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Abstract

We study the problem of summarizing a video stream (po-
tentially of unbounded duration) on the fly, where the sum-
marization system must operate under a fixed memory bud-
get and should produce an appropriate summary of its past
at each time step. This problem is motivated by applica-
tions that have access to only limited memory and compute
resources (e.g., sensor networks, smart devices and phones).
We approach this problem as constrained streaming max-
imization of a natural submodular objective function. In
particular, we propose a novel feature-based submodular
function for the summarization objective — this function
is instantiated by deep-model-learnt features. We solve the
constrained streaming maximization problem with an algo-
rithm that abides by the memory budget. Our streaming
algorithm, is unique in that it uses both an “adding gain”
(to determine something new) and a “swapping gain” (to
determine something better) relative to a current summary.
Based on a time dependent F-measure method to gauge
the performance of streaming summarization techniques, we
demonstrate that our approach provides significant improve-
ment over a number of state-of-the-art baseline methods
that utilize comparable resources on both the TVSum50 and
SumMe data sets.

1 Introduction

Many of today’s intelligent systems regularly generate
vast amounts of video data. This data can be either
consumer, surveillance, promotional, or commercial
videos, or any form of a live internet video stream. It is
not feasible for a human to peruse these videos to gain
a deep and complete understanding of their content, as
they are typically long and redundant. For example, in
surveillance settings, most of the video is repetitive, un-
informative, and even when motion-triggered, plagued
with false positives. This characteristic makes it easy
to miss new interesting data when it does finally arrive.
One way to address this problem is to summarize the
video content, and hence create an interesting and
insightful subset of video “snippets” (i.e., short video
segments) for presentation to a human. While sum-
maries can be hand crafted by a human curator, that
process itself is time consuming, error prone, and costly
given the ever-increasing torrent of video data. It is of
great interest, therefore, to develop practical methods
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for automatic video summarization (i.e., to produce
summaries that are informative, representative, and
much shorter) and that also perform well using stan-
dard evaluation methods. Indeed, this problem has
gained significant traction in recent years [29].

In general, existing methods approach video sum-
marization from either an offline [11] or an online [37)
perspective. Offline mechanisms require the knowledge
of and access to the entire video stream to generate a
summary. Such methods, however, require storing the
entire video simultaneously and, therefore, are resource
intensive and/or impractical (e.g., for unboundedly long
video streams).

Online, or streaming, video summarization meth-
ods are an alternative to the above. Given a video
stream, an online summarization algorithm produces a
summary on the fly and at any time as the data stream
elements arrive, without using any future information.
Such methods can be made to require limited memory
since they keep only a small portion of the past video
stream (or information thereabout) in memory. Since
online methods are computationally cheaper than their
batch counterparts, this setting is of particular interest
when batch processing a video is too resource consum-
ing on a device, when an application requires access to
the historical summary at any given time, or for un-
boundedly long video streams.

We are interested in a restricted scenario for online
video summarization, where the system has only a
fixed (constant) memory budget for retaining the video
history. We also wish for a running summary, where
we define a “running summary” as one that, at any
given point in time, is representative and informative
about the observed video stream from the beginning
of the stream up until the current time. The overall
video stream itself can potentially be of unbounded
duration. We call this problem running online video
summarization with a fized memory budget.

In this work, we define a new algorithm for this
purpose that performs well in practice. Our algorithm
is unique in that it uses both an “add gain” (to deter-
mine something new) and a “swap gain” (to determine
something better) relative to a current summary. Our
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algorithm generalizes earlier work [2] (TS) which uses
only a swap gain, and therefore retains TS’s theoret-
ical guarantee of 1/4 as a special case. TS, however,
does not use an add gain and can therefore easily pro-
duce a summary consisting of temporally concentrated
events. Indeed, results show that our algorithm signif-
icantly outperforms not just TS but many other base-
lines as well on both the SumMe [11] and TVSum50 [27]
data sets, and does this with far fewer computational re-
sources. This renders our approach practical for many
real-world applications in video summarization.

Our approach, moreover, addresses problems that
naturally occur in systems with limited resources. Ex-
amples include sensor networks where computational
resources including processing power, memory and net-
work bandwidth are limited and costly. Suppose, for in-
stance, a camera sensor with limited memory is placed
in an inaccessible environment, and only periodic com-
munication with a control hub is allowed, due to limited
communications bandwidth. A solution is to perform
running online video summarization with a fixed mem-
ory budget, and then transmit only the running sum-
maries to the control hub every so often (a transmission
requiring a fixed-size batch of information). This re-
duces both the memory utilization at the sensor node
and the bandwidth usage for communication with the
control node. Our setting is also useful when a user
wants a historical summary on demand at any time
(e.g., video surveillance applications), not just the end
of the stream.

The problem of video summarization can be catego-
rized into either static or dynamic summarization based
on the nature of the selected summary [29]. The goal of
static summarization is to choose from a video a num-
ber of individual images (called key frames) that are
collectively representative. A dynamic summarization
scenario focuses on creating a dynamic summary of a
video that is composed of set of segments of temporally
contiguous images. In this paper we call such a segment
(sequence of images) a “video snippet.” Hence, our sum-
maries are not sets of frames but sets of snippets.

2 Related Work

In the literature, static summarization has often been
approached in the offline setting [7, 18, 10]. Recently,
Zhang et al [35] used LSTMs to design a supervised
approach for selection of key frames or key sub-shots.
Mahassen et al [22] took the unsupervised approach
and employed deep adversarial LSTM networks for
video summarization.

Dynamic video summarization, on the other hand,
provides a better viewing experience since each sum-
mary snippet is itself a short video segment thereby

yielding true short-interval temporal information.
Several mechanisms have been explored for generating
dynamic summaries. In Gygli et al. [11], Sun et al. [28],
and Herranz and Martinez [13] video snippets are
selected according to their quality score measuring
various aspects of a video (e.g., interestingness and rep-
resentativeness). More recently, Yao et al. [33] explore
summarization of first-person videos through highlight
detection. They split their video segment into spatial
and temporal streams. Each stream is fed into a deep
convolutional neural network for highlight prediction.
The outputs of these networks are fused to generate the
highlight score of a video segment. Zhao et al. [36] focus
on first extracting shots from a video in an adaptive
manner using a bidirectional LSTM, and then using
a second bi-directional LSTM to assign probabilities
to each shot to decide its inclusion in a summary.
Kanechira et al. [17] explore video summarization in the
context of view-point extracted from multiple videos.
They focus on summarizing multiple groups of videos
based on the view-point extracted from each group.
Jin et al. [16] present a mechanism where the user can
interact with the summarizer and aid in producing
summaries of different sizes from a given video. It
augments an offline frame analysis with user input
to fast-forward segments of the video. Cai et al. [3]
use a VAE pre-trained on web videos in conjunction
with an encoder-attention-decoder setup to generate
summaries. Their technique is also explored in the
offline setting. Rochan and Wang [25] learn a mapping
from a set of videos to a set of summaries where there is
no direct correspondence between the video set and the
summary set. Their aim is to learn a mapping such that
the summaries generated using it have the same distri-
bution as the summary set used in training. Yuan et
al. [34] propose an unsupervised framework that learns
to generate a summary using a bidirectional LSTM as
a summary selector and GAN based evaluator.

Video summarization has also been examined from
an online perspective. For instance, Zhao and Xing [37]
select video snippets on the fly based on its reconstruc-
tion error from a dictionary, which is generated by the
snippets that are already in the summary. Iparraguirre
and Delrieux [14] propose to summarize a video stream
in an online fashion by identifying key frames, from
which video snippets in the summary are constructed.
In general, these techniques do not directly fall within
our fixed memory budget setting, since they do not
constrain the size of their summaries. The closest work
to our setting is by Mei et al. [23], which again utilizes
a reconstruction-error based summarization technique
but abides by a fixed summary budget constraint.

Recently, techniques based on submodular opti-
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mization have been applied to video summarization. For
example, Gygli et al. [12] learn a mixture of compo-
nents to model the objective for video summarization
in the offline setting. Xu et al. [32] formulate summa-
rization of egocentric videos as constrained maximiza-
tion of an objective function. Again their approach is in
the offline setting. Chakraborty et al. [4] consider adap-
tive key frame selection for video summarization. They
formulate the problem as unconstrained maximization,
where the objective is defined on a complete similarity
graph, and thus the method is inherently offline. Li et
al. [21] propose a framework for summarizing both raw
and edited videos. They create a submodular scoring
function for a set as a weighted mixture of importance,
representativeness, diversity and “storyness” of that set
with respect to a video. They use a supervised max-
margin approach to learn the mixture weights and use
an accelerated greedy algorithm to produce their sum-
mary. Their approach however is again offline. On the
other hand, Elhamifar and Kalusza [9], use an online
summarization approach. They focus, however, on un-
constrained summarization and once again are not di-
rectly comparable to our approach.

Our contributions: In this paper we provide a
submodular framework for the problem of running on-
line video summarization with a fixed and limited mem-
ory budget. We utilize a novel feature-based submod-
ular function as a summarization objective. Instan-
tiated by deep features, this function naturally mod-
els the notion of diversity and informativeness in the
online summarization scenario. We optimize the pro-
posed objective by a streaming algorithm that complies
with the memory budget at every time step. To assess
the quality of a streaming summarization technique, we
employ a time dependent F-measure based evaluation
method [10, 11, 27, 12, 32, 35, 22|. We empirically
demonstrate the efficacy of the proposed summarization
framework on the SumMe [11] and TVSumb0 [27] data
sets. Our approach significantly outperforms a number
of baseline methods that employ similar resources.

3 The Summarization Framework

In this section, we first formulate the problem as
constrained submodular maximization. We then define
our objective that particularly suits this task, and can
be optimized through our online procedure.

3.1 Problem Formulation: Let V = {v,va,...}
be a video stream (potentially of unbounded duration)
with vy as the constituent snippet for time step t. We
denote by V; = {v1,va,...,v:} the set of video snippets
that have been observed until time step t. Given a
memory budget constraint K, for each time step ¢ the

goal is then to produce a summary S; C V; of size
no larger than K (i.e., |S;] < K) such that given a
representation criterion, S; is informative, diverse, and
can adequately represent V;. In our approach we are
interested in online summarization and generation of
running summaries (of potentially never ending video
streams) in a fixed memory budget setting. Therefore,
we attempt to generate good summaries on average
based upon a desired scoring function. More formally,
let a set function f : 2V — R represent the quality of any
given subset of V. The problem is equivalent to finding
S; such that the following is achieved for all time ¢:
t

Maxg,cv;,|s;|<K Zf(sf)-

T=1

(3.1)

3.2 Objective Function The choice of the repre-
sentation criterion f(-) plays an important role in de-
termining the quality of the summary. One possi-
ble class of functions that have shown potential in
the context of summarization is submodular functions.
They are a special class of set functions that satisfy
the diminishing returns property. In particular, they
have the form f : 2¥ — R and for any A,B C V,
f(A) + f(B) > f(AUB) + f(AN B). Defining
f(ald) £ f(auU A) — f(A), an equivalent definition is
f(a|]A) > f(a|B) YAC BCV, ae€V\ B. These func-
tions are natural combinatorial “information” functions
that can be applied to arbitrary data objects. They have
shown success in modeling diversity, dispersion, span
and coverage in prior investigations of video summa-
rization [12, 32, 4]. For instance, the “facility location”
function, i.e., grac(S) = >, ¢y MaXses Wy, s, Was applied
as the objective in Chakraborty et al. [4], where w, ; is
the similarity between the video elements (e.g. snippets
in our context) v and s. Intuitively, gf..(S) captures
how well the subset S represents the entire data set V.
Maximizing gf..(-) often leads to a collection of repre-
sentative items.

The drawback of this function is that: 1) it is
defined on a pairwise similarity graph, which requires
both O(|V|?) memory and compute; 2) evaluating the
function requires access to the entire data V. Therefore
the usage of this function in our context (running online
summarization) is not scalable. As an alternative, we
utilize a function taking the following form:

gRax(S) = Z Wy, MAX My (),
uclU s€s

(3.2)

where U is a set of features, w, > 0 is a weight asso-
ciated with feature u € U and m,(S) = > cgmu(s)
with m,,(s) gauges the degree to which video snippet

s possesses feature u. Maximizing ¢gf22*(-) leads to di-
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verse coverage over the whole feature set U in the se-
lected summary, with the desired coverage of each fea-
ture u € U being controlled by its weight w,,.

In addition to g£2*(-), a modular set function
q : 'V — R that assigns a quality score for each item
v € V can be added to the objective for influencing
the system. The quality function is dependent upon
the environment in which the video summarization
system is deployed. This can, for instance, be based on
a variety of qualities, such as faces, aesthetics, specific
places, presence of specific people or objects and many
more. Our modular quality function has the following
form: ¢(S) = > . q(s), where g(s) is the quality score
for the video snippet s based on the desired property.
In this work, we explore a simple variant based on a
face detection procedure applied to frames in the video.
Hence, the quality function encourages the system
to select video snippets that contain human faces.
We use this quality function as a proof of concept.
Systems that are deployed in the field can use much
more sophisticated tools. These tools will fit in our
framework as long as they produce a modular score.

Furthermore, over a long duration, it may be
desirable for a summary to be diverse in time. In this
work we utilize a function to encourage time diversity:
we first divide the whole video V into “p” (independent
of the size of V) sized bins, where the i*" bin C; consists
of a set of snippets {Uj};'p:(i—l)p—‘rl’ i.e., C; consists of
a sequence of snippets that span from the time step
(i—1)p+1 to ip, and any pair of bins are disjoint, i.e.,
C;NC; =0 Vi+#j. Let n be the total number of bins
in the whole video V', we then define our time diversity
function h: 2V — N asnfollowsz

(3.3) h(S) = Zmin{|SﬂCi|,1}

This function evaluates any subset S C V as the
number of bins that are spanned by this set. Note
that one does not need the knowledge of the entire
data V (or its length) to evaluate this function in the
context of online summarization, since, at any given
time ¢, the summary S; C V; does not span any bin
corresponding to the future time steps, i.e., it holds
that min{]S N C;|,1} = 0 for all ¢ > f}ﬂ The time
diversity function h(-) evaluates a summary higher if
the constituent snippets span higher number of bins.
Given the aforementioned three components, the
overall objective is defined in the following form:

(3.4) f(9) = gia™(S) + Aq(S) + uh(S),

where A > 0 and p > 0 are the weights of the quality
function ¢(-) and the time diversity function h(-),
respectively.

Algorithm 1

1: Input: f, 6, o, L, K, C, and V = {vy,v,... }.

2: Qutput: A running summary S; for every time step
t.

3: Initialize: Sp =10, ¢y = 0.

4: fOI'tZl,... do

5 gt < f(St—1Uv) — f(St-1)

6: if |S;—1] < K then

7 if g > a then

8: St — Stfl U vy

9: else

10: S+ Si_1

11: end if

12: else

13: Cr — %ZS;LLQT; Vi &= cp + 0

14: scargmax,cg, | f(Si—1U{ve}\{s}) — f(Si-1)
15: gt < f(Se—1 U\ 8) — f(Se-1)

16: if g, > 0L or g, > 4, then
17: St «— (St—l U {’Ut}) \ {§}

18: else

19: Sy Si1

20: end if

21:  end if

22: end for

3.3 Generation of Running Summaries The
problem of streaming video summarization in a fixed
memory budget along with the generation of running
summaries at each time step has several restrictions.
A procedure that addresses this problem must produce
summaries that do not exceed the memory budget (i.e.,
no extra storage or memory may be used for additional
snippets). Hence, an incoming snippet that is not intro-
duced to the summary then and there is considered lost.
Also, the procedure must assume that the stream dura-
tion is unknown. Lastly, given a submodular objective
f(-), a streaming procedure needs to be defined that
utilizes f(-) to generate the running summaries under
these constraints.

As shown in the seminal paper by Nemhauser et
al. [24], the problem defined in Equation 3.1 can be
efficiently and near-optimally solved with a constant
approximation guarantee of (1 — %) using a greedy
algorithm in the offline setting. Recently, a number of
streaming algorithms have been proposed for solving
this problem in the online setting. In particular,
Badanidiyuru et al. [1] present an efficient algorithm
that optimizes Problem 3.1 on the fly while achieving
a constant approximation guarantee of (% —¢€). Un-
fortunately their approach requires O(&fl() memory
where K is the budget of the summary. Hence it is not
ideal in our restricted scenario, where we require that
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the procedure store no more than the specific given
value K of items at any given time (despite this, we do
evaluate [1] below and find it does not perform as well
as our streaming procedure). Buchbinder et al. [2] gives
a swapping-based streaming algorithm that outputs a
near-optimal running summary at every time step while
abiding by a fixed budget K. Given a stream of data
items, this algorithm unconditionally selects the first
K items into the summary. Afterwards, the algorithm
maintains a summary S; of size K at every time step ¢,
and swaps the new item v,y with an existing item in
the summary if the maximum gain in the objective is
beyond a threshold. Buchbinder et al. [2] suggest setting
the threshold for each given time ¢ as C @, where C
is a constant. Moreover, they show that such a scheme
produces a near-optimal running summary S; for any
step t as follows: f(S;) > ﬁmax\sg}(,sgvt f(9).
Note that the approximation factor is maximized as
1/4 when C' = 1. We call this algorithm “Threshold
and Swapping” based streaming optimization (TS).

In this work, we introduce a new method better
suited to our task. The modified algorithm (Alg. 1)
consists of two stages: (1) adding stage (|S¢| < K), and
(2) swapping stage (|S;] = K).! In the adding stage,
the procedure examines each incoming snippet v; and
makes a decision about its inclusion in the summary by
analyzing the gain of adding v; to S;_1. The snippet is
added to the summary if the adding gain g; = f(v¢]St—1)
is no less than the threshold a. The setting where
a > 0, prevents the unconditional selection of the first
K video snippets in the data stream if the beginning
of the video stream is highly redundant. The adding
stage finishes when the summary size reaches the budget
K. Note that setting o = 0 in our modified variant
reduces to unconditional selection of the first K items
as is done in TS. Hence, the add stage ensures that the
initial K snippets are neither arbitrary nor redundant
— filling up the initial summary budget using arbitrary
or redundant snippet, as in TS, is wasteful (in practice)
and can take some time to recover from, especially when
one wants a running summary.

In the swapping stage, a new snippet is added to
the summary by swapping it with an existing snippet.
Given a time step ¢, we denote §; as the maximum gain
of swapping the incoming element v; with an existing
item § € S;_1. The new item v; is swapped in if either
the maximum swapping gain §; exceeds the threshold
C %, or (and our novel contribution) the adding
gain g, exceeds another threshold ~,. In either case,
the new element v; is swapped with the item § € S;_4
that provides the maximum swapping gain. A large

TA brief demonstration is at https://youtu.be/1TzLWGcb8Mg.

maximum swapping gain §; implies that the benefit of
adding the new snippet outweighs the loss of removing
an item from the summary.

The adding gain being large enough triggers a swap
whenever the new element is highly distinct from any
current snippet in S;_1. This is where our algorithm
behaves critically differently than TS. When the budget
is fixed, there might be no way to improve the objective
via a swap (indeed, we already might be at the optimal
set of size K'). The adding gain trigger does not attempt
to improve the objective, rather it triggers a swap to
ensure that something new and good is added to the
summary, while allowing something old, or at least not
too good, to be removed. This places a preference on
novelty at the potential expense of the objective value.
The intuition for this is that with a running summary,
we wish to avoid a situation where a summary, being
highly scored by objective, becomes temporally stale.
For example, it can be that the first K elements are
optimal, but in a running summarization setting, the
first K elements might not make a good summary
for all time regardless of how highly scored they are.
While the time diversity component of the objective
keeps this from happening to some extent, the adding
gain further facilitates good quality running summaries.
Our evaluation below (Section 4) considers the case
both without the time diversity component and without
the adding gain, and finds that both are necessary for
optimal performance.

The tradeoff between the swapping gain vs the
adding gain that triggers a swap is determined by the
adaptive threshold ~;, which is computed based on
the moving average of g; over the past L time steps.
This allows the thresholds to adjust automatically and
smoothly based on the video stream. The swapping
stage in the modified variant reduces to TS when v, =
oo (or equivalently, 6 = o), in fact we have:

0 and § = o0,
such that
The approxi-

ProrosiTION 3.1. For a =
Algorithm 1 will also generate S,
f(S)) > & maxisi<x,scv, £(9)-

mation factor is maximized as % forC=1.

The efficacy of such modification in TS at the swapping
stage is empirically validated in Section 4, where using
the add gain yields significant improvements.

4 Experimental Setup

4.1 The Data Set We compare the performance
of various summarization methods on the videos from
SumMe [11] and TVSumb50 [27] data sets. The SumMe
data set consists of 25 videos. Each video has a set of
human generated summaries (the ground truth) from
multiple users. Each summary consists of a set of
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variable length video snippets. A detailed description
of the data is given in Gygli et al. [11]. The TVSum50
data set contains 50 videos in 10 categories. The videos
were collected from YouTube using the category as the
search query. Each video has a set of associated ground
truth summaries. A detailed description of the data set
is provided in Song et al. [27].

4.2 Instantiation of Objective Function The fea-
tures that are used to instantiate the objective f(-) play
an important role in identifying the focus of the sum-
marization process. In this work we instantiate gfa*(-)
on a set U of deep features, which is generated using a
Deep Neural Network (DNN).

Previous work has shown that DNN features per-
form well in a number of computer vision tasks [20, 19].
Moreover, Donahue et al. [8] show that a network sim-
ilar to the one proposed by Krizhevsky et al. [19], can
be used as black box generic feature generator for a di-
verse set of tasks. To instantiate gfi2*(-) we generate
a 100 dimensional feature representation for each video
snippet through a three-step process.

First we train Caffe’s [15] “AlexNet” (based on the
network in Krizhevsky et al [19]) on the ILSVRC2012
(ImageNet) data set [26]. The trained model can
then produce a 1000 dimensional first level feature
representation for a video image. These features
correspond to object classes and are useful from a
summarization perspective. However, since the model
was trained on ILSVRC2012 data, these features are
correlated due to the similarity between object classes
in the data set. Therefore, as the second step we utilize
a fully-connected DNN model that has a bottleneck
structure to refine the pre-softmax first level features
into a 100 dimensional representation.

We design an autoencoder style DNN model with
5 layers of hidden nodes, 1 layer of input nodes, and
1 layer of output nodes. We define the bottleneck
layer as the third hidden layer with 100 nodes. The
model is trained in an unsupervised manner using the
ILSVRC2012 data and sigmoid non-linearity. Once the
network has been trained, the data from the summa-
rization data sets is passed through the network and
the output of the bottleneck layer for each image (video
frame) is scaled and transformed by application of the
sigmoid non-linearity before being used as the second
level feature representation.

At this stage second level features are available for
each constituent frame of a snippet. However, there is
still a need for features representing the entire snippet.
To this end, we train another autoencoder with a bottle-
neck structure over the frames of the snippet to generate
a feature representation for the entire snippet. For each

snippet, the features of the constituent frames are con-
catenated together and fed into the autoencoder. The
autoencoder consists of 7 layers of hidden nodes, 1 layer
of input nodes and 1 layer of output nodes. The bot-
tleneck layer is the fourth hidden layer with 100 nodes.
The sigmoid non-linearity is used in the autoencoder.
Once this autoencoder has been trained, it is used to
generate third level 100 dimensional features (|U| =
100) for each snippet in the summarization data sets.
These third level features are used to instantiate gf22*(-).

Let a video snippet v be represented as r(v) € R1%.
This r(v) corresponds to the third level features de-
scribed earlier. In the experiments we define gf2*(-)
with m, (v) = r,(v), and w, = 1,Vu € U. The quality
function ¢(-) employed in the experiments is defined
via a Haar feature-based cascade classifier [30] for face
detection. More formally, given a video snippet v, we
define ¢(v) as either 1 or 0, depending on the presence
of a face in the video snippet as predicted by the face
detector.

It is important to understand that even though deep
neural networks were used to generate snippet features,
recent techniques for compressing neural networks (such
as Chen et al. [6] and Wang et al. [31]) can allow the us-
age of such neural networks in memory constrained en-
vironments making them more practical in our setting.

4.3 Evaluation Mechanism: Running F score
It is common to use F-measure based evaluation
techniques for judging an automatically generated
video summary [11, 27, 12, 32]. Similarly, to test
the performance of running summaries, we employ
an F-measure based evaluation method that takes
the quality of the summary generated for every time
step into account, instead of examining only the end
summary of a video. Given a video V' = {v1,...,v,}
consisting of a set of snippets and a corresponding
human generated summary (ground-truth summary),
we denote d(v;) as the number of frames in the video
snippet v; and c¢(v;) as the number of intersecting
frames between the human summary and the snippet
v;. We then evaluate the quality of the summary at
time step t relative to the human generated summary
through the F-measure F;, which is defined as follows:
p clv clv
Fr= S = S B 2
P, and R; are precision and recall at time step ¢. In the
case of multiple human summaries, these quantities are
calculated by averaging the scores obtained using indi-
vidual human summaries. The performance of the on-
line summarization method for the video V' is defined as:

B 1 n
F:ﬁ;Ft

where

(4.5)
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5 The Results

In the experiments we address the following questions:
1) how does the proposed framework perform compared
to a wide variety of baseline methods; 2) how does the
proposed framework perform with various choices of the
hyperparameters; and 3) how does our proposed adding
gain in stage two (swapping stage) improve the perfor-
mance over not using it at all. We answer these ques-
tions through experiments on the videos contained in
SumMe (SM) [11] and TVSum50 (TVS) [27] data sets.

The core problem being studied in this work is to
generate “running summaries” under constraints (such
as bounded memory usage). This has practical impor-
tance as outlined in Section 1; the online nature is just
one aspect of our approach. Most video summariza-
tion methods (including online variants) do not focus
on this exact problem. Therefore, it is difficult (and
arguably unfair) to use them as comparisons. Any pro-
cedure comparable to ours should satisfy the following
properties: A) it can operate in an online single-pass
manner; B) it can operate using a fixed limited bud-
get for any and all arbitrary stream lengths; C) it can
generate a running summary conforming to this budget;
D) the total length of the video stream is unknown or
unbounded; E) it does not store extra snippets apart
from those present in the summary at any given time.
In our approach, any snippet not added to the sum-
mary is considered lost and is no longer accessible to
the summarization procedure. These conditions restrict
our options for baseline methods. It is rare for a method
to consider generation of such running summaries. Ta-
ble 1 demonstrates that several contemporary methods
do not conform to our setting. There are, however, pro-
cedures in this table that do satisfy a majority of the
required properties. We use these procedures as our
baselines.

[Condn[KC|RR[TS]|Sieve|Ours|[37][[9][[22][[17][[36][[3]]

A |\VIVIV|IV |V |VI|YS
B |(V|vVvI|v]| Vv |V

C |[V|VI V|V |V

D (v |V I|V]| Vv |V

E |V |V |V v |V

Table 1: The different properties satisfied by baseline
methods. A, B, C, D, and E represent the different prop-
erties that were mentioned earlier. As can be seen, many
of the methods do not satisfy any of the properties at all.

We compare our approach against baseline meth-
ods, including the streaming optimization procedure
proposed by Doubling K-Centers algorithm [5] (KC)

[Data Set|[K [NA + NT[NA + T[A + NT[A+T |

TVS 8 |15.79 15.88 16.11 16.25
TVS 16]18.70 18.76 19.07 19.22
SM 8 121.32 21.38 21.92 22.09
SM 16(24.72 24.76 25.11 25.31

Table 2: An ablation study depicting the influence of
time diversity (T) and adding gain (A) during swapping
stage on the performance of our approach. NA and
NT correspond to absence of T and A. The score is
averaged 100 x F (higher is better).

and Resource Restricted Online Minimum Sparse
Reconstruction procedure [23] (RR). Furthermore, even
though the ‘SieveStreaming’ procedure [1] uses much
more memory than our procedure, it uses a submodular
objective and has a mathematical performance guaran-
tee. To achieve a good guarantee, we set low e values
for SieveStreaming. We also compare our performance
with TS [2]. Both SieveStreaming (Sieve) and TS act
as strong baselines for comparison with our approach.

The idea of the core set based KC algorithm is
to summarize the video stream on the fly while main-
taining the summary such that the minimum distance
between any pair of the constituent snippets is suffi-
ciently large. This algorithm operates in a fixed memory
budget scenario, and hence it can be compared with our
method. The RR procedure also summarizes the video
stream without overflowing the budget. We adapt the
algorithm to our problem setting: it is instantiated by
our deep features and produces summaries of video
snippets. This procedure maintains a summary based
on the reconstruction error of an incoming snippet.

For each video in SumMe and TVSumb0 we fix
the size of a video snippet to 2 seconds (as suggested
in TVSumb0 [27]) and evaluate with the two different
budget size. We used a budget size K of both 8 and
16 in the experiments. The averaged F (Equation 4.5)
for the different methods is shown in Figures 1a and 1b
(the scores are multiplied by 100). It can be seen that
our procedure clearly outperforms the other baselines
suggesting the efficacy of the proposed objective f(-)
for modeling the summarization problem. In addition
to this, our procedure can perform better than the more
memory intensive ‘SieveStreaming’ [1]. It also shows
that our procedure can perform better that TS [2].

In addition to this, through Table 2 it is demon-
strated as an ablation study that both time diversity
and adding gain at the swapping stage are useful for
summarization performance. Furthermore, the second
data column of Table 2, as compared to TS in Figures la
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Figure 1: Comparison between our framework and several baselines on the (a) SumMe and (b) TVSum50 data
sets for different summary budgets (K) using average 100 x F'.

and 1b shows the benefit of the add stage of our algo-
rithm in practice — rather than indiscriminately adding
the first K snippets to the summary as in TS, it is ben-
eficial to gradually add snippets at the beginning of the
stream depending on if they are novel.
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Figure 2: The performance (F averaged over all videos)
of our approach with varying §, a, A and g on SumMe
data set for budget K = 8.

Next we examine how the system performance
changes with variations of the hyperparameter A and p,
that define the weights regarding the quality and time
diversity functions in the overall objective function. We
also explore the influence of the hyperparameters « and
4, that control the threshold for adding a snippet during
the add stage, and the influence of the adding gain
during the swap stage. The result is shown in Figure 2.
It can be observed that appropriate choices of these
hyperparameters can have a positive influence on the
framework. However, setting the values too large im-
plies excessive emphasis on the associated components

leading to deteriorated performance. Overall, a balance
of these parameters is needed for optimal performance.

6 Discussions and Conclusions

We present a framework for generating running sum-
maries of video data streams (of potentially unbounded
length) on the fly while abiding by a fixed memory
budget. We address this problem using a constrained
maximization formulation, for which we propose a
novel feature-based objective that is utilized in a
streaming procedure to generate the running sum-
maries. Furthermore, we show an evaluation scheme
for analyzing the performance of streaming methods
that can generate running summaries in the context
of video summarization. Empirical validation on the
SumMe and TVSumb0 data sets has shown that the
use of our framework for this task has merit.

This work was supported in part by the CONIX
Research Center, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program
sponsored by DARPA.
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