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ABSTRACT

Automaticlanguageddentification(LID) continuesto play

an integral part in mary multilingual speechapplications.
The mostwidespreadapproachto LID is the phonotactic
approachwhich performslanguageclassificatiorbasedon

theprobabilitiesof phonesequenceextractedfrom thetest
signal. Theseprobabilitiesare typically computedusing
statisticalphonen-grammodels. In this paperwe investi-
gatethe approximatiorof thesestandarch-grammodelsby

mixed-memoryMarkov modelswith applicationto both a
phone-basedndanarticulatoryfeature-basetID system.
We demonstratsignificantimprovementsn accurag with

a substantiallyreducedsetof parameter®n a 10-way lan-
guageidentificationtask.

1. INTRODUCTION

AutomaticLanguagddentification(LID) continuego play
anintegral role in mary multilingual speech-baseslystem.
Variousapproacheso LID have beenproposedn the past,
ranging from simple distancemeasuresppliedto acous-
tic featurevectorsto integratedLID and large-vocahulary
speechrecognition(LVCSR). The most widespreadech-
niqueis thephone-basedpproacti1], which classifiedan-
guagedasedn thestatisticalcharacteristicsf their phone
sequencesMore recentlywe have developedanalternatve
approachbasedon multiple sequencesf articulatoryfea-
tures.

1.1. Phone-based.anguageldentification

Phone-basedystemgypically consistof a phonerecogni-
tion front endwhich extractsa sequencef phonesymbols
from the acousticsignal, followed by a set of language-
specificphonen-grammodelsonefor eachlanguagen the
system.The n-grammodelscomputethe probability of the
phonesequencgiven the language.The model obtaining
the highestscoreidentifiesthe languagein question. For-
mally this canbe expressedis

L* — argmaxy P(¢1, P2, ..., dN|L) Q)

where L is a languageand ¢y, ¢», ..., o5 IS a phonese-
quenceof length N. The statisticalphonen-grammodel
approximateshe probability of the phonesequencasfol-
lows:

N

P(¢1, 2, s 8) = [ [ P($il$i1s s imnir)  (2)

i=n

Here, n is the order of the n-grammodel. Typically, an

orderof 2 or 3 is used. The phonerecognitionfront end
may containeithera globalsetof acoustianodelsor it may
consistof a setof recognizerseachof which usesa differ-

ent(e.g.language-specificdetof acousticmodels. Phone-
basedlanguageidentification systemshave the advantage
of easytraining and scoringproceduresn comparisonto

e.g.integratedLID andLVCSR.However, they suffer from

certaindrawbacksfirst, theirperformance@nveryshorttest
signals(3 secondsor less)is often unsatiséctory presum-
ably becausé¢hetime spanis too shortto provide areliable
phonen-gramcontet. Second,problemsmay arisefrom

previously unseenphonesand phone combinationswhen
porting a phone-basedlID systemto new languages.For

thesereasonsve have developedanalternatve approacho

LID, whichis basednunitsbelow thephonelevel, viz. ar-

ticulatoryfeatures.

1.2. Feature-based_anguageldentification

The articulatory-featurebasedapproach2], usesnot just
a single but multiple sourcesof information. Insteadof
extracting a phone sequencdrom the acousticsignal, a
feature-basedystemextracts multiple parallel sequences
of articulatoryfeaturesandthenscoresachsequenceavith
a separatdeaturen-grammodel. We usearticulatoryfea-
turesbelongingto five different categories: mannerof ar
ticulation, consonantalplace of articulation, vowel place
of articulation,front-badk tonguepositionandlip rounding
Acousticmodelsaretrainedfor eachindividual featureand
areassignedo separate@ecognitionnetworksfor the differ-
ent featurestreams. N-gram modeling of a single feature
sequencés performedanalogougo phonen-grammodel-



ing, i.e.
N
P(f1, fo,- In) = [[ P(filfi-1s s fing1) ()
where fi, fa, ..., fv iS @ sequenceof featuresymbols of

length N producedby anacousticfeaturerecognitionfront
end. Theindividual scoresfrom all K featurestreamsare
subsequenticombinedby somecombinationfunction to
producethe overall LID scorefor agivenlanguage.n our
baselinesystemwe usea simple productasa combination
function:

= [ P(7lD) (4)

k=1

P(F1,F2, ..., Fr|L)

Thefinal combinedscores usedn thedecisiorruleto iden-
tify themostprobableanguage:

L* = argmaz P(F, ..., Fk|L) (5)

Thereareseveraladvantageso thefeature-basedpproach:
first, the numberof articulatoryfeaturesneededo encode
soundsis typically smallerthanthe setof phones. Since
featuresare sharedacrossphones,more training material
is available for them, which meansthat both the acoustic
modelsandthen-grammodelscanbetrainedmorerobustly.
Secondthe numberof potentialfeaturen-gramcontextsis
smaller which reduceghe possibility of encounteringun-

seencontets when porting the systemto new languages.

Third, the feature-basedanodel provides an easyway of
modeling languagedifferencesarising from subtle articu-
latory timing, suchas aspiration,vowel nasalization etc.
without having to enlage the setof basicunitsin the sys-
tem.

2. MIXED-MEMOR Y MARK OV MODELS

Mix ed-memoryMarkov models(MMMSs) were proposed
by Sauland Jordan[3, 4] for the analysisof time series.
The basicideais to reduceMarkov modelswith large state
spaceso a combinationof simpler Markov modelswith
smallerstatespaces.This doneby representinghe transi-
tion matrix of thelargermodelasamixture of thetransition
matricesof smallermodels:let S bearandomvariablewith
i possiblevalues. An n'th order Markov modelover S is
specifiedby the transitionmatrix

8t—n) (6)

In a mixed-memoryMarkov model,the transitionmatrix is
decomposedsfollows:

P(St|3t7173t727 ey

n

P(8¢|8t—1,8t—25 -0, St—n) = Z d(p)a (s¢lse—p)  (7)

p=1

wherea* (s¢|s;—,) Is ai x 4 transitionmatrix modelingthe
probabilityof themodelstateattimet givenits valueat state
t — p. Naturally, 0 < ¢(p) < 1forall pand}_ , ¢(u) =
Theterm ¢(u) canbeviewed asthe probability thata hid-
denvariableX assumesaluey attimet, i.e.theprior prob-
ability P(xz; = p). Marginalizingover all possibleassign-
mentsto X yields the modelin Equation7. The relative
contritutions of the individual transitionmatricesare thus
controlledby a hiddenvariablerepresentinghe mixture co-
efficients,whosevaluescanbe estimatedusingthe EM al-
gorithm.

Whenthe mixed-memorymodelis appliedto a single
time seriesthestateg — u arestatequ stepsnto thepast.In
the caseof coupledtime serieswherethe obsenationscan
be describedby a vector of values,the decompositiorap-
pliesto thetransitionmatricesbetweertheindividual com-
ponentsof the currentandthe previous vector(s). Suppose
thattherearem differentrandomvariablesgachof whichis
associatedvith its own obsenation sequencendcantake
on¢ values.Let usassumdurtherthatthem differentcom-
ponentsof the obsenation vectorV at time ¢, v}, ..., v},
are conditionally independengiven the previous obsena-
tion vectorV;_q, i.e.

m

P(V;|Via) = H

(vy |V;5 1) 8)

Theprobabilityof anindividualvectorcomponengiventhe
previous completeobsenation vectorcanthenbe approxi-
matedby a mixture of transitionprobabilitiesbetweerindi-
vidual components:

Pi|Vi) =Y ¢ (e’ (v][v}_,) (9)
=1

Herethea!/ (v} |vl_, ) areindividuali x i transitionmatrices
betweentwo vectorcomponentg attime¢ — 1 andandj at
timet.

The full-memory model specifiedin Equation 6 re-
quiresO(n*t!) parametersyhereaghe modelin Equation
7 only requiresO(ni?) parametersin the caseof multiple
Markov chains,the compleity is reducedfrom O(i?™) to
(O(m?i?). MMMs arethusparticularlysuitablefor model-
ing complex dynamicprocessesvherethe additionof con-
ditioning variablesincreaseghe statespaceof the model
exponentially This includesprocessesvherethe current
model stateis conditionedon a large numberof previous
statesin time aswell asthoseprocessewherea givenstate
is conditionedon a large numberof simultaneoustatesin
space. Although the mixed-memorymodel cannotmodel
thecompletesetof conditionaldependencieepresenteth
the full-memory model, it may be advantageousn cases
wherethe numberof parameteran the full-memory model
greatlyexceedghe availabletraining materialor wherethe



processis truly composedof different sources. Previous
applicationsof mixed-memoryMarkov modelsto speech
and languageprocessingnclude large-vocahulary statisti-
callanguaganodeling[3] andacoustianodelingfor speech
recognitionusing frequeny subbandg5]. In our case,
MMMs can be employed in two differentways. In both
the phone-basedndthe feature-basedystem they canbe
usedto approximatehefull-memoryn-grammodelsfor the
phoneor featuresequences.n the feature-basedystem,
they can additionally be usedto model dependenciebe-
tweendifferentfeaturestreams.n this paper we focusex-

clusively onthefirst applicationin orderto determingf the
mixed-memonapproximatiorto standardh-grammodelss

adwantageousvhenn-grammodelsareusedasclassifiers.

3. CORPUSAND BASELINE SYSTEMS

Our experimentswere performedon the OGI-TS multilin-

gual telephonespeechdatabasg6]. We usethe training,
developmentandevaluationsetdefinitionsproposedn [7],

which include datafrom ten differentlanguagegEnglish,
Farsi, French,German JapaneseKorean,Mandarin,Span-
ish, Tamil, andVietnamese)Thetraining,developmentand
evaluationsetsarecomprisedof 4650,1898and1848utter

ances respectiely. We have groupedthe testsignalsinto
threedifferentcatgyoriesaccordingo theirlength,viz. very
short(< 3s),short(3-15s)andlong (> 15s).

We have developedboth a phone-basednd a feature-
basedbaselinesystem,which were first describedin [2].
For bothsystemslanguage-independeatoustidront-ends
wereused,.e. agenericsetof acoustiomodelswasusedin
eachsystemto extract symbol sequence$rom the speech
signal. The acousticmodelsare HMMs with a variable
number of states(tuned to model the average duration
of eachunit) and multiple Gaussiarmixture components.
The phone-basedystemcontains133 context-independent
phonemodelswith 1089 statesin total and has2 mixture
componentger state. The n-gram modeling component
consistsof language-specifibigram modelswith Witten-
Bell smoothing. The feature-basedystemhas68 models
andatotal of 761 stateswith two Gaussiammixture compo-
nentseach.Prior to n-grammodeltraining, all instanceof
mannerndroundingfeaturesvererelabeledaseithershort
orlong, dependingntheirlengthin termsof the numberof
acoustidrames.This increasedhe numberof unitsfor the
purposeof n-grammodelingto 96 (consonantaplace: 18,
manner:32, vowel placeandfront-back:12, rounding:20);
however, no additionalacousticmodelsare createdfor the
differentdurationcateyories. The sequencef featuresym-
bolsin eachgroupis modeledby a4-gramwith Witten-Bell
smoothing. The combinationof individual feature-stream
scoresis performedby Equation4. The baselineaccuray
ratesfor boththephone-basedndthefeature-basedystem

| | veryshort | short [ long | average|

phone-de 35.6 57.4 | 65.2 52.7
feature-de 42.1 55.7 | 63.9 53.0
phone-gal 30.6 53.1 | 69.7| 48.8
feature-gal 44.8 57.8 | 60.0 54.6

Table 1. LID accurag (in %) of the baselinefeatureand
phone-basedystemon the developmentdev) andevalua-
tion (eval) sets,brokendown by testsignallength.

areshawn in Tablel. Theoverall performancef both sys-
temsis roughly equal; however, the feature-basedystem
shavs amarkedly betterperformanceon very shortsignals
whereaghephone-basedystemis superioronlongsignals.

4. EXPERIMENTS WITH MIXED-MEMOR Y
MARK OV MODELS

Theapplicationof MMMs to standarcohone-based-gram
modelsis quite straightforvard: Equation7 can be used
to approximatea higherorder n-gram, suchas a 3-gram
or a 4-gram,by a mixture of bigrams. For the implemen-
tation of the mixed-memaorysystemswe usedthe Graphi-
cal ModelsToolkit GMTK [8]. This toolkit providesways
of specifying a wide range of graphical modelsfor the

purposeof speechrecognitionaswell as a generalinfer-

encemechanisnto maximizethe likelihood of the model
giventhe data. A MMM is a specialcaseof a graphical
model,wheretheweightsfor eachtransitionmatrix areen-

codedashiddenvariablesandthe variablesin the Markov

chainsareobsened. For encodingthe hiddenvariableswe

usedthe switching-parentfeatureof GMTK, which greatly
facilitates specifying of mixtures of probability distribu-

tionsandthe data-drvenlearningof mixture weightsusing
Expectation-Maximizationln orderto incorporatestandard
n-gramsmoothingmethods the basicn-gramprobabilities
werecomputedisingthe CMU-Cambridgd_anguageviod-

elingtoolkit [9]. The GMTK toolkit wassubsequentlysed
to estimatethe parameter®f the hiddenvariables,i.e. the

mixing coeficients.

Table2 shows the comparisorbetweerphoneN-grams
and their mixed-memoryequialents,e.g. a trigram com-
paredto a mixture of two bigrams. We can seethat in
all casesthe accurag of the MMM is superiorto that of
the N-gram. The best-performingsystem,MMM-2, was
then appliedto the evaluationset. Table 3 shavs results
on both setsfor differentsignallengths. The improve-
mentof theoverallaccurag ontheevaluationsetcompared
to the baselinesystem(Table 1) is statistically significant
(significancdevel of 0.05usinga differenceof proportions
significancetest). It is particularly notevorthy that perfor
manceimprovesfor very shortsignalswhereast declines



| [ 2 [ 3 [ 4] 5 ]
N-gram | 52.7 | 52.7 | 47.9 | 47.6
MMM | - | 541 53.6] 52.7

Table 2. LID results(accurag in %, dev set)for standard
phonen-gramsandphoneMMMs for ordersrangingfrom

2 to 5. For order2, the mixed-memorymodelis equivalent
to a standarcbigram.

| | veryshort | short | long | average|

dev 38.8 58.2 | 646 | 541
eval 35.7 56.2 | 65.7 51.8

Table 3. LID accurag (in %) on evaluationand develop-
mentsetsof the bestphoneMMM, brokendown by signal
length.

slightly on long signals. Next we appliedMMMs to each
featurestreamin the feature-basedystem,approximating
the feature4-grammodelswith mixturesof four bigrams.
In orderto determinghe effect on differentfeaturestreams
we measuredhe performanceon the developmentsetin-
dependenthfor eachstream.We foundthatanincreasen
accurag wasonly obtainedfor the mannerstream,which
is the streamwith the largestsetof models(34). All other
streamshavedslightlossedn accurag. A combinationof
the mixed-memorymannerstreammodelwith the standard
4-grammodelsfor theremainingstreamsncreasdheaccu-
ragy on the developmentsetto 54.1%. Table 4 shaws the
detailedresultsof this system.Again we seea markedim-

| | veryshort | short | long | average|

dev 48.6 549 | 63.0| 541
eval 47.7 55.3 | 60.0 | 53.7

Table 4. Accurag (in %) on developmentand evaluation
setsfor a combinedMMM (mannerstream)and N-gram
(otherstreams¥eature-basechodel.

provementonvery shorttestsignals albeita slightdecrease
in overallaccuray onthe evaluationset.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have investigatedthe application of
mixed-memory Markov models to automatic language
identification. MMMs were usedto approximatestandard
statisticaln-grammodels(n > 2) by a mixture of bigram
models. This was done both for a phone-base@nd an
articulatory feature-basedystem. It was found that the
mixed-memory approximationimproves accurag when

the model setis large comparedto the available training
data,asin the phone-basedystem. By contrast,n-grams
involving smaller symbol sets, like most of the feature
n-gram models, benefitfrom a full-memory model. On
our presentLID task, MMMs have shown the largest
improvementson very short test signals, which indicates
that the mixed-memoryapproximationmay be a useful
techniquefor real-world, real-time LID applications. In

the future we intend to investigatethe use of MMMs

to model dependenciebetweendifferent streamsin the
feature-basedystem.
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