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ABSTRACT

A toneme in Mandarin Chinese is a tonal phone which consists
of a base phone (main vowel) and a tone. To capture both, most
recognition systems use two feature streams: the standard MFCCs
for the base phones, and pitch features for the tones. In this paper
we propose the use of Dynamic Bayesian Networks for model-
ing the two streams in toneme recognition. We used the Graphi-
cal Model Toolkit to build and compare three different models: a
standard HMM with concatenated features, and synchronous and
asynchronous multi-stream systems. Stream-level model parame-
ter tying is also exploited. The toneme recognition results show
significant improvements by using the multi-stream models.

1. INTRODUCTION

Mandarin Chinese has the largest number of speakers in the
world, and many studies on Mandarin speech recognition
have been conducted, e.g. [1, 2, 3, 4]. Unlike English, Man-
darin is a tonal language that benefits from explicitly mod-
eling the five tones that are necessary to distinguish between
ambiguous words. The five tones are characterized as high
(1), rising (2), low (3), falling (4) and neutral (5). One popu-
lar way of modeling the tones [3] combines the main vowel
with different tones as different phonemes, called tonemes.
For example, a1, a2, a3, a4 and a5 are five different tonemes
associated with the main vowel “a”.

To distinguish the tonemes with the same main vowel,
we need to add pitch information to our feature set. There-
fore, the features for the toneme acoustic models consist of
the standard Mel-scale cepstral coefficients (MFCCs) and
their deltas as well as the new pitch features. The MFCCs
model the main vowel part of the toneme, and the pitch
features model the tone of the toneme. How best to inte-
grate the multi-stream features has been a research topic for
a long time. Previous approaches can be classified into three
categories: feature fusion (or early integration), decision fu-
sion (or late integration), and model fusion. Previous work
[3, 4] adopted feature fusion, which simply concatenated the
two streams of features into a single feature vector which is
then modeled by a standard Gaussian mixture.

In this work we use multi-stream models expressed with
a Dynamic Bayesian Network (DBN) to jointly represent
both MFCC and pitch features, and show that it improves
Mandarin toneme recognition. With a multi-stream model,

we can use different stream exponents and we can also tie
the MFCC or pitch model of a toneme separately. Using a
DBN greatly simplifies statistical modeling issues, and the
method can be easily extended to use asynchrony between
streams or condition features across streams [5, 6, 7, 8].

In section 2, we describe the DBN based single stream
and multi-stream models for training and decoding the
tonemes. In section 3, the experiments and results are given.
Finally, we summarize key points in section 4.

2. DBN-BASED MODELS FOR TONEME
RECOGNITION

A Bayesian network is a statistical model that can be
used to represent collections of random variables and their
dependency relationships. A dynamic Bayesian network
(DBN) is a Bayesian network with random variables for
each time frame that share their underlying conditional dis-
tributions. A DBN can be thought of as a generalized
HMM. DBN-based graphical models have been proposed
to model continuous speech using the Graphical Models
Toolkit (GMTK) in [9]. In this work, we use the GMTK
framework to build a single-stream toneme recognition sys-
tem (simple HMM), and then extend the baseline system to
synchronous and asynchronous multi-stream systems.

2.1. Multi-stream models

A multi-stream model is a product model of the different
feature streams. For S independent streams, the output dis-
tribution for state j using a Gaussian mixture is defined as:

bj(ot) =

S
∏

s=1

[

Ms
∑

m=1

cjsmN (ost; µjsm, Σjsm)

]γs

(1)

where Ms is the number of mixture components for stream
s, cjsm is the weight of the m-th component and N (·; µ, Σ)
is a multivariate Gaussian with mean µ and covariance Σ
[10]. The exponent γs is the weight for stream s.

There are several advantages to using a multi-stream
model. First, since the two streams are quite different here,
the factored distribution assumption is reasonable and effi-
cient. Secondly, we can assign different stream weights to



emphasize particular streams, which can be optimized using
brute force search or discriminative training [11]. Thirdly,
it becomes quite easy to tie the mixture models in differ-
ent streams using strategies that are specific to each stream.
For example, tonemes with the same main vowel can share
the same MFCC stream distribution, while tonemes with the
same tones can share the same pitch stream distribution. Ty-
ing is especially useful in the case of limited training data
and using context-dependent models. Finally, another key
advantage of multi-stream models (particularly when imple-
mented as a DBN) is that the streams may desynchronize.
Specifically, it is possible to have higher level objects con-
trol lower level objects that can complete at different times.

2.2. DBN-based graphical models

The training and decoding graphs of the synchronous 2-
stream DBN-based model are given in Figure 1 and Fig-
ure 2, respectively. This synchronous multi-stream model is
similar to the HTK synchronous multi-stream model [10].
In the single stream case, there is only one observation
node per frame. If there are more than two streams, we
only need to add in more observation nodes which are emit-
ted from the state node in the frame. More detailed in-
formation about the graphs is given in [5, 9]. Here we
used a slightly different naming convention for our toneme
recognition application. Each toneme has three states, as is
most commonly used in HMM speech recognition systems.
The major difference between the two graphs is that during
training the phone sequence is known and indicated with
the Phone Counter nodes, while during decoding we use
phoneme-level language models (LMs). In the first frame,
a phoneme-level unigram is used, since there is no parent
for the phone variable. In subsequent frames, a phone bi-
gram describes the random relationship between successive
phone variables, enabled only when there is a phone transi-
tion in the specified frame, as shown in Figure 2 where the
dashed arrow shows that a switching parent [12] controls the
random relationship between successive phoneme nodes.

The synchronous models require that multiple observa-
tions are associated with the same state at each time step. In
contrast, our asynchronous model (Figure 3) allows multi-
ple hidden streams to desynchronize to a certain degree. A
key advantage of our asynchronous system is its ability to
easily explain speech variations by the differing degrees of
asynchrony within the hidden streams. Representing such
asynchrony using a standard HMM would require many
more states, and training such an HMM with exactly the
same constraints would be extremely difficult. Moreover,
any increase in decoding costs associated with the larger
state space under asynchrony can often be significantly re-
duced either by spending time searching for a better graph
triangulation [13] or by using approximate inference.
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Fig. 1. Synchronous multi-stream DBN model for training.
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Fig. 2. Synchronous multi-stream DBN model for decoding.

3. EXPERIMENTS AND RESULTS

3.1. Task description

The experiments are based on the CallHome and CallFriend
Mandarin corpora. The training set has roughly 35 hours of
telephone speech from Mandarin speakers collected in the
U.S. The testing set has 1,516 utterances with a total dura-
tion of about 1.5 hours. In this work, we recognize phones
and tonemes, and report accuracy of recognizing these units
to directly assess the acoustic modeling changes. We as-
sume that gains will translate to character error rate, as im-
provements in phone accuracy typically translate to word
accuracy in English (and because many sites report perfor-
mance gains from improved tone modeling in Mandarin).

3.2. Feature extraction

The standard MFCC features are generated with the front-
end of the SRI Decipher speech recognition system. The
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Fig. 3. Asynchronous multi-stream DBN model for decoding.

speech input was processed using a 25ms Hamming win-
dow, with a frame rate of 10ms. For each frame there are 13
MFCC features plus delta and double deltas, resulting in a
39 dimension feature vector.

The pitch features include the pitch, delta pitch and delta
delta pitch. The pitch is extracted with ESPS get f0 and then
processed by SRI pitch processing tool graphtrack [14] to
eliminate halving and doubling errors. The pitch is then
smoothed with an algorithm similar to [3]. The utterance
mean is used for unvoiced pitch, and a moving average fil-
ter is used to smooth the pitch contour. Finally, the pitch
features are mean and variance normalized per speaker.

3.3. Experiment setup

The phone set used here includes 65 non-tonal phones
and tonemes as listed in Table 1. Since we compare the
multi-stream models to single-stream models in context-
independent phone recognition, and the pitch stream has
little effect on the non-tonal phones, we focus on toneme
recognition accuracy for evaluating system performance.
For reference, we also provide results (accuracy) for the full
phone set and for the 9 main vowels ignoring tone distinc-
tions (E, EE, N, R, a, ey, i, o and u).

Table 1. Phone set for Mandarin speech recognition.

Category Phones

Non-tonal phones sp C S W Z b c d f g h j k l lau m n p q r
rej s t w x y z

Tonemes E1 E2 E3 E4 EE1 EE2 EE3 EE4 EE5
N1 N2 N3 N4 N5 R2 R4 a1 a2 a3 a4 a5
ey1 ey2 ey3 ey4 i1 i2 i3 i4 o1 o2 o3 o4
o5 u1 u2 u3 u4

In our baseline DBN system, we concatenated the
MFCC and pitch features for each frame into a single fea-
ture vector. GMTK [12] was used to build all the DBN-
based systems.1 An HMM-based system was also built for
performance comparison with the Hidden Markov Model
Toolkit (HTK) [10]. The second experiment separated the
two feature streams in a synchronous multi-stream DBN. In
the third experiment, we tied the MFCC mixtures of differ-
ent tonemes with the same main vowel, and tied the pitch
mixtures of those tonemes with the same tones. Finally, we
did experiments with asynchronous multi-stream models. In
all cases, 32 Gaussian components were used for each mix-
ture model, and decoding used a phoneme bigram.

Though the multi-stream models are trained without
stream weights, different weights can be used for the two
streams in decoding. We tried different pairs of weights and
found that within some range a larger pitch stream weight
improves the toneme accuracy but hurts the full phone set
and main vowel accuracy. In all multi-stream experiments,
we used 0.5 for the MFCC stream weight and 0.6 for the
pitch stream weight to emphasize the tones. The LM weight
is fixed, chosen to balance the insertion and deletion errors.

3.4. Results and discussions

The full phone set, main vowel and toneme recognition re-
sults are listed in Table 2. Note that accuracy on the base-
line HMM system is low in part because of using context-
independent phone models, but also because of the diffi-
culty of the task. Conversational speech tends to have much
more variability than read speech, and the crosstalk asso-
ciated with telephone speech poses problems for extracting
pitch features. As an indicator of difficulty, we note that
the current best reported character error rate on this test
set is 42.7% after combining multiple systems [15]. For
the single-stream case, the GMTK system gives a signif-
icant improvement over the HTK system, as consistently
observed in other experiments, probably due to its novel
method of handling Gaussian mixture training via a split-
ting/vanishing algorithm [12].

The synchronous multi-stream system without tying
provides 1.3% improvement in terms of main vowel ac-
curacy and 3.4% improvement in terms of toneme accu-
racy. There are 65 phonemes, 3 states per phone, and 42-
dimensional features. We used diagonal covariances and
the feature dimension is 42. Therefore, the total number of
parameters in the single-stream diagonal covariance HTK
and GMTK single-stream systems is roughly 530k, which
is the same as in the multi-stream system without tying.
There are 36 unique base phones and 6 different tones (in-
cluding “no-tone” for non-tonal phones) in the phone set,
so the multi-stream system with tying has 108 tied MFCC

1We used a 2004 version of GMTK supporting LM penalties and scales.



Table 2. Recognition accuracy results.

System
Phone
Acc.

Main vowel
Acc.

Toneme
Acc.

# of
Params

HMM single-stream 25.8% 42.5% 20.0% 530k
DBN single-stream 28.5% 44.3% 21.9% 530k
DBN multi-stream 29.7% 45.6% 25.3% 530k
DBN multi-stream
with tied mixtures

27.4% 43.6% 22.9% 277k

Asyn. DBN
multi-stream

30.2% 46.0% 25.8% 530k

Asyn. DBN multi-
stream with tying

27.4% 43.3% 22.7% 277k

mixtures and 18 tied pitch mixtures, resulting in a parame-
ter size of 277k. Hence, the model size of the tied-mixture
multi-stream system is nearly half that of the system with-
out tying. Even with a much smaller model size, the tied-
mixture multi-stream system still has better toneme recog-
nition performance than the single-stream system. Its main
vowel accuracy is worse than the single-stream system, be-
cause it has a smaller MFCC model size due to tying and
the base vowels are entirely characterized by MFCC’s. The
overall accuracy loss shows that 35 hours of training data is
enough for context-independent models, but tying may still
be advantageous when using context-dependent models.

The performance of the synchronous and asynchronous
multi-stream systems are very close. One possible reason is
that in our asynchronous graph, we force the two streams to
be synchronous at the phone rather than the syllable level,
i.e. allowing state asynchrony only within phones. It could
also be that we need further tuning of the stream weights.

4. CONCLUSIONS

In this paper we have described DBN-based single-stream
and multi-stream models for Mandarin toneme recognition.
The DBN-based models were implemented using GMTK
to integrate pitch and cepstral features. The results show
that the use of DBNs leads to significant improvement in
toneme accuracy over a traditional HMM-based system, and
that multi-stream models outperform single-stream models.
Using multi-stream models also enables parameter sharing
at the stream level, which will benefit larger size models
in limited data conditions, but did not prove to be useful
in these experiments based on context-independent models.
Asynchronous multi-stream models are investigated but no
significant gains are obtained.

There are several possible directions for future work.
First, the stream weight estimation could be further stud-
ied. Currently we used a simple heuristic method to search
for the best stream weights. For better estimation of the
stream weights, discriminative training methods could be

tried. Another future direction is data-driven parameter
sharing, which will allow more complex tying schemes than
the strict separation of tones and phones explored here.
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