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ABSTRACT

Automatic languageidentification(LID) continuesto play
an integral part in many multilingual speechapplications.
The most widespreadapproachto LID is the phonotactic
approach,which performslanguageclassificationbasedon
theprobabilitiesof phonesequencesextractedfrom thetest
signal. Theseprobabilitiesare typically computedusing
statisticalphonen-grammodels. In this paperwe investi-
gatetheapproximationof thesestandardn-grammodelsby
mixed-memoryMarkov modelswith applicationto both a
phone-basedandanarticulatoryfeature-basedLID system.
We demonstratesignificantimprovementsin accuracy with
a substantiallyreducedsetof parameterson a 10-way lan-
guageidentificationtask.

1. INTRODUCTION

AutomaticLanguageIdentification(LID) continuesto play
an integral role in many multilingual speech-basedsystem.
Variousapproachesto LID have beenproposedin thepast,
rangingfrom simple distancemeasuresappliedto acous-
tic featurevectorsto integratedLID and large-vocabulary
speechrecognition(LVCSR). The most widespreadtech-
niqueis thephone-basedapproach[1], whichclassifieslan-
guagesbasedon thestatisticalcharacteristicsof theirphone
sequences.More recentlywe havedevelopedanalternative
approachbasedon multiple sequencesof articulatoryfea-
tures.

1.1. Phone-basedLanguageIdentification

Phone-basedsystemstypically consistof a phonerecogni-
tion front endwhich extractsa sequenceof phonesymbols
from the acousticsignal, followed by a set of language-
specificphonen-grammodels,onefor eachlanguagein the
system.Then-grammodelscomputetheprobabilityof the
phonesequencegiven the language.The modelobtaining
the highestscoreidentifiesthe languagein question. For-
mally this canbeexpressedas���������
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where
�

is a languageand
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is a phonese-
quenceof length % . The statisticalphonen-grammodel
approximatestheprobabilityof thephonesequenceasfol-
lows:
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Here, 3 is the order of the n-grammodel. Typically, an
order of 2 or 3 is used. The phonerecognitionfront end
maycontaineitheraglobalsetof acousticmodels,or it may
consistof a setof recognizers,eachof which usesa differ-
ent (e.g.language-specific)setof acousticmodels.Phone-
basedlanguageidentificationsystemshave the advantage
of easytraining and scoringproceduresin comparisonto
e.g.integratedLID andLVCSR.However, they suffer from
certaindrawbacks:first, theirperformanceonveryshorttest
signals(3 secondsor less)is often unsatisfactory, presum-
ably becausethetime spanis too shortto providea reliable
phonen-gramcontext. Second,problemsmay arisefrom
previously unseenphonesand phonecombinationswhen
porting a phone-basedLID systemto new languages.For
thesereasonswe havedevelopedanalternativeapproachto
LID, which is basedonunitsbelow thephonelevel, viz. ar-
ticulatoryfeatures.

1.2. Feature-basedLanguageIdentification

The articulatory-featurebasedapproach[2], usesnot just
a single but multiple sourcesof information. Insteadof
extracting a phonesequencefrom the acousticsignal, a
feature-basedsystemextractsmultiple parallel sequences
of articulatoryfeaturesandthenscoreseachsequencewith
a separatefeaturen-grammodel. We usearticulatoryfea-
turesbelongingto five differentcategories: mannerof ar-
ticulation, consonantalplace of articulation,vowel place
of articulation,front-back tonguepositionandlip rounding.
Acousticmodelsaretrainedfor eachindividual featureand
areassignedto separaterecognitionnetworksfor thediffer-
ent featurestreams.N-grammodelingof a single feature
sequenceis performedanalogousto phonen-grammodel-



ing, i.e.
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where
46�7�048�����������048 

is a sequenceof featuresymbolsof
length % producedby anacousticfeaturerecognitionfront
end. The individual scoresfrom all 9 featurestreamsare
subsequentlycombinedby somecombinationfunction to
producetheoverall LID scorefor a givenlanguage.In our
baselinesystemwe usea simpleproductasa combination
function:
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Thefinal combinedscoreis usedin thedecisionruleto iden-
tify themostprobablelanguage:� � 'A���
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(5)

Thereareseveraladvantagesto thefeature-basedapproach:
first, the numberof articulatoryfeaturesneededto encode
soundsis typically smallerthan the set of phones. Since
featuresare sharedacrossphones,more training material
is available for them,which meansthat both the acoustic
modelsandthen-grammodelscanbetrainedmorerobustly.
Second,thenumberof potentialfeaturen-gramcontexts is
smaller, which reducesthe possibility of encounteringun-
seencontexts whenporting the systemto new languages.
Third, the feature-basedmodel provides an easyway of
modelinglanguagedifferencesarising from subtlearticu-
latory timing, suchas aspiration,vowel nasalization,etc.
without having to enlarge the setof basicunits in the sys-
tem.

2. MIXED-MEMOR Y MARK OV MODELS

Mixed-memoryMarkov models(MMMs) were proposed
by Saul and Jordan[3, 4] for the analysisof time series.
Thebasicideais to reduceMarkov modelswith largestate
spacesto a combinationof simpler Markov modelswith
smallerstatespaces.This doneby representingthe transi-
tion matrixof thelargermodelasamixtureof thetransition
matricesof smallermodels:let G bearandomvariablewithH

possiblevalues. An 3-IKJ<L orderMarkov modelover G is
specifiedby thetransitionmatrix���&M$N$! M�N . � ��M�N . � �$��������M�N .�, " (6)

In a mixed-memoryMarkov model,thetransitionmatrix is
decomposedasfollows:
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where
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transitionmatrix modelingthe

probabilityof themodelstateattime J givenitsvalueatstateJ-U R . Naturally, VEW �Q�/R5" WYX for all
R

and Z P �Q�/R5"F' X .
The term

�Q�/R5"
canbeviewedastheprobability thata hid-

denvariable[ assumesvalue
R

attime J , i.e.theprior prob-
ability

���@\N]'^R5"
. Marginalizingover all possibleassign-

mentsto [ yields the model in Equation7. The relative
contributionsof the individual transitionmatricesarethus
controlledby ahiddenvariablerepresentingthemixtureco-
efficients,whosevaluescanbeestimatedusingtheEM al-
gorithm.

Whenthe mixed-memorymodel is appliedto a single
timeseries,thestatesJ�U R arestates

R
stepsinto thepast.In

thecaseof coupledtime series,wheretheobservationscan
be describedby a vectorof values,the decompositionap-
pliesto thetransitionmatricesbetweentheindividual com-
ponentsof thecurrentandthepreviousvector(s).Suppose
thatthereare

�
differentrandomvariables,eachof whichis

associatedwith its own observationsequenceandcantake
on
H
values.Let usassumefurtherthatthe

�
differentcom-

ponentsof the observation vector _ at time J , ` �N �$������� `BaN ,
areconditionally independentgiven the previous observa-
tion vector _ N . � , i.e.

��� _ N$! _ N . � "T' a)bD+ � ��� ` bN ! _ N . � " (8)

Theprobabilityof anindividualvectorcomponentgiventhe
previouscompleteobservationvectorcanthenbe approxi-
matedby amixtureof transitionprobabilitiesbetweenindi-
vidual components:
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Herethe
�
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c
N . � " areindividual

HeS]H
transitionmatrices

betweentwo vectorcomponents
d
at time J5UfX andandg at

time J .
The full-memory model specified in Equation 6 re-

quires h � 3 *�2 � " parameters,whereasthemodelin Equation
7 only requiresh � 3 H � " parameters.In thecaseof multiple
Markov chains,the complexity is reducedfrom h � H � a " to� h �@� � H � " . MMMs arethusparticularlysuitablefor model-
ing complex dynamicprocesseswheretheadditionof con-
ditioning variablesincreasesthe statespaceof the model
exponentially. This includesprocesseswhere the current
model stateis conditionedon a large numberof previous
statesin timeaswell asthoseprocesseswherea givenstate
is conditionedon a largenumberof simultaneousstatesin
space. Although the mixed-memorymodel cannotmodel
thecompletesetof conditionaldependenciesrepresentedin
the full-memory model, it may be advantageousin cases
wherethenumberof parametersin thefull-memorymodel
greatlyexceedstheavailabletrainingmaterialor wherethe



processis truly composedof different sources. Previous
applicationsof mixed-memoryMarkov modelsto speech
and languageprocessinginclude large-vocabulary statisti-
cal languagemodeling[3] andacousticmodelingfor speech
recognitionusing frequency subbands[5]. In our case,
MMMs can be employed in two different ways. In both
thephone-basedandthe feature-basedsystem,they canbe
usedto approximatethefull-memoryn-grammodelsfor the
phoneor featuresequences.In the feature-basedsystem,
they can additionally be usedto model dependenciesbe-
tweendifferentfeaturestreams.In this paper, we focusex-
clusively on thefirst applicationin orderto determineif the
mixed-memoryapproximationto standardn-grammodelsis
advantageouswhenn-grammodelsareusedasclassifiers.

3. CORPUSAND BASELINE SYSTEMS

Our experimentswereperformedon the OGI-TS multilin-
gual telephonespeechdatabase[6]. We usethe training,
developmentandevaluationsetdefinitionsproposedin [7],
which includedatafrom ten different languages(English,
Farsi,French,German,Japanese,Korean,Mandarin,Span-
ish,Tamil, andVietnamese).Thetraining,developmentand
evaluationsetsarecomprisedof 4650,1898and1848utter-
ances,respectively. We have groupedthe testsignalsinto
threedifferentcategoriesaccordingto their length,viz. very
short( i 3s),short(3-15s)andlong ( j 15s).

We have developedboth a phone-basedanda feature-
basedbaselinesystem,which were first describedin [2].
Forbothsystems,language-independentacousticfront-ends
wereused,i.e. agenericsetof acousticmodelswasusedin
eachsystemto extract symbolsequencesfrom the speech
signal. The acousticmodelsare HMMs with a variable
number of states(tuned to model the averageduration
of eachunit) and multiple Gaussianmixture components.
Thephone-basedsystemcontains133context-independent
phonemodelswith 1089statesin total andhas2 mixture
componentsper state. The n-grammodelingcomponent
consistsof language-specificbigram modelswith Witten-
Bell smoothing. The feature-basedsystemhas68 models
anda totalof 761stateswith two Gaussianmixturecompo-
nentseach.Prior to n-grammodeltraining,all instancesof
mannerandroundingfeatureswererelabeledaseithershort
or long,dependingontheir lengthin termsof thenumberof
acousticframes.This increasedthenumberof units for the
purposeof n-grammodelingto 96 (consonantalplace: 18,
manner:32,vowel placeandfront-back:12,rounding:20);
however, no additionalacousticmodelsarecreatedfor the
differentdurationcategories.Thesequenceof featuresym-
bolsin eachgroupis modeledby a4-gramwith Witten-Bell
smoothing. The combinationof individual feature-stream
scoresis performedby Equation4. The baselineaccuracy
ratesfor boththephone-basedandthefeature-basedsystem

veryshort short long average

phone-dev 35.6 57.4 65.2 52.7
feature-dev 42.1 55.7 63.9 53.0
phone-eval 30.6 53.1 69.7 48.8
feature-eval 44.8 57.8 60.0 54.6

Table 1. LID accuracy (in %) of the baselinefeatureand
phone-basedsystemson thedevelopment(dev) andevalua-
tion (eval) sets,brokendown by testsignallength.

areshown in Table1. Theoverall performanceof bothsys-
temsis roughly equal; however, the feature-basedsystem
shows a markedly betterperformanceon very shortsignals
whereasthephone-basedsystemis superioronlongsignals.

4. EXPERIMENTS WITH MIXED-MEMOR Y
MARK OV MODELS

Theapplicationof MMMs to standardphone-basedn-gram
modelsis quite straightforward: Equation7 can be used
to approximatea higher-order n-gram, such as a 3-gram
or a 4-gram,by a mixture of bigrams. For the implemen-
tation of the mixed-memorysystemswe usedthe Graphi-
cal ModelsToolkit GMTK [8]. This toolkit providesways
of specifying a wide range of graphical models for the
purposeof speechrecognitionas well as a generalinfer-
encemechanismto maximizethe likelihoodof the model
given the data. A MMM is a specialcaseof a graphical
model,wheretheweightsfor eachtransitionmatrix areen-
codedashiddenvariablesandthe variablesin the Markov
chainsareobserved. For encodingthehiddenvariableswe
usedtheswitching-parentsfeatureof GMTK, whichgreatly
facilitatesspecifying of mixtures of probability distribu-
tionsandthedata-drivenlearningof mixtureweightsusing
Expectation-Maximization.In orderto incorporatestandard
n-gramsmoothingmethods,the basicn-gramprobabilities
werecomputedusingtheCMU-CambridgeLanguageMod-
eling toolkit [9]. TheGMTK toolkit wassubsequentlyused
to estimatethe parametersof the hiddenvariables,i.e. the
mixing coefficients.

Table2 shows thecomparisonbetweenphoneN-grams
and their mixed-memoryequivalents,e.g. a trigram com-
paredto a mixture of two bigrams. We can seethat in
all casesthe accuracy of the MMM is superiorto that of
the N-gram. The best-performingsystem,MMM-2, was
then appliedto the evaluationset. Table 3 shows results
on both setsfor different signal lengths. The improve-
mentof theoverallaccuracy ontheevaluationsetcompared
to the baselinesystem(Table1) is statisticallysignificant
(significancelevel of 0.05usinga differenceof proportions
significancetest). It is particularlynoteworthy thatperfor-
manceimprovesfor very shortsignalswhereasit declines



2 3 4 5

N-gram 52.7 52.7 47.9 47.6
MMM - 54.1 53.6 52.7

Table 2. LID results(accuracy in %, dev set)for standard
phonen-gramsandphoneMMMs for ordersrangingfrom
2 to 5. For order2, themixed-memorymodelis equivalent
to a standardbigram.

veryshort short long average

dev 38.8 58.2 64.6 54.1
eval 35.7 56.2 65.7 51.8

Table 3. LID accuracy (in %) on evaluationanddevelop-
mentsetsof thebestphoneMMM, brokendown by signal
length.

slightly on long signals. Next we appliedMMMs to each
featurestreamin the feature-basedsystem,approximating
the feature4-grammodelswith mixturesof four bigrams.
In orderto determinetheeffecton differentfeaturestreams
we measuredthe performanceon the developmentset in-
dependentlyfor eachstream.We foundthatan increasein
accuracy wasonly obtainedfor the mannerstream,which
is the streamwith the largestsetof models(34). All other
streamsshowedslight lossesin accuracy. A combinationof
themixed-memorymannerstreammodelwith thestandard
4-grammodelsfor theremainingstreamsincreasetheaccu-
racy on the developmentset to 54.1%. Table4 shows the
detailedresultsof this system.Again we seea markedim-

veryshort short long average

dev 48.6 54.9 63.0 54.1
eval 47.7 55.3 60.0 53.7

Table 4. Accuracy (in %) on developmentandevaluation
setsfor a combinedMMM (mannerstream)and N-gram
(otherstreams)feature-basedmodel.

provementonveryshorttestsignals,albeitaslightdecrease
in overallaccuracy on theevaluationset.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have investigatedthe application of
mixed-memory Markov models to automatic language
identification. MMMs wereusedto approximatestandard
statisticaln-grammodels( 3kjml ) by a mixture of bigram
models. This was done both for a phone-basedand an
articulatory feature-basedsystem. It was found that the
mixed-memoryapproximation improves accuracy when

the model set is large comparedto the available training
data,as in the phone-basedsystem. By contrast,n-grams
involving smaller symbol sets, like most of the feature
n-gram models,benefit from a full-memory model. On
our presentLID task, MMMs have shown the largest
improvementson very short test signals,which indicates
that the mixed-memoryapproximationmay be a useful
techniquefor real-world, real-time LID applications. In
the future we intend to investigatethe use of MMMs
to model dependenciesbetweendifferent streamsin the
feature-basedsystem.
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