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Feature Pruning for Fast Likelihood Evaluation
of Automatic Speech Recognition

Xiao Li and Jeff Bilmes

Abstract— This work presents feature pruning, a simple yet
effective technique to reduce the likelihood computation in ASR
systems that use continuous density HMMs. Our technique,
under certain conditions, only evaluates the likelihoods of a
fraction of feature elements, and approximates those of the
remaining (pruned) ones by prediction. The order in which
feature elements are evaluated is obtained by a data-driven
approach to minimize computation. With this order, feature
pruning can speed up the likelihood evaluation by a factor of 1.33
and reduce its power consumption by 27% for an isolated word
recognition task. For a continuous speech recognition system
using either monophone or triphone models, the speedup and
power reduction of the likelihood evaluation are 1.50 and 35%
respectively.

Index Terms— Likelihood evaluation, pruning, speedup, power
reduction, speech recognition

I. INTRODUCTION

He proliferation of mobile devices has brought about a

great need for a more convenient user interface. Voice
control is an ideal method since it enables hand-free operations
and eliminates conventional bulky keypads. However, most
contemporary automatic speech recognition (ASR) systems
use continuous hidden Markov models (CHMM). They can
be computationally expensive and energy-hungry, posing po-
tential problems for real-time processing and battery life.

In an ASR system using CHMMs, the state likelihood
evaluation can dominate the operational load by taking up to
96% of the total computation for a typical small vocabulary
application [1], and 30% to 70% for LVCSR tasks [2]. Since
the observation distribution is typically represented by a Gaus-
sian mixture, the computational complexity of the likelihood
evaluation is proportional to the total number of Gaussians
in the system and the dimensionality of these Gaussians.
This suggests two potential research directions to improve
efficiency: reducing the number of Gaussians and reducing
their dimensionality.

The number of Gaussian evaluations can be reduced in a
system that employs tying since, once evaluated, the Gaussian
score can be stored and utilized multiple times. Tying has been
extensively applied to different levels of the hierarchical struc-
ture of HMMs [3]-[8]. Alternatively, Gaussians can be pruned
on the fly using Gaussian selection [1], [2], or nearest-neighbor
approximation [9], where only the most relevant Gaussians
are precisely computed. Taking the other direction, various
feature selection methods [10]-[12] tackle the dimensionality
problem by selecting only the feature elements with the highest
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discriminative power. Additionally, feature elements can also
be selectively computed online. [13] presented an incremental
feature pruning applied to discrete-mixture models, and [14]
proposed a partial distance elimination technique associated
with the nearest-neighbor based search.

Our work herein shares the basic approach of [13] and [14].
However, our technique is quite novel in that it is targeted
for CHMM-based systems, and applies feature pruning to
all Gaussian mixtures instead of only the nearest neighbors.
Furthermore, subspace Gaussian likelihoods are approximated
by prediction, and the ordering of feature element evaluation
is driven by computation minimization.

Il. FEATURE PRUNING

In continuous HMMs, the likelihood b;(O) of an observa-
tion vector O, given state j, is typically parameterized by a
Gaussian mixture,

b;j(0) = > wiN(O; i, 5i) o«

ieM;

where M is the subset of Gaussians belonging to state j.

In a Gaussian mixture HMM with diagonal covariance
matrices, it is implicitly assumed that feature subsets are
conditionally independent given the state and the mixture
component identity. This property allows the Gaussian over
the full-space to be decomposed into K lower-dimensional
Gaussians over orthogonal subspaces each with dimension dy,
k=1.K and S5 dp = D. The i*" Gaussian component
likelihood in Equation (1) then becomes

K
N(O; 13, 83) = [T N (Ows i, i) )

k=1
where Oy, p; 1, and X; j, are respectively the projection of the
observation, mean and variance vector onto the k" subspace.
Notice that if any one of these subspace Gaussian factors
in Equation (2) is very small, the full-space Gaussian like-
lihood score will likely also be small. Specifically, let m;
denote the maximum value of the k*" subspace Gaussian,
and define m; = [[, ms, which is the maximum value of
the full-space Gaussian. If N (Oq;pi1,%i1) << m;, then
N(O; pi, $;) << m; and hence the " component will have
little contribution to b;(O). Therefore, rather than always
computing the score of the full Gaussian component, we
compute it only in the case when N(Oq;pi1,%,1) is large
enough. When this subspace Gaussian is small, since we then
know the entire i** component will have a low score, we
simply approximate it using a computationally inexpensive
function. Moreover, our technique is applicable at multiple
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levels, where the approximation “kicks in” when the current
partially computed component score falls below a threshold.
We let the indices 1..K indicate the order in which the sub-
space likelihoods are computed. The feature pruning algorithm
is described as follows,
Input: observation O; {u;, X; } of a Gaussian
Output: approximated In N (O; s, %)
L a <« InN(Oy; i, Xin);
2: for k=2..K do
3 ifa>t._1 then

4 compute In N'(Ok; ik, Zik);
5 a—a+IN(Ok; ik, Zik);
6: €se

7 a— fr—1(a);

8 break;

9: end if

10: end for

11: return a;

where ¢, k = 1..K —1, are a set of thresholds, and f;(-) are a
set of affine approximation functions whose coefficients can be
determined using Least Mean Square (LMS) estimation from
the training data. Consequently, only a fraction of observation
vectors are precisely computed to full dimensionality. Some of
the feature elements are ignored according to the likelihoods
of already computed elements.

I1l. CLUSTERING OF FEATURE ELEMENTS

For recognizers which use both static and dynamic features,
a natural way to cluster feature elements is to allocate static
features to the first group, their deltas to the second and the
double deltas the last, if available. The advantage is that the
feature vectors are very likely to be represented in this order,
which simplifies the incorporation of feature pruning into an
existing ASR system. Furthermore, we empirically observe a
certain degree of correlation between the likelihoods of static
features and their dynamic counterparts. The predictability of
the likelihoods is beneficial to the feature pruning technique.

This naturally-grouped scheme, however, is not guaranteed
to give the best reduction in computation. Ideally the feature
elements should be clustered in such a way that the likelihood
computation can be reduced as much as possible, while the
recognition accuracy is maintained. The complexity of trying
every combination to find the best clustering scheme is facto-
rial in the dimensionality of the feature vectors. Therefore, we
propose a data-driven method to cluster the feature elements
according to their statistical properties. This work only studies
the case where feature subsets are of the same size.

First, we have found through empirical experimentation that
the recognition accuracy depends heavily on the thresholds no
matter how the feature elements are clustered. This makes
sense since these thresholds determine how often the approxi-
mation takes place. Second, the clustering does have an impact
on the recognition accuracy, but at a smaller scale, since
it more or less affects the predictability of the likelihoods
and hence the effectiveness of the approximation functions.
Finally, the clustering has a great impact on the reduction in
computation and power; different clustering schemes would

have different numbers of feature subsets pruned under the
same thresholding value. Therefore, we hope that a clustering
will be found such that the pruning will remove as many
feature elements as possible before the critical point (¢, for
stage k) where recognition accuracy begins to drop from the
baseline.

The first subset of feature elements to be computed should
have the maximum probability of having a score below
c1, thereby increasing the chance that the remaining sub-
space likelihoods will be pruned. Specifically, we search
for a set of feature elements that attempts to maximize
Pr{ln N'(O1; pi1,%i1) < c1}, which can be estimated non-
parametrically using a large amount of data. This implies an
intractable optimal clustering problem, so we instead employ
the following greedy algorithm:

1) Repeat several (5-10) times: randomly choose d = D/K
feature elements to be computed in the first group, and
then find the critical threshold ¢; at which recognition
accuracy begins to drop significantly using the prun-
ing algorithm. Compute the average over these critical
thresholds which we denote as E[c;]. (Note that the
optimal choice of K is beyond the scope of this work,
but see [13].)

2) Extract a subset of representative training data and
compute the log likelihoods for each feature dimension
over all Gaussian components and all data frames. For
each of the D feature elements, count the number of in-
stances for which the feature element log likelihood for
a particular component fell below E[c;]/d, an estimate
of the average per-feature-element threshold. Select the
d feature elements with the highest counts to the first
subset.

3) Repeat 1) and 2) excluding the already-selected feature
elements to get co, ..., ¢, and their corresponding feature
element subsets.

IV. EXPERIMENTS AND RESULTS

We ran two sets of experiments, one on an isolated word
corpus and the other on a continuous speech recognition task.
The speedup and power reduction of the likelihood evaluation
were impressive for both tasks.!

A. Isolated word recognition on PhoneBook

The isolated word experiment was done on NYNEX Phone-
book [15], a telephone-speech database. We used 42 con-
tinuous HMMs with 165 states altogether. Each state was
represented by a Gaussian mixture comprised of 12 Gaus-
sian components. MFCCs, log energy and their deltas were
extracted, leading to 26 feature elements. The test was carried
out on 8 test sets each with a different 75-word vocabulary. The

1In this work, we define
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final WER was an average over them all. The baseline WER
was 2.07%, and the likelihood evaluation was responsible for
70% of the total computation without beam pruning and over
80% when beam search was applied.

We compared the speedup of feature pruning using our data-
driven approach with that of the naturally-grouped one and a
randomly-grouped one. As shown in Figure 1, the data-driven
approach outperforms the other two by achieving a speedup
of 1.33, with only a 0.2% absolute increase in WER.
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random ---%--- !

% WER
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Fig. 1. Feature pruning on PhoneBook

B. Continuous speech word recognition on TIMIT

Our continuous speech word recognition system was based
on TIMIT [16]. Our pruning technique was applied to both
monophone and triphone systems. The monophone system
used a simple bi-gram language model and 42 monophone
HMMs with a total of 126 states as the acoustic model.
Each state distribution was represented by a Gaussian mixture
with 12 components. The feature elements were MFCCs,
log energy and their delta and double deltas, leading to 39
dimensions. The baseline computed each observation vector
to its full dimension for all 1512 Gaussian components. As
for the triphone system, states were tied into 1356 distinct
ones using a decision tree, and the system had a total of 8135
Gaussian components. For both systems, one-pass decoding
was performed on the complete TIMIT test set consisting of
1344 utterances. The baseline word accuracy was 85.68% for
the monophone system, and 88.20% for the triphone system.

We divided the feature elements into three equally sized
groups. As shown in Figure 2, for the monophone system,
the data-driven approach works remarkably well by having a
speedup over 1.50 with a 0.2% absolute decrease in accuracy.
Neither the naturally-grouped one nor the random one can
compete with it in terms of speedup. Similar results are
observed in Figure 3 for the triphone system.

C. Power simulation

To estimate the power consumed by the likelihood evalua-
tion, we utilized Wattch, a framework for architecture-level
power dissipation analysis [17]. We compiled the baseline
system and the systems integrated with different amount
of feature pruning, all targeted for PISA architecture [18].
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Fig. 2. Feature pruning on TIMIT monophone system
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Fig. 3. Feature pruning on TIMIT triphone system

Power simulation was then launched and cycle-level resource
expenses were obtained, though only the power dissipation of
the likelihood evaluation was extracted in our work. Table |
shows the percentage of power reduction in the likelihood
evaluation for different clustering schemes on different tasks,
where feature pruning with data-driven clustering results in a
power reduction of 27% to 35% with again a 0.2% absolute
increase/decrease in WER/accuracy. The overall reduction
again depends on the ratio of likelihood evaluation to search
and the other factors such as the vocabulary size.

TABLE |
POWER SAVINGS IN LIKELIHOOD EVALUATION
[ Clustering [[ PhoneBook [ TIMIT mono. [ TIMIT tri. ]

random 16% 12% 21%
sequential 21% 30% 29%
data-driven 27% 35% 34%

V. CONCLUSION AND DISCUSSION

In comparison to conventional efficient decoding tech-
niques, our approach focuses on reducing likelihood com-
putation and power consumption by partially computing the
likelihood of a Gaussian component. It explores a data-driven
approach to cluster feature elements to maximally reduce
computation. Our technique achieves a speedup of 1.33 to
1.50 and a power reduction of 27% to 35% in the likeli-
hood evaluation of various recognition tasks. In addition, our
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technique does not require a complicated training procedure
and is complementary to other fast search techniques, such
as Gaussian selection and beam search. It is notable that
there are many variations on our technique; the number of
feature subsets can be optimized, and the thresholds can be
customized for different phonemes or HMM states.
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