
Classification of Developmental Disorders from Speech
Signals using Submodular Feature Selection

Katrin Kirchhoff, Yuzong Liu, Jeff Bilmes

Department of Electrical Engineering
University of Washington, Seattle

Interspeech 2013 Special Session
Monday, Aug 26, 2013

Kirchhoff et al. Data Selection page 1 / 13



Overview

Focus of this work:

Autism sub-challenge: classification of developmental disorders
How to utilize given set of acoustic-prosodic features most effectively?
Improve classification / gain better insight into acoustic-prosodic
correlates of developmental categories

Large set of acoustic-prosodic features provided (6,373) but small
number of training samples (903)

Some features may be irrelevant/noisy/redundant

⇒ may affect generalization performance of classifiers trained on this
data

Which features provide the most information for classifying
developmental disorders?

⇒ Novel and general feature selection framework based on
submodularity

Kirchhoff et al. Data Selection page 2 / 13



Background - Submodularity

Submodular functions: class of set functions traditionally used in
economics/operations research/game theory.

Recent applications in machine learning: viral marketing, sensor
placement, document summarization, structured norms

Set functions defined as follows — we are given:

a finite ground set of objects V = {v1, ..., vn}, |V | = n,
and a function of subsets to values f : 2V → R+.
For any A ⊆ V , f (A) provides a real number.

A set function f is submodular if ∀A ⊆ B and v /∈ B

f (A ∪ {v})− f (A) ≥ f (B ∪ {v})− f (B) (1)

Incremental value of v shrinks as the context in which it is
considered grows from A to B (property of diminishing returns)
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Background - Submodularity

Example: Let V be a set of possible colored balls, and for any
A ⊆ V , let f (A) give the number of different colors of the set A.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

On the left, adding a blue ball increases the number of colors. On
the right, in the context of a superset, adding a blue ball does not
increase the number of colors.

Having more balls in an urn can never increase the incremental gain
of adding a ball.

Such an f is submodular.
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Submodular Functions

There are 2|V | possible values of a set function — without further
assumptions, optimization is intractable and inapproximable.

If f is monotone (∀A ⊆ B, f (A) ≤ f (B)) and submodular, however,
it can be maximized, subject to a size constraint, using a simple
greedy algorithm

Theoretical performance guarantees: approximates optimal solution
to within constant factor 1− 1/e ≈ 0.63

Fast accelerated greedy algorithm, O(n log n) with same guarantee,
scales to large datasets
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Submodular Functions for Feature Selection

Ground set V : original (high-dimensional) feature set

Goal: find smaller subset A that expresses the same information as
V and is non-redundant

General objective function:

f (A) = L(A) + λR(A) (2)

L(A): measures coverage of V by A

R(A): measures diversity of A

λ: tradeoff parameter
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Submodular Functions for Feature Selection

Instantiation of L(A): facility location function

L(A) =
∑
i∈V

maxj∈Awij (3)

where w is a matrix of pairwise similarity values

Instantiation of R(A):

R(A) =
N∑

n=1

√ ∑
j∈Pn∩A

rj (4)

where P1, ...,PN is partitioning of the ground set into N clusters
through k-means clustering

N is tuned on development set

rj : relevance score of item j : rj =
∑

i∈V wij/|V |
wij is mutual information between features i and j , computed from
discretized features
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Experiments

Feature set provided by Challenge (6,373 acoustic-prosodic features)

Multi-layer perceptron (MLP) classifier

Softmax output function
Trained on either 2 (Typicality) or 4 (Diagnostic) classes
Trained using backpropagation to minimize

F (x , θ) = KL(p(c |x)||p̂θ(c |x)) + λ||θ||2 (5)

x: input; θ: parameters (weights); c: class
Use performance on development set to determine early stopping
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Experiments

6 different feature set sizes: 500, 1000, 2000, 3000, 4000, 5000

For each feature set size, tested different number of hidden units in
MLP:
100, 200, 300, 400, 500, 800, 1000, 2000, 3000, 4000

Tested different values for N (number of clusters in diversity term),
different values of λ

Values were optimized on development set

Typicality: λ = 5,N = 8, features: 3000, HUs: 400
Diagnostic: λ = 20,N = 32, features: 3000, HUs: 800

Comparison: modular feature selection method

rank all features by their mutual information with class label
select the top N features
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Results - Development Set

Typicality task

System Acc (%) UAR (%) # features

Official baseline 92.6 92.8 6373

MLP baseline 93.5 93.7 6373

Modular 92.7 92.7 2000

Submodular 93.7 94.1 3000

Diagnostic task

System Acc (%) UAR (%) # features

Official baseline 69.8 51.4 6373

MLP baseline 76.9 51.6 6373

Modular 76.8 54.2 2000

Submodular 78.6 56.5 3000
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Test Results

System Acc (%) UAR (%)

Typicality

Official baseline∗ – 90.7

Submodular system 92.7 92.5

Submodular system∗ 93.8 92.6

Diagnostic

Official baseline∗ – 67.1

Submodular system 79.5 57.4

Submodular system∗ 83.9 64.4

∗: system was retrained on combined training and dev set
10% of data for submodular system was held out
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Top-ranking features selected by submodular criterion (most
representative, non-redundant features)

Typicality Diagnostic
Rank Feature Feature

1 pcm Mag spectralCentroid sma minPos pcm Mag spectralCentroid sma minPos
2 pcm Mag psySharpness sma percentile99.0 pcm Mag psySharpness sma percentile99.0
3 audSpec Rfilt sma[12] lpc0 audSpec Rfilt sma[12] lpc0
4 pcm Mag spectralRollOff75.0 sma maxPos pcm Mag spectralRollOff75.0 sma maxPos
5 pcm Mag spectralRollOff75.0 sma de pctlrange0-1 pcm Mag spectralRollOff75.0 sma de pctlrange0-1
6 audSpec Rfilt sma[24] lpc0 audSpec Rfilt sma de[2] minPos
7 audSpec Rfilt sma[19] lpc0 audSpec Rfilt sma[24] lpc0
8 pcm Mag spectralSkewness sma maxPos audSpec Rfilt sma[19] lpc0
9 audSpec Rfilt sma[5] lpc0 audSpec Rfilt sma[5] lpc0
10 audSpec Rfilt sma[10] flatness audSpec Rfilt sma[10] flatness
11 pcm Mag psySharpness sma segLenStddev audSpec Rfilt sma[1] pctlrange0-1
12 pcm Mag spectralKurtosis sma pctlrange0-1 logHNR sma amean
13 audSpec Rfilt sma[15] lpc0 audSpec Rfilt sma[15] lpc0
14 audSpec Rfilt sma[8] lpc0 pcm Mag spectralKurtosis sma pctlrange0-1
15 audSpec Rfilt sma[1] pctlrange0-1 pcm Mag fband250-650 sma pctlrange0-1
16 pcm Mag fband1000-4000 sma rqmean logHNR sma de percentile99.0
17 pcm Mag psySharpness sma peakRangeAbs audSpec Rfilt sma[2] peakRangeAbs
18 logHNR sma amean pcm Mag fband1000-4000 sma rqmean
19 pcm Mag fband250-650 sma pctlrange0-1 pcm RMSenergy sma quartile2
20 audspecRasta lengthL1norm sma de maxPos pcm Mag psySharpness sma segLenStddev
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Thank you! Questions?
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