random clustering. In
other words, this scheme gives a relatively high predictabil-
ity in likelihoods. Again, we apply LMS estimation to learn
the approximation functions.

4. EXPERIMENTS AND RESULTS

We ran two sets of experiments, one on an isolated word
corpus and the other on a continuous speech recognition
task. The speedup and power reduction of the likelihood
evaluation were impressive for both tasks.1

1In this work, we define

% speedup = (
baseline CPU time

new CPU time
− 1) × 100%

% power reduction = (1 −

new CPU power
baseline CPU power

) × 100%

4.1. Isolated word recognition on PhoneBook

The isolated word experiment was done on NYNEX Phone-
book [14], a telephone-speech database. We used 42 con-
tinuous HMMs as an acoustic model with 165 states al-
together. Each state was represented by a Gaussian mix-
ture comprised of 12 Gaussian components. We extracted
MFCCs, log energy and their deltas, leading to 26 features.
The test was carried out on 8 different testing sets with 75
words each. The final WER was an average over them all.
The baseline WER was 2.07%, and the likelihood evalua-
tion was responsible for 70% of the total computation with-
out beam pruning and over 80% when beam search was ap-
plied.

We clustered the features into two groups, where only
one threshold t1 and one approximation function f2(·) were
needed for feature pruning. The WER began to rise when t1
was decreased to the critical point. For each threshold, we
got the WER in parallel with the speedup of the likelihood
evaluation.

1st group 2nd group
e c7

∆e c8

c1 c9

c2 c10

c3 c11

c4 c12

c5 ∆c6

c6 ∆c7

∆c1 ∆c8

∆c2 ∆c9

∆c3 ∆c10

∆c4 ∆c11

∆c5 ∆c12

Table 1. Data-driven feature clustering for PhoneBook. (e:
log energy; c: MFCCs; ∆: deltas)

We ran feature pruning experiments using our proposed
clustering schemes. With sequential clustering, all the MFCCs
were in the first group and their deltas in the second. We
also applied data-driven clustering with two equally sized
groups, as shown in table 1. Interestingly, the clustering
displayed certain patterns. For example, the log energy and
the first half of the MFCCs along with their deltas were al-
located to the first group. This clustering indicates to some
extent which features are most important in the likelihood
evaluation. For comparison, we also generated randomly
clustered groups from the original 26 features, with 13 fea-
tures in each group.

From analyzing our experimental results, we found that
the critical threshold points for all three of these cluster-
ing schemes agree very well, where in each case we ob-
serve around a 0.2% absolute increase in WER. In terms of
speedups, however, the data-driven scheme is better than the



other two. As shown in figure 2, the sequential clustering
achieves a speedup by above 20% in the likelihood evalu-
ation. The data-driven approach, however, outperforms it
by achieving a speedup of 33%. The random clustering can
still speed up the computation by 12%, although the results
of different random clusterings vary insignificantly.
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Figure 2: Feature pruning on PhoneBook

4.2. Continuous speech recognition on TIMIT

Our continuous speech recognition system was based on
TIMIT. We applied the pruning technique to both mono-
phone and triphone systems. In the monophone system,
we used a simple bi-gram language model and 42 mono-
phone HMMs for the acoustic model. We assigned 3 emit-
ting states to each HMM which amounted to 126 states al-
together. Each state distribution was represented by a Gaus-
sian mixture with 12 components. The features we used
were MFCCs, log energy and their delta and double deltas,
leading to 39 dimensions. The baseline computes each ob-
servation vector to its full dimension for all 1512 Gaussian
components. As for the triphone system, states were tied
into 1356 distinct ones using a decision tree. Each state dis-
tribution had 6 Gaussians which resulted in a system with
8135 Gaussian components. For both systems, one-pass de-
coding was performed on the complete TIMIT testing set
consisting of 1344 utterances. The baseline accuracy was
85.68% for the monophone system, and 88.20% for the tri-
phone system.

We divided the features into three equally sized groups.
We started with very high thresholds t1, t2, and gradually
decreased them simultaneously. Note that we always obeyed
t2 = t1 + t′, and the specific value of t′ was chosen empiri-
cally which gave the best result.

We again evaluated both proposed clustering schemes.
In sequential clustering, we observed the correlation be-
tween the likelihoods of static features, deltas, and double
deltas, and made the approximation by adding offsets s1, s2,
as stated in section 3. Remarkably, in the experiments using
data-driven clustering, the monophone and triphone systems
produced the same clustering (modulo a permutation) which
is shown in table 2, and has a very similar pattern both to

table 1 and to [10]. The log energy along with its delta
and double deltas were grouped together to be computed
first; most of the MFCCs were assigned a higher computa-
tional priority than their delta and double delta counterparts.
Again, we included a random clustering for comparison.

1st group 2nd group 3rd group
e c7 c11

∆e c8 c12

∆2e c9 ∆c7

c1 c10 ∆c8

c2 ∆c3 ∆c9

c3 ∆c4 ∆c10

c4 ∆c5 ∆c11

c5 ∆c6 ∆c12

c6 ∆2c3 ∆2c7

∆c1 ∆2c4 ∆2c9

∆c2 ∆2c5 ∆2c10

∆2c1 ∆2c6 ∆2c11

∆2c2 ∆2c8 ∆2c12

Table 2. Data-driven feature clustering for TIMIT. (e: log
energy; c: MFCCs; ∆: deltas; ∆2: double deltas)
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Figure 3: Feature pruning on TIMIT monophone system
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Figure 4: Feature pruning on TIMIT triphone system

As shown in figure 3, for the monophone system, the
sequential clustering can speed up the likelihood evaluation
by 40% with a 0.2% absolute decrease in accuracy. The
data-driven approach works even better with a speedup over
50%. A random clustering is obviously much worse com-
pared with our clustering techniques. Similar results are ob-



served in figure 4 for the triphone system, where our clus-
tering schemes appear to be very effective in reducing like-
lihood computation with little loss in accuracy.

4.3. Power simulation

To estimate the power consumed by the likelihood evalua-
tion, we utilized Wattch, a framework for architecture-level
power dissipation analysis [15]. We compiled the baseline
system and the systems integrated with different amount
of feature pruning, all targeted for PISA architecture [16].
Power simulation was then launched and cycle-level resource
expenses were obtained, though only the power dissipation
of likelihood evaluation was extracted for our interest. Ta-
ble 3 shows the percentage of power reduction in the like-
lihood evaluation for different clustering schemes on differ-
ent tasks, where feature pruning with data-driven clustering
results in a reduction of 27% to 35%. The overall reduction
again depends on the ratio of likelihood evaluation to search
and the other factors such as vocabulary size.

Clustering PhoneBook TIMIT mono. TIMIT tri.
random 16% 12% 21%

sequential 21% 30% 29%
data-driven 27% 35% 34%

Table 3. Power savings in likelihood evaluation

5. CONCLUSION AND DISCUSSION

In comparison with conventional efficient decoding tech-
niques, our approach focuses on reducing likelihood com-
putation and power consumption by partially computing the
observation probability in a Gaussian component. It ig-
nores computing the remaining (pruned) part of an obser-
vation vector when the observation gets a low probability
in a subspace Gaussian. We achieved a speedup of 33%
to 50% and a power reduction of 27% to 35% in the like-
lihood evaluation of various recognition tasks. In addition,
our technique does not require a complicated training proce-
dure and is complementary to other fast search techniques,
such as Gaussian selection and beam search. It is noticeable
that there are many variations on our technique; the number
of feature clusters can be optimized, and the thresholds and
offsets can be customized for different phonemes or HMM
states.

We thank Jonathan Malkin for reading early drafts of
this work.
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