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ABSTRACT
Motivation: Tandem mass spectrometry (MS/MS) is an indispensa-
ble technology for identification of proteins from complex mixtures.
Proteins are digested to peptides that are then identified by their frag-
mention patterns in the mass spectrometer. Thus, at its core, MS/MS
protein identification relies on the relative predictability of peptide frag-
mentation. Unfortunately, peptide fragmentation is complex and not
fully understood, and what is understood is not fully exploited by
modern peptide identification algorithms.
Results: We use a hybrid dynamic Bayesian network (DBN) / sup-
port vector machine (SVM) approach to address these two problems.
We train a set of DBNs on high confidence peptide-spectrum mat-
ches. These trained DBNs, known collectively as Riptide, comprise a
probabilistic model of peptide fragmentation chemistry. We show that
examining the distributions learned by Riptide allow identification of
new trends, such as prevalent a-ion fragmentation at peptide clea-
vage sites C-term to hydrophobic residues. In addition, Riptide can
be used to produce likelihood scores that indicate whether a given
peptide-spectrum match is correct. A vector of such scores is then
given to an SVM, which produces a final score to be used in peptide
identification. Using Riptide in this way yields improved discrimination
when compared to other state-of-the-art MS/MS identification algo-
rithms, increasing the number of positive identifications by as much
as 12% at a 1% false discovery rate.
Availability: Python and C source code is available upon
request from the authors. The Graphical Model Tool Kit
(GMTK) is freely available at http://ssli.ee.washington.

edu/˜bilmes/gmtk.
Contact: noble@gs.washington.edu

1 INTRODUCTION
A major goal in biology is the identification and characterization of
the cell’s entire protein complement, or proteome. Toward this end,
tandem mass spectrometry (MS/MS)-based technologies offer the
ability to rapidly identify proteins in complex mixtures (1; 2). An
essential step in MS/MS is the fragmentation of a protonated pep-
tide and detection of the resulting fragment ions in the form of a
mass spectrum. Due to the complex chemistry of peptide fragmen-
tation, the pattern of peaks in such a spectrum can be predicted only
qualitatively: an exact prediction of spectrum peak heights, or even
which peaks will be present or absent, has proven elusive (3; 4; 5; 6).

One motivation for modeling peptide fragmentation is to aid
in the assignment of peptide sequences to observed fragmentation
spectra. However, because of the complexity of peptide fragmen-
tation, designers of peptide spectrum identification software have
often relied heavily on expert knowledge to design simple heuri-
stics (7; 8) or to set probabilities within a larger model (9). Only
recently have models trained on actual mass spectrometry data been
pursued (3; 4; 5; 10). These peptide identification methods typically
use relatively simple models that leave out large portions of known
fragmentation pathways, such as neutral losses (4; 5), or incorporate
most of the known fragmentation pathways in a black box model
that is not easily interpreted or extended (6).

The method presented here builds upon and extends this previous
work in an effort to address these two limitations of existing frag-
mentation models and search methods. We test two closely related
hypotheses: the first is that an improved model of peptide mass spec-
trum peak intensity, trained on actual MS/MS data, will provide
insight into the complex chemistry of protonated peptide fragmen-
tation; the second is that such a model will be useful for improving
identification of unknown peptide fragmentation spectra, especially
in conjunction with a sequence database search. We address these
hypotheses using a machine learning tool known as the dynamic
Bayesian network (DBN).

A Bayesian network is a type of graphical model (11) where a
graph is used to express important factorization properties about
families of probability distributions. These properties allow com-
putationally efficient dynamic programming algorithms to carry out
important tasks such as parameter estimation and pattern recogni-
tion. Without the expression of factorization, such algorithms would
be intractable. Bayesian networks also provide a visual, intuitive,
yet mathematically formal graphical description of such probabili-
stic models, something that can be of enormous assistance when
designing a model to solve a given problem.

A DBN is a type of Bayesian network (12) that is ideally suited to
sequential data, such as acoustic speech signals in speech recogni-
tion or DNA or protein sequences in biological sequence analysis.
Because DBNs subsume hidden Markov models (HMMs), and
because HMMs have been widely and successfully used in a variety
of sequence analysis tasks, it seems likely that the much more
powerful family of DBNs may further advance the field of bioinfor-
matics. A DBN is constructed using a fixed-length template which is
then unrolled in order to model a sequence of any arbitrary length.
The fact that the DBN is described using only a finite number of
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parameters, but can describe a sequence of unbounded length, is one
of the powerful aspects of DBNs. The DBN template consists of at
least two Bayesian network sections, and a set of edge connections
between these sections. DBN unrolling occurs by repeating one of
the sections an arbitrary number of times and using the inter-section
connections as a pattern to connect each successive repeated sec-
tion. A detailed description of the types of DBNs used in this work,
but for the problem domain of speech recognition, can be found in
(13). Because of their ability to model large complex phenomena,
DBNs are particularly appropriate for modeling peptide fragment
ion intensity. In addition, the DBN’s governing parameters (which
are automatically learned in this work) are highly interpretable,
making them well-suited to providing scientific insight.

Our fragmentation model, called Riptide, consists of a collection
of DBNs that capture physical properties of peptide fragmentation.
Riptide’s design is motivated by the widely accepted mobile proton
model of peptide fragmentation (14; 15). According to this model,
peptide fragmentation by collision induced dissociation under low-
energy conditions is caused by migration of a proton to a location on
the peptide backbone and subsequent fragmentation of the peptide
into b- and y-ions. This fragmentation event can be influenced by
numerous factors (15). The most closely studied factor influencing
cleavage is the effect of adjacent amino acid residues on the pro-
bability of cleavage occurring at a particular backbone amide bond.
This effect is modelled in detail in the Riptide DBNs. In addition,
the primary fragmentation event into b- and y-ions (corresponding
to sequences N-terminal and C-terminal to the fragmentation posi-
tion) is often accompanied by a number of additional fragmentation
events: the formation of an a-ion by a loss of carbon monoxide from
the b-ion; the loss of NH3 or H20 (16). Riptide explicitly models
these ion formations, both alone and jointly with their precursor
ions. This feature is missing in other machine learning approaches,
which only model b- and y-ions (5; 4).

Riptide’s probabilistic parameters are trained from previously
identified tandem mass spectra. In order to avoid contamination
of the training set with incorrectly identified spectra, we genera-
ted high-confidence identifications using a combination of seven
peptide identification algorithms, paying special attention to con-
trolling false disoveries. The resulting collection of 1208 peptide-
spectrum matches (PSMs) is freely available at http://noble.
gs.washington.edu/proj/intense.

The Riptide model detects both known and potentially novel
trends in peptide fragment intensity within these high quality PSMs.
Of these trends, perhaps the most provocative is the detection of a
tendency towards higher a-ion peaks and a-ion neutral loss peaks
from cleavage sites C-term to hydrophobic residues. In addition to
providing scientific insight into peptide fragmentation chemistry,
the probabilities assigned by the Riptide models are useful for
improving peptide identification. We demonstrate that, when fea-
ture vectors comprised of Riptide probabilities are used as input to
either an SVM or the semi-supervised learning algorithm Percola-
tor, they improve peptide identifications by 10.9% and 12.4% at 1%
false discovery rate, respectively.

2 APPROACH
Although the details of the Riptide model are complex, the inputs to
and outputs from the Riptide training and testing procedure are quite

Fig. 1. Experimental overview. We start with a collection of high-
confidence peptide spectrum matches (PSMs). These training PSMs are used
to train the Riptide model, which consists of a collection of dynamic Baye-
sian networks (DBNs) that model the probability distributions governing
peptide fragment ion intensities. Riptide is used to evaluate testing PSMs
to produce a vector of features for each PSM, each feature related to a pro-
bability assigned to the PSM by one of the Riptide DBNs. Finally, these
feature vectors can be analyzed by additional algorithms (such as support
vector machines) to produce scores for the test PSMs.

simple (Figure 1). We start with a collection of high-confidence
peptide-spectrum matches (PSMs) generated as described in Sec-
tion 3.2. These PSMs are used to train the Riptide model, which
consists of a collection of dynamic Bayesian networks (DBNs) that
model the probability distributions governing peptide fragment ion
intensities. The resulting Riptide model is then evaluated on a set of
test PSMs, generating for each PSM a feature vector of probabilities.
These vectors can then be used as input to analysis software, assi-
gning scores to the PSMs. Examples of analysis software include
support vector machines (SVMs) or the semi-supervised learning
algorithm Percolator (17) (Section 4).

2.1 Riptide training
Training the Riptide model proceeds in two main steps, portrayed in
Figure 2. The first step starts with the high-confidence PSMs, produ-
ced as described in Section 3.2. Each of the spectra for these positive
PSMs is also associated with a randomly generated peptide to create
a set of negative PSMs. We use these two classes of PSMs (positive
and negative) to train a set of “positive” and “negative” dynamic
Bayesian networks (Figure 2A). These trained DBNs are then used
to evaluate the test PSMs, yielding for each PSM and each type of
DBN a pair of probabilities (positive and negative). In addition to
the raw probabilities, we also include the ratio between them, which
we found helped in discrimination (Section 2.3). Thus, each of the
original training PSMs is represented as a length three vector, with
three scalar values for each kind of DBN in the original Riptide trai-
ning (Figure 2B, right). These vectors can then used during testing
as input to either a support vector machine (SVM) or the Percolator
algorithm (17) (Section 4).

2



Modelling peptide fragmentation

Fig. 2. Riptide overview The process of training and evaluating Riptide consists of two main stages. (A) The process begins with high-confidence PSMs
(positive PSMs, top). Each of the spectra for these positive PSMs is also associated with a randomly generated peptide to create a set of negative PSMs
(bottom). These two classes of PSMs are used to train a set of dynamic Bayesian networks, one positive and one negative for each ion series. (B) The trained
DBNs are then used to evaluate testing PSMs, yielding for each PSM and each type of DBN a pair of probabilities (positive and negative) as well as the ratio
between them, a log odds ratio (gray). Thus, each of the testing PSMs is represented as a vector of scalar values, three values for each DBN. These vectors are
then used during testing as input to either a support vector machine (SVM) or the Percolator algorithm (Section 4).

Fig. 3. The two types of Riptide dynamic Bayesian networks (DBNs). The first class of DBNs (left) models distributions of ion fragment intensities
individually, conditioning on the amino acids flanking the cleavage site that fragments to produce that particular ion. The second class of DBNs (right) models
the distributions of ion fragment intensities in pairs, incorporating dependencies between related ions that result from fragmentation at the same site. Observed
nodes are shaded gray; hidden nodes are not shaded. The nodes at the top of each center frame are connected to identical nodes in previous and subsequent
frames. Solid lines indicate conditional dependencies, while dashed lines indicate a switching parent relationship, a special form of conditional dependency.

2.2 Bayesian networks
At the core of the Riptide algorithm are two types of DBNs that
model the probability distributions governing spectrum ion intensi-
ties. One section of a DBN template is called a frame. Three frames

for each model are shown in Figure 3 using standard DBN diagram-
ming semantics. Nodes in the model represent random variables,
solid edges signify potential dependencies between these variables,
and dashed edges signify switching edges (13).

The first network type is the single-ion model, which captures
information about the influence of peptide chemistry on individual
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ion series (Figure 3A). Intuitively, this model learns probability rela-
tionships that can be expressed as “b-ions N-term to proline tend to
have high intensity” or “y-ions C-term to aspartate have low inten-
sity.” The second type of network is the paired-ion model, which
captures information about relationships between pairs of ions of
related types (Figure 3B). These models learn probability relation-
ships that can be expressed as “b- and y-ions that result from the
same cleavage location tend to have intensities of similar height.”
Taken together, these two kinds of models are capable of captu-
ring a rich set of probabilistic relationships governing fragment ion
intensities. We train specific instances of each model type for diffe-
rent ion series and pairs of ion series. For example, Riptide contains
a single-ion model trained on b-ions alone, and a paired-ion model
trained on b- and y-ions jointly. Additional details about each of
these model types are given below.

2.2.1 Single ion models A graphical represention of the single-
ion model is shown in Figure 3A. It models the relationship between
a spectrum and a particular series of fragment ions from an asso-
ciated peptide. Each frame corresponds to a single fragmentation
location in the peptide and the intensity of a peak in the mass spec-
trum associated with that fragmentation. For example, a model of
the b-ions resulting from the peptide EAMPK would contain four
frames, with the first frame corresponding to the b-ion resulting from
fragmentation at the amide bond between the peptide fragments E
and AMPK.

For a given set of training PSMs, one single-ion model is trained
for each of 18 different ion series. These include nine singly-charged
and nine doubly-charged ion series, the latter denoted with a “++”.
For each charge state, we model three primary ion series (b, y, and
a), each of these primary series with a loss of water (denoted b◦, y◦

and a◦) and a loss of ammonia (denoted b∗, y∗ and a∗). Because we
train a separate model on negative and positive sets of PSMs, this
procedure results in 36 single-ion models (3 ion types x 3 loss types
x 2 charge-states x 2 training sets).

At the center of each frame of the single-ion model is a random
variable that represents ion intensity as the percentile rank of the
observed peak in the mass spectrum using a number between 0
and 1, derived as described in Section 3.1. We model this varia-
ble using a mixture of three Gaussians, for a total of eight free
parameters (three means, three variances and two weights). Three
Gaussians were found to match natural ion intensity distributions
well: most distributions have a single large peak, tapering into a
broad background distribution modelled by the other two Gaussians.

The intensity variable is dependent on several other variables,
which can be divided into two groups. The first group consists of
two variables that influence the probability of a peak being detec-
ted in the spectrum. As physical instruments, mass spectrometers
are only capable of detecting ions within a finite range of m/z
values. Thus, the first variable indicates whether the particular peak
is within the detectable portion of the mass spectrum, while the
second indicates whether a peak is indeed detected. We do not wish
to assign low probability to a peptide with an undetected ion if that
ion is physically undetectable; hence, when both of these variables
are false, we switch in an agnostic probability for the center inten-
sity variable that is always equal to unity. On the other hand, if
an ion is detectable but not detected, then we penalize it during
testing by using the (usually low) probability for a zero intensity
ion. Finally, if an ion is both detectable and detected, then we use

the corresponding intensity value to train (or test) the appropriate
one-dimensional three-component Gaussian mixture at the center
intensity node.

The second group of three variables influence the intensity of the
fragment ion assuming that it is detected. Two variables represent
the flanking amino acids immediately to the left (N-term) and right
(C-term) of the fragmentation position in the peptide. These posi-
tions have been shown to have a strong effect on the probability of
detecting an ion resulting from the cleavage positiion at that posi-
tion (14; 18). The third variable represents the position of the peak
along the m/z axis of the spectrum relative to the intact peptide m/z
(using an integer between 0 and 4). This variable accounts for the
bias towards center fragmentation in peptides. These three variables
are mixed together using a hidden mixing variable, the distribution
of which depends on the region of the mass spectrum. The mixing
procedure allows what would be a very high number of training
parameters (20 left-flanking residues x 20 right flanking residues x 5
peptide regions x 8 Gaussian parameters = 16000) to a much smal-
ler number ( (20 + 20 + 5) ∗ 8 = 360), using the switching parent
mechanism. Thus, the mixing node allows us to train a much richer
model on much fewer data than would otherwise be possible. There
is an edge connecting the peptide region to this mixing node because
intensities from fragmentations in different regions of the peptide
will have slightly different dependencies on flanking residues and
peptide position. For example, the extreme C-term and N-term regi-
ons of the peptide will tend to have low intensities regardless of
flanking residues, (10) whereas towards the center of the peptide
differences in intensity are more influenced by flanking residues.

2.2.2 Paired-ion models A graphical representation of the
paired-ion model type is shown in Figure 3B. This type of model att-
empts to capture the pairwise relationships between related ions of
different types. Some pairs of ion types are closely related because
they result from the same fragmentation event (e.g., bi and yn−i, for
a peptide of length n). This is because under low-energy conditions,
the b-ion and y-ion fragments co-exist in a loose complex; the two
members of this dimer compete for the proton, with assignment of
charge being determined by the proton affinities of the two ions (19).
Fragment cannot be detected if they are not charged, so this compe-
tition matters for the detected ion intensities. Other pairs of ion types
are related because one type can produce the other upon secondary
fragmentation (b and b◦). Still others are related because they repre-
sent different charge states of the same ion (b and b++). Thus, we
train paired-ion models for each of the following 15 pairs of related
ions: b/y, b/b◦, y/y◦, b/a, b/b∗, y/y∗, b/b++, y/y++, b◦/b◦++,
y◦/y◦++, a/a++, b∗/b∗++, y∗/y∗++, y/a and b++/y++. For
clarity, Figure 3 shows the model for b- and y-ions only; other pairs
of ions are modelled analogously. As for the single-ion models, one
model is trained on each ion series for a positive and negative set
of training PSMs (Figure 2), producing 30 trained models. Like the
single-ion models, each frame in a paired-ion model corresponds to
a single fragmentation location in a peptide and models the inten-
sities of a pair of peaks in a mass spectrum associated with that
fragmentation. For example, the first frame of a model of the +1 b-
and y-ions resulting of the peptide EAMPK would model the b-ion
E and the y-ion AMPK.

The three variables along the bottom of Figure 2 represent peak
intensity. Two of these variables model the intensities of the ions
individually, and are essentially identical to the intensity variable
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described above for the single-ion models. These variables also use a
mixture of three one-dimensional Gaussians and are used if only one
or the other ion is detected but not both. On the other hand, if both
ions are detected, then the center variable models the ions jointly
using a mixture of nine two-dimensional Gaussians. Regardless of
which pattern of ions is detected, the distribution corresponding
to the undetected pattern of ions is given a unity score. Whether
both ions or either ion individually is detected, the Whether ions are
detected or not is indicated using the three variables directly above
each of the intensity variables. Finally, the three variables indica-
ting whether ions are detected or not are dependent on the peptide
region, which is identical to the corresponding node in the single ion
models. The dependence of these three variables on peptide region
captures the fact that some pairs of ion types (b and y) from the cen-
ter of a peptide are more likely to be observed simultaneously in the
spectrum.

2.3 Using Riptide to evaluate PSMs
The final Riptide model consists of 66 dynamic Bayesian networks,
including a positive and negative model for each of 18 single ion
series and 15 pairs of ion series ((18 + 15) * 2 = 66). Once these
networks have been trained, they can be used to assign a probabi-
lity to the ion series from any given PSM. Evaluating a PSM using
one of the models described above yields the joint probability of the
observed values and the model M for a particular ion series i and
peptide p, Pr(i, p|m). Each ion series has two probabilities assi-
gned to it: one for the model trained with positive PSMs, and one
for the model trained with negative PSMs. We use these two pro-
babilities to calculate a log odds ratio for each ion series and PSM.
Hence, the final measure of how well a given PSM ion series and
for a particular peptide matches expectation is given by

LORi(p) = log

„

Pr(i, p|M+)

Pr(i, p|M−)

«

, (1)

where M+ and M− are the positive and negative models, respec-
tively. Evaluating the log odds ratios for each of the 33 positive and
33 negative models yields a vector of an additional 33 values for
each PSM. Thus, the final vector summarizing each PSM is 99 ele-
ments long. We use these vectors as input to other algorithms such
as support vector machines, described in more detail in Section 4.

3 METHODS

3.1 Spectrum preprocessing
Before any particular spectrum is analyzed, we transform the intensities by
sorting the peaks in ascending order by intensity and calculating, for that
peak, the fraction of peaks that are less than or equal to that intensity. We
use these fractional representations of peak intensities to train the Riptide
dynamic Bayesian networks. Thus, in a hypothetical spectrum with 10 peaks,
the peak with the highest intensity would be assigned a normalized rank of
1.00, and the peak with the lowest intensity would be assigned a normalized
rank of 0.10. This intensity transformation is similar to the relative rank value
used in (5) and reduces the effect of variations in dynamic range and noise.

3.2 Training data set
To generate the MS/MS data, an aqueous soluble protein sample from E.
coli lysate was reduced, carbamidomethylated and digested with trypsin in

the presence of an acid-labile detergent (RapiGest, Waters Corp). The resul-
ting peptides were analyzed by µLC–MS/MS using the multi-dimensional
protein identification technology technology (20) on a ThermoFinnigan
Orbitrap LTQ mass spectrometer, yielding a total of 112,329 spectra.

We wanted to avoid learning spurious relationships from PSMs with
MS/MS spectra that contained heterogeneous populations of peptides. To
select spectra from homogenous populations of peptides, we used the iso-
tope detection algorithm HardKlör (21). We included MS/MS spectra that
had an associated MS spectrum with only one isotope distribution within a
window of 3 m/z of the precursor ion over three out of four MS spectra,
yielding a total of 51,179 MS/MS spectra.

The spectra were searched against the E. coli protein sequence database
using several algorithms to mitigate the bias resulting from any one algo-
rithm or algorithm class: SEQUEST (7; 22), OMMSA (23), ProbID (24),
PepNovo(25), Lutefisk (26), Inspect (27) and GutenTag (28). These algo-
rithms were chosen to represent the diversity of existing MS/MS analysis
software and according to source code and executable availability. Para-
meters for each algorithm were set as appropriate to search all peptides
(regardless of enzyme specificity) with a precursor mass tolerance of +/-
2.5 Da. PSMs from each algorithm were accepted if they met the following
criteria: a minimum length of six amino acids, a charge of +2, fully tryp-
tic (ending in K or R) with no missed cleavages. The algorithms GutenTag
and SEQUEST had additional filters of a minimum DeltCN of 0.20 and 0.10,
respectively. Many of the algorithms return multiple PSMs for a particular
spectrum; in these cases, the top PSM (according to the primary scoring
method for that algorithm) that matched the above criteria was selected as
the PSM for that algorithm and spectrum. The false discovery rate (FDR) for
each algorithm was estimated by searching the spectra against a randomly
shuffled sequence database, consisting of randomly generated proteins with
the same amino acid frequencies and length distribution as the original
sequence database. PSMs are sorted by the primary scoring metric, and the
FDR at a given primary scoring threshold is equal to the number of iden-
tifications to the shuffled database divided by the number of identifications
to the real database above that threshold. The handful of short peptides that
occurred in both the real and shuffled sequence databases were ignored for
the purpose of calculating FDR. Thresholds for accepting PSMs generated
by each algorithm were set consistent with an FDR of 1%.

In some cases, the PSMs contain contradictory assignments of different
peptides by different algorithms to the same spectrum. We remove these
contradictory PSMs from the set. Finally, we require each PSM to be con-
firmed by at least two algorithms, and each peptide to be confirmed by at
least two spectra. The resulting 1208 charge +2 PSMs were used to train
Riptide, and is available by request from the authors.

3.3 Testing data sets
For validation, we use a publicly available tandem MS data set from (29),
available as the 60cm data set at http://noble.gs.washington.
edu/proj/retention/data/data.html. The data set consists of
a collection of 18,149 spectra derived from a yeast whole-cell lysate as
described previously (29).

The yeast protein sequence database used to search the test data set was
first digested to tryptic peptides in silico, by cleaving protein sequences after
K or R except when followed by P, and allowing internal missed cleava-
ges. The resulting peptides are then indexed by their mass in Daltons (Da)
rounded to the nearest integer. For each test spectrum, we created a list of
candidate peptides by rounding the spectrum’s mass in Da (assuming charge
of +2) to the nearest integer, and extracting all peptides within +/- 3 Da of
the rounded mass. For a sequence database of sufficient size, this list of can-
didate peptides will be prohibitively large; hence, to winnow this list further,
we apply a subsequent filtering step akin to the SEQUEST Sp score (7).

3.4 Support vector machine training
For the SVM, we use a Gaussian kernel, and hyperparameters C and σ. C
is the soft-margin penalty, or the penalty for misclassified examples, and
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σ is the width of the Gaussian used. These hyperparameters are selected
using five-fold nested cross-validation, where the parameter with the largest
area under the ROC curve is selected. The SVM was implemented using the
publicly available software package PyML (pyml.sourceforge.net).

4 RESULTS

4.1 Validation with a sequence database search
We test Riptide in the context of a three-stage computational pipe-
line, in which (1) candidate PSMs are generated by our reimplemen-
tation of SEQUEST, called Crux (30); (2) these PSMs are evaluated
by Riptide, and (3) the resulting feature vectors are post-processed
either by an SVM or by the semi-supervised learning algorithm
known as Percolator (17). We train Riptide and the SVM using
target and decoy PSMs from E. coli (Section 3.2), and we then mea-
sure the ability of the pipeline to discriminate between target and
decoy PSMs, using spectra generated from a yeast whole-cell lysate
(Section 3.3).

An SVM is a binary classifier that projects feature vectors into a
high-dimensional space and learns an optimal separating hyperplane
between positive and negative examples in that space. In this case,
we use an SVM to learn to discriminate between positive and nega-
tive PSMs, using the 99-dimensional feature vectors generated by
Riptide. After SVM training, test set PSMs are scored using the dis-
criminant value of the SVM classifier, which is the distance between
the test PSM’s feature vector and the SVM hyperplane. If the sco-
ring function is working well, then correct PSMs will be assigned
positive discriminant scores, and incorrect PSMs will be assigned
negative scores.

Figure 4A compares the performance of Riptide+SVM with the
performance of XCorr, the score function used by SEQUEST. To
generate the figure, we searched each spectrum in the test set against
a shuffled decoy version of the same protein sequence database (29).
We use the number of matches to the decoy database at a particular
score threshold to estimate the rate of false identifications among the
target PSMs (31). For each PSM, we then compute a q value, which
is defined as the minimal false discovery rate threshold at which the
PSM is deemed significant (32). Each series in the figure plots the
number of target PSMs identified as a function of q value threshold.
We selected this mode of evaluation because it closely matches the
goal of the typical mass spectrometrist: identifying the largest num-
ber of peptides with the lowest rate of false identifications. Riptide
with the static SVM outperforms SEQUEST by 10.8% at a 1% false
discovery rate. In this experiment, the Riptide DBNs failed on many
short (length seven or less) peptides, so they are not included in the
analysis. If these peptides are included, performance deteriorates
dramatically.

In addition to testing the static SVM post-processor, we test Rip-
tide in conjunction with the semi-supervised learning algorithm,
Percolator (17). Percolator uses an SVM to iteratively learn to dis-
criminate between correct and incorrect PSMs by using PSMs from
a decoy data set as a proxy for incorrect PSMs in the target data set.
As originally described, Percolator uses a collection of 20 features,
including several features derived from the algorithm SEQUEST: e.g.
Xcorr, Sp, deltCN as well as other features describing the trypti-
city of the peptide termini, among others. We tested three variants of
Percolator: using the original 20 features, using Riptide’s 99 featu-
res, and using all 119 features. The results are shown in Figure 4B.
When Riptide’s feature vectors are combined with those used in the
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Fig. 5. Distribution of a-ion intensities from fragmentation at sites C-
term to hydrophobic or polar residues. Difference is significant at p ¿
0.0001.

original Percolator publication, we obtain 12.4% improvement in
positives at 1% false discovery (Figure 4B).

4.2 Analysis of learned fragmentation probabilities
An additional benefit of using dynamic Bayesian networks in the
Riptide model is that the probability distributions learned by the
networks can be readily interpreted to produce scientific insights.
We examine the probability distributions governing ion fragment
intensities learned by the single-ion and paired-ion types of Riptide
models in Figures 6 and 7.

In Figure 6 we examine the distributions of intensities learned for
particular residues and ion types by the single ion models. Each plot
shows the mean intensity for each of the 18 single ion models and
the 20 residues that can be to the left and right (N-term and C-term)
of the cleaved amide bond. Several expected trends can be detected:
the high intensities of b- and y-ions; the high intensities of cleavages
N-term to P, and corresponding low intensities of cleavages C-term
to P. Other trends that have not been as widely noted in the peptide
fragmentation literature are also present: the increased prevalence of
+2 y-ions when basic residues are C-terminal to the fragmentation
location; and the increased intensity of singly charged a-ions when
hydrophobic residues are N-terminal to the fragmentation site. The
first effect makes sense from physical principles. We examined the
latter effect more closely by looking at the raw distribution of a-
ion intensities when hydrophobic (YILMFWC, where C is modified
with iodoacetamide) vs. polar (RKDENQ) residues are N-terminal
to the fragmentation location resulting in the a-ion (see Figure 5).
The two distributions are significantly different from one another
(Kolmogorov-Smirnov test, p¿ 0.0001).

In Figure 7 we examine the two-dimensional distributions lear-
ned by the joint intensity node in the paired ion models. Here we
analyze how pairs of ion intensities resulting from the same amide
bond cleavage depend on each other. Again, several expected trends
can be detected: prominence of b- and y-ions, with relatively hig-
her prominence for y-ions (panel b/y); relatively low values for a
and a++ ions, but with preference for a (panel a/a++). Other sug-
gestive trends can also be found: the apparent correlation between
b-ions and their respective neutral losses (diagonal plumes on the
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Fig. 4. Positive peptide identifications as a function of q value (a measure of false discovery rate). The Riptide scoring function is compared with the
SEQUEST scoring function Xcorr, to test the utility of the SVM normalized discriminant score function (left). In addition, the Riptide DBN feature vectors
are used as input to the algorithm Percolator (17), and are compared with the original Percolator features (right).

right of panels b/b◦ and b/b∗); the qualitative difference between
plots showing b-ion neutral losses and their charge +2 species, on
the one hand, and y-ion neutral losses and their charge +2 species,
on the other (b◦/b◦++ and b∗/b∗++ vs. y◦/y◦++ and y∗/y∗++).
The y-ions possess a prominent plume at the top of the plots, sho-
wing increased prevalence of +2 neutral losses at low +1 charge
states, relative to b-ions.

5 DISCUSSION
We have presented Riptide, which models peptide fragmention che-
mistry using a collection of DBNs trained from high quality PSMs.
Riptide can provide insights into fragmentation biochemistry, and
feature vectors produced by Riptide can be used as input to further
machine learning algorithms to improve peptide identification.

The Riptide models generalizes well across PSMs from different
organisms: we train our model on PSMs from E. coli and test on
unknown PSMs from the yeast S. cerevisiae. This good generali-
zation is aided by the DBN machinery’s ability to control model
complexity through switching parents, dramatically reducing the
number of trainable parameters. It is unlikely that a model taking
into account, for example, C-term and N-term flanking amino acids
could be trained on a few thousand spectra without some analogous
parameter-reduction machinery.

Of course, Riptide will likely not generalize well across all types
of MS/MS peptide fragmentation data. For example, using different
forms of fragmentation technology, such as electron transfer dis-
sociation (ETD) (34) or electron collision dissociation (ECD) (35),
would likely require retraining the model. Furthermore, very long
or very short peptides (as noted in Section 4.1) may also exhibit
different chemistries that subvert the Riptide model. However, one
of the benefits of the learning approach used here is that Riptide is
not static and can improve as data improves and as technology and
protocols change. For example, in this study we focused on frag-
mentation of tryptic peptides of charge state +2, because these are
the most common peptides in the samples we analyze with collision

induced dissociation. But different samples generated from diffe-
rent proteases or analyzed with different fragmentation technologies
could be used to train the Riptide models. A related advantage of
the machine learning approach is that new DBNs can be applied to
arbitrary ion series. In this work, we focused on collision-induced
disocciation fragmentation spectra from +2 peptides. An obvious
extension would be to apply the DBNs to different charge states,
such as +1 and +3 or higher. Also, ETD and ECD have been shown
to be useful in proteomics, but produce prevalent c- and z-ions, rat-
her than b and y. Given appropriate training data, Riptide could learn
fragmentation patterns from these ion series.

In a sense, the two overall goals of Riptide—learning about
peptide fragmentation biochemistry and improving our ability to
identify spectra—are at odds with respect to each other. This ten-
sion correlates with the observation that, in general, DBNs admit
two different methods of parameter training. On the one hand,
there is generative training, where optimizing the objective function
means that the corresponding joint probability distribution should
best describes the data. As a simple example, given a DBN represen-
tation of the joint distribution of intensity and peptides Pr(i, p|θ),
where θ are model parameters, generative model training adjusts
θ so that this joint distribution is as accurate as possible. Dis-
criminative training, on the other hand, adjusts the parameters
of the model so that classification accuracy is as high as possi-
ble. For example, using Bayes rule, we can form the posterior
Pr(p|i, θ) = Pr(i, p|θ)/Pr(i|θ) and then choose the p that maxi-
mizes this posterior. Adjusting the parameters θ so to minimize the
error rate of a so-formed Bayes decision rule would constitute dis-
criminative training. Generative training is computationally cheap
relative to discriminative training. Therefore, in this work we have
simulated a discriminative training procedure by explicitly training
positive and negative models separately. This latter choice was also
motivated by the desire to obtain interpretable probabilistic para-
meters, which a model trained solely on positive PSMs allows. In
future work, we plan to experiment with using a fully discrimina-
tive Riptide model for peptide identification and using a separate,
fully generative model for investigating fragmentation phenomena.
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Fig. 6. Mean peak intensities for different residues and ion types learned using the Riptide single-ion models. Each cell shows the mean normalized
intensity value for a particular ion series and flanking residue. For the left heat map, residues designated are those to the left of the amide bond fragmented to
produce ions of that type (i.e. the amide bond is itself C-term to the residue), while for the right heat map, the residues designated are those to the right of the
fragmented amide bond (i.e. the amide bond is itself N-term to the residue). The image was created using matrix2png (33).

Although Riptide is relatively fast in real time (on the order of
a minute per spectrum for the databases considered here), it is
slow compared to other commonly used PSM evaluation metrics,
such as Xcorr. This is tolerable, because there is a long history
in MS/MS analysis software of using fast preliminary scores to
pre-filter peptides before handing them off to the sensitive, yet
expensive, final scoring routines, such as in the case of Xcorr. The
running time for Riptide to score a given spectrum scales approxi-
mately as O(lNpNilog(Ns)), where l is the average length of a
peptide, Np is the number of candidate peptides for that spectrum,
Ni is the number of ion series under consideration, and Ns is the
number of peaks in the particular spectrum.

Currently Riptide is implemented in a combination of C++ and
Python code, using the GMTK package for dynamic Bayesian net-
work analysis. GMTK is freely available, and the C++ code is
available from the authors upon request. In the near future, we plan
to migrate Riptide to C and integrate the code into the sequence
database search package Crux (30). Ultimately, the Crux package
will incorporate the probabilities produced by Riptide for PSMs into
probabilities for protein identification.
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