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Abstract
We present our system for the Interspeech 2013 Computational
Paralinguistics Autism Sub-challenge. Our contribution focuses
on improving classification accuracy of developmental disorders
by applying a novel feature selection technique to the rich set of
acoustic-prosodic features provided for this purpose. Our feature
selection approach is based on submodular function optimiza-
tion. We demonstrate significant improvements over systems
using the full feature set and over a standard feature selection
approach. Our final system outperforms the official Challenge
baseline system significantly on the development set for both
classification tasks, and on the test set for the Typicality task.
Finally, we analyze the subselected features and identify the
most important ones.
Index Terms: classification, feature selection, neural networks,
submodular functions

1. Introduction
This paper describes the University of Washington’s contribution
to the 2013 Interspeech Computational Paralinguistics Challenge.
Our study focuses on the Autism Sub-Challenge only, with the
express purpose of studying novel machine learning methods to
enhance classification performance on the provided feature set.
In particular, we utilize a novel feature selection technique based
on submodular function optimization. This method is designed
to select a feature subset that expresses the same information as
the original feature set while taking into account the dependen-
cies between the selected features. As a result the subsequent
classifier can devote all of its modeling power to only the relevant
features rather than modeling redundant features. We test sub-
modular feature selection in combination with a neural-network
classifier and demonstrate that is outperforms the baseline sys-
tem on the development sets and on the test set for the Typicality
task. Finally, we examine the selected lists of features under
various parameterizations of the selection algorithm and identify
the most relevant features, i.e. those that collectively ’summarize’
most of the information in the full feature set.

2. Feature selection
The task of the Autism Sub-challenge in the Interspeech 2013
Computational Paralinguistics Challenge is to classify children’s
speech samples into either typical vs. atypical (for the Typicality
task) or into one of the four categories typical, pervasive de-
velopmental disorder, pervasive developmental disorder - not
otherwise specified, and dysphasia (for the Diagnostic task). A
precomputed set of 6,373 acoustic-prosodic features was pro-

vided for this purpose. At the same time, the training and devel-
opment sets contain only 903 and 819 samples, respectively. Due
to the high-dimensional feature space and small training set, it is
possible that statistical classifiers trained on this data will overfit
to the training set. It is also likely that a feature set of this size
contains redundant or irrelevant features. Most importantly, in
order gain deeper insight into the problem of classifying neuro-
developmental disorders from speech, it would be desirable to
have an explicit assessment of the importance of different fea-
tures. Several feature selection techniques have been proposed
in the past. Feature transformations such as linear or non-linear
principal component analysis, or linear discriminant analysis,
provide one way of reduce the feature set size. However, they
project the original dimensions into a new space where they lose
their original interpretation, which would defeat our purpose. Ex-
plicit feature selection (as opposed to transformation) methods
typically apply a search procedure for a feature subset in combi-
nation with an optimization criterion. The search procedure may
involve forward selection, i.e. adding features one by one, or may
take the form of backward selection or filtering, where features
are iteratively removed from the original set. Both methods usu-
ally involve a “rank-and-select” approach, which computes the
quality of each feature in isolation, ranks all features by that mea-
sure, and selects the top-scoring (or removes the bottom-scoring)
feature. Such approaches do not consider the quality or informa-
tiveness of a feature when combined with the already selected
set; therefore, the resulting set may still be redundant. Methods
that do take dependencies into account, such as correlation-based
feature selection [1], or maximum-relevancy-minimum redun-
dancy [2], are computationally expensive and often do not scale
well to high-dimensional feature spaces.

In this paper we consider a feature selection technique based
on submodular functions that, in terms of the objective being
optimized, provides near-optimal performance guarantees and
that can be carried out by a fast accelerated greedy algorithm
and hence is scalable to large data sets.

2.1. Submodular functions

While submodular functions have been popular in mathematics,
economics, and operations research, they have recently been used
in various machine learning problems, such as sensor placement
[3], document summarization [4], dictionary selection [5], train-
ing data subset selection [6, 7], and random variable subset selec-
tion [8]. Given a finite ground set of objects V = {v1, ..., vn}
and a function f : 2V → R+ that returns a real value for any
subset S ⊆ V , f is submodular if ∀A ⊆ B, and v /∈ B,

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B). (1)



Thus, the incremental “value” of v decreases as the context
in which v is considered grows from A to B. If a function is
monotone (∀A ⊆ B, f(A) ≤ f(B)) and submodular, it can be
maximized under a cardinality constraint by a greedy algorithm
[9] that guarantees a solution to within a constant factor 1− 1/e
of optimal. This algorithm, moreover, scales to large data sets.

2.2. Submodular functions for feature selection

Initial work on applying submodular functions to feature selec-
tion in acoustic feature spaces was presented in [10]. Building
on this work we utilize a general surrogate objective function as
in [4] which has the form:

f(S) = L(S) + λR(S), (2)

where L(S) measures how well the selected feature subset S
covers, or represents, the original full feature set and the second
termR(S) measures how diverse or non-redundant the selected
features are, and λ is a tradeoff parameter. We use a surrogate
objective since the exact objective (accuracy) is intractable to
repeatedly evaluate, and even intractable to estimate measures of
quality as in [8]. We define two instantiations of the L(S) term:
The facility location function is defined as

L1(S) =
∑
i∈V

max
j∈S

wij , (3)

where wij ≥ 0 measures the similarity between features i and
j. This functions indicates how well each feature i ∈ V is
represented by the selected subset S.
The saturated coverage function is defined as:

L2(S) =
∑
i∈V

min{Ci(S), βCi(V )}, (4)

where Ci(S) =
∑
j∈S wi,j measures the degree to which i is

“covered” by S, and β ∈ [0, 1] is a hyperparameter that deter-
mines a global saturation threshold, the minimum within each
term keeps features from being over-represented by subset S.
A diversity functionR(S) can be added to these to reduce the
redundancy of the selected subset of features. We define it as

R(S) =
N∑
n=1

g(
∑

j∈Pn∩S

rj) (5)

where g is a monotone non-decreasing concave function,
Pn, n = 1, ..., N is a partition of the ground set V according
to some clustering, and rj measures the importance of the
selected element j to the whole subset S. The above function
measures the diversity of a subset, since the function encourages
selecting features from different clusters. In our work, we
adopt the following instantiation ofR(S): the concave function
g is defined as the square-root function; the ground set is
partitioned into N blocks using the k-means algorithm, where
N is chosen from {4, 8, 16, 32, 64}, and the best N is tuned on
the development set; rj is defined as rj =

∑
i∈V wij/|V |. The

diversity term is added to either the facility location or saturated
graph cut function, weighted by a λ parameter.

All objectives are non-negative monotone submodular,
hence the optimization problem for feature selection can be
solved near-optimally in terms of f using a greedy algorithm.
Submodularity has another advantage, namely the accelerated
greedy algorithm [11] that in practice significantly speeds up
greedy selection. Submodularity is equivalent to the gain in

f being monotone nonincreasing: f(Si ∪ {k}) − f(Si) ≥
f(Sj ∪ {k}) − f(Sj), ∀Si ⊆ Sj . In the accelerated greedy
algorithm, a list of uppers bounds ρ(i), i ∈ V is maintained in
decreasing order (often implemented using a priority queue) and
during each greedy iteration, the list pops up the top element
k∗. Once the gain associated with k∗ is greater than any other
elements k ∈ V \ S, we can safely add k∗ to S. Algorithm 1
gives the accelerated greedy algorithm [11].

Algorithm 1 The accelerated greedy algorithm [11].
1: Given: features {vi}i∈[N ], a desired number of features
K < N , and a similarity graph W where wij is the
pairwise mutual information between i and j.

2: Initialize S ← ∅, a priority queue ρ← ∅
3: for i = 1, 2, · · · , N do
4: δ ← f(vi)
5: ρ.push(tuple(i, δ))
6: end for
7: while |S| ≤ K do
8: k∗ ← ρ.top().key
9: ρ.pop()

10: δ = f(S ∪ {k∗})− f(S)
11: if δ > ρ.top().value then
12: S ← S ∪ {k∗} {submodularity guarantees that δ ≥

f(S ∪ {k})− f(S), k ∈ V \ S }
13: else
14: ρ.push(tuple(k∗, δ)) {re-sort otherwise}
15: end if
16: end while
17: return S

These functions require a similarity measure w. We use the
estimated pairwise mutual information between features i and j.
We compute this by discretizing the continuous features into 50
equal-width bins and computing discrete mutual information:

MI(i; j) =
∑
i

∑
j

p(i, j)
p(i, j)

p(i)p(j)
(6)

We compare submodular feature selection against our baseline,
a traditional feature selection approach using mutual informa-
tion (MI) between individual features and target labels, ranking
features in descending order, and selecting the top k features —
this is a “modular” approach since it treats each feature entirely
independently (Eq. (1) is satisfied everywhere with equality).

3. Data and Classifiers
We use the standard feature set provided for the Autism Sub-
Challenge [12], consisting of 6,373 acoustic-prosodic features.
As classifiers we train multilayer perceptrons (MLPs) using the
QuickNet software1, with one input layer, one hidden layer,
and one output layer. The number of output units is 2 for the
Typicality task and 4 for the Diagnostic task. The number of units
in the input layer is identical to the number of features utilized
in the system. For each of our experiments, we investigate 6
different feature set sizes (500, 1000, 2000, 3000, 4000, and
5000). For each feature set size, different numbers of hidden
units (100, 200, 300, 400, 500, 800, 1000, 2000, 3000, and
4000) are investigated, leading to 10 × 6 = 60 classification

1http://www1.icsi.berkeley.edu/Speech/qn.html,
but we modified this to support L2-norm regularization.

http://www1.icsi.berkeley.edu/Speech/qn.html


System Acc (%) UAR (%) # features # hus
Official - Typ 92.6 92.8 N/A N/A
Official - Diag 69.8 51.7 N/A N/A
Baseline - Typ 93.5 93.7 6373 2000
Baseline - Diag 76.9 51.6 6373 100
Modular - Typ 92.7 92.7 2000 300
Modular - Diag 76.8 54.2 2000 1000

Table 1: Accuracy (Acc) and Unweighted Average Recall
(UAR) rates on the development set for the official baseline,
our own in-house baseline systems: MLPs trained on the full
feature set, and the best systems using modular feature selection.
Typ = typicality task, Diag = diagnostic task. Column 3 indicates
the number of input features and column 4 gives the number of
hidden units (hus) in the MLP classifiers.

experiments for each classification task (typicality vs. diagnostic)
and feature selection method. In each case, the optimal number
of features and hidden units is optimized on the development set.
The hidden layer uses the sigmoid activation function; the output
layer uses the softmax function. The MLPs are trained using
backpropagation to minimize the Kullback-Leibler divergence
between the predicted and the true probability distributions over
the output classes, plus a penalty term that implements a form of
L2 regularization and discourages weights from becoming too
large:

F (x, θ) = KL(p(c|x)||p̂θ(c|x)) + λ||θ||2 (7)

where θ are the parameters, and λ is a coefficient indicating the
weight of the penalty term. Different λ’s are used for the two
layers in the MLPs; their values are tuned on the development
set in each case. An iterative learning schedule with decreasing
learning rate is used. Training stops when the accuracy on a held-
out cross-validation set starts to decrease. We use the official
definitions of the training and development sets for training and
cross-validation, respectively.

4. Experiments and Results
As baseline systems we trained MLPs on the full feature set,
and on feature sets selected using the modular method described
above in Section 2.2. Table 1 shows the impact on classification
performance on the development set. We see that modular feature
selection deteriorates the performance for the Typicality task
compared to the baseline, though it does improve the UAR for
the Diagnosis task by almost 3 points. The number of system
parameters, computed as P = (Nf ×Nhu) +Nhu + (Nhu ×
No) + No where Nf is the number of features, Nhu is the
number of hidden units, and No is the number of output units,
decreases quite drastically for the Typicality task but increases
for the Diagnostic task.

Next we investigated the submodular feature selection func-
tions, i.e. the facility location and saturated graph cut functions,
in each case combined with the diversity function. For each
experimental condition (defined by the λ weight and number
of clusters N for the diversity function), we varied the number
of selected features and hidden units as explained in the pre-
vious section. The best performance on the development set
was obtained by the facility location function, with parameters
λ = 5, N = 8 for the Typicality task, and λ = 20, N = 32 for
the Diagnosis task. The performance of the submodular systems

System Acc (%) UAR (%) # features # hus
Typicality - devel 93.7 94.1
Typicality - test 92.7 92.5 3000 400
Typicality - test∗ 93.8 92.6
Diagnosis - devel 78.6 56.5
Diagnosis - test 79.5 57.4 3000 800
Diagnosis - test∗ 83.9 64.4

Table 2: Accuracy and Unweighted Average Recall (UAR)
rates on the development and test sets for the best systems us-
ing submodular feature selection. Systems marked by ∗ were
retrained on the joint training and development set.

Rank Feature
1 pcm Mag spectralCentroid sma minPos
2 pcm Mag psySharpness sma percentile99.0
3 audSpec Rfilt sma[12] lpc0
4 pcm Mag spectralRollOff75.0 sma maxPos
5 pcm Mag spectralRollOff75.0 sma de pctlrange0-1
6 audSpec Rfilt sma[24] lpc0
7 audSpec Rfilt sma[19] lpc0
8 pcm Mag spectralSkewness sma maxPos
9 audSpec Rfilt sma[5] lpc0
10 audSpec Rfilt sma[10] flatness
11 pcm Mag psySharpness sma segLenStddev
12 pcm Mag spectralKurtosis sma pctlrange0-1
13 audSpec Rfilt sma[15] lpc0
14 audSpec Rfilt sma[8] lpc0
15 audSpec Rfilt sma[1] pctlrange0-1
16 pcm Mag fband1000-4000 sma rqmean
17 pcm Mag psySharpness sma peakRangeAbs
18 logHNR sma amean
19 pcm Mag fband250-650 sma pctlrange0-1
20 audspecRasta lengthL1norm sma de maxPos

Table 3: Features ranked highest by the submodular feature
selection method – Typicality task.

on the development and test sets is shown in Table 2. On the
Typicality task, the development set results are significantly bet-
ter than those of the modular system or the Challenge baseline,
and slightly better than the in-house baseline system while using
less than half of the full feature set, and an order of magnitude
fewer parameters than the in-house baseline. On the Diagnosis
task submodular feature selection significantly improves the per-
formance on the development set over the modular system, the
in-house baseline, and the Official baseline. Test set results for
the Challenge baseline were reported after re-training the system
on the joint training and development set; we therefore report
not only the test performance for the original system optimized
on the development set, but also after having undergone similar
retraining. Note that in our case we still held out 10% of the
data to determine the early stopping point during training. On
the Typicality task our system outperforms the 90.7% UAR re-
ported for the Challenge system by almost 2 points. However, it
remains below the 67.1% UAR of the Challenge baseline on the
Diagnosis task, possibly because we were not able to make use
of all of the development data.



Rank Feature
1 pcm Mag spectralCentroid sma minPos
2 pcm Mag psySharpness sma percentile99.0
3 audSpec Rfilt sma[12] lpc0
4 pcm Mag spectralRollOff75.0 sma maxPos
5 pcm Mag spectralRollOff75.0 sma de pctlrange0-1
6 audSpec Rfilt sma de[2] minPos
7 audSpec Rfilt sma[24] lpc0
8 audSpec Rfilt sma[19] lpc0
9 audSpec Rfilt sma[5] lpc0
10 audSpec Rfilt sma[10] flatness
11 audSpec Rfilt sma[1] pctlrange0-1
12 logHNR sma amean
13 audSpec Rfilt sma[15] lpc0
14 pcm Mag spectralKurtosis sma pctlrange0-1
15 pcm Mag fband250-650 sma pctlrange0-1
16 logHNR sma de percentile99.0
17 audSpec Rfilt sma[2] peakRangeAbs
18 pcm Mag fband1000-4000 sma rqmean
19 pcm RMSenergy sma quartile2
20 pcm Mag psySharpness sma segLenStddev

Table 4: Features ranked highest by the submodular feature
selection method – Diagnosis task.

5. Analysis
An advantage of explicit feature selection (as opposed to fea-
ture transformation) is that the resulting ranking of features is
interpretable. In order to determine which features are chosen
preferentially, we chose the two best-performing parameter set-
tings for our submodular feature selection algorithm for each
classification task, averaged their ranks, and selected the top 20
features with the highest average rank. The results are shown in
Tables 3 and 4. These are to be interpreted as the top features of
the feature subsets that collectively express most of the informa-
tion contained within the full feature set. A detailed description
of each feature was not provided. However, it appears that for the
Typicality task, most features are related to auditory spectrum or
psychoacoustic spectral sharpness, or they characterize extreme
points of the distribution of energy throughout the spectrum. For
the Diagnosis task, the top features were identical – it is likely
that these features are responsible for separating typical from
non-typical speakers. Other features that are not present in Ta-
ble 3 and thus are more informative for the other classes in the
Diagnostic task include e.g. logHNR sma de percentile99.0 or
pcm RMSenergy sma quartile2.

In order to determine whether our feature selection method
is equally useful in combination with other classifiers we re-ran
the SVM classifier of the Official baseline with our subselected
feature sets. However, results were below those obtained with
the full feature set. This may be due to the use of a linear kernel
in the SVM classifier, which prevents it from taking advantage
of the interactions between features. Increasing the degree of the
polynomial kernel to 2 or 3 to achieve non-linearity did not lead
to any different results. Thus, it may be the case that the ability
of MLPs to learn another implicit feature representation from
the input feature set is of key importance here. One of our future
goals is to investigate other combinations of subselected features
and classifiers, such as deep neural networks, and SVMs with
other kernels.

6. Summary
We have described our system developed for the Autism Sub-
challenge for Interspeech 2013. The main contribution of this
system is the use of a novel feature selection technique which
simultaneously improves classification results, reduces the num-
ber of features used, and provides an explicit ranking of features
that is amenable to human inspection. We have demonstrated
significant improvements over the official baseline system on the
development set for both tasks and on the test set for the Typical-
ity task. Most of the selected features relate to the computation
of the auditory spectrum, psychoacoustic spectral sharpness, or
the global energy distribution.
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