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ABSTRACT
Classifier combination is a technique that often provides signifi-

cant improvements in accuracy, and also furnishes a useful mecha-
nism to support multi-modal information sources. In this paper we
discuss the problem of acoustic classifier combination in speech
recognition systems. We present new techniques that generalize
previously used combination rules, such as the mean, product, min,
and max functions. These new rules have continuous and differen-
tiable forms and can thus not only be used for combination of inde-
pendently trained classifiers but also as objective functions in new
joint classifier training schemes. We demonstrate the application of
these rules to both combination and joint training using different
input features, and we analyze their effects on word recognition
accuracy. We find a significant word-error improvement over the
product rule when jointly training and combining multiple systems
using a generalization of the product rule.

1. INTRODUCTION
A challenge for automatic speech recognition (ASR) re-

search is to develop systems that successfully utilize infor-
mation from multiple modalities (such as vision, gestures,
hand-writing, as well as the audio signal) or different repre-
sentations or partitions of the same modality (e.g., different
features extracted from the speech signal). This is necessary
to embed ASR in advanced multimodal applications where
the user interacts with computers simultaneously using sev-
eral input modes (e.g., speech and gestures). The use of dif-
ferent speech signal representations itself can significantly
enhance recognition robustness in adverse acoustic environ-
ments and thus has great potential for real-world applica-
tions such as wireless communication, speech recognizers
for the car, and so on. A key issue for multi-modal/multi-
representation research is to determine the best way to com-
bine the information available in the different input repre-
sentations so as to maximize performance with a minimum
of computational effort.

Classifier combination can fuse together such different in-
formation sources whether they are multi-modal (such as
speech and vision [27, 10]) or transformations [19, 18, 21]
or (e.g., spectral) partitions [7, 26, 25] of the same signal.

Combining independently trained classifiers often pro-
duces appreciable gains, even when individual classifiers
exhibit widely varying accuracies. This has been demon-

strated for automatic speech recognition (ASR) [11, 12, 21]
and for pattern classification [15, 16, 22, 30]. Combination
rules often operate directly on classifier probabilities. One
method (the mean rule) computes a weighted average of
classifier outputs. Another method (the product rule) mul-
tiplies and then renormalizes these probabilities. Other tech-
niques compute the maximum, minimum, or median of the
classifier outputs [22]. Other methodologies combine us-
ing statistical models [5] or jointly train separate classifiers
[28, 14].

In ASR, classifier combination can occur at different lev-
els including the feature stream [3, 19, 12, 20], the HMM
state [21], or at higher levels such as at the syllable [32] or
sentence [11]. In ASR, HMM state-level combination (e.g.,
combining the outputs of phonetic class posterior probabil-
ity estimators) has mostly used the mean or product rules.
Moreover, classifiers are often trained separately without re-
gard to joint optimization during training.

In this paper we present a variety of new combination
rules which generalize the mean, product, min and max
rules. These new rules are all continuous and differentiable.
Not only can they be used for combination of independently
trained classifiers, but also as objective functions in a joint
classifier training scheme. We evaluate these new classi-
fier combination schemes and joint training algorithms and
present preliminary results with respect to continuous num-
bers recognition.

Section 2 reviews previous work on classifier combina-
tion in machine learning and in speech recognition. Sec-
tion 3 presents our combination architecture, and serves to
introduce notation used in this paper. Section 4 presents our
new combination schemes. Section 5 develops the various
joint training algorithms associated with each of the com-
bination rules. Section 6 provides experimental results us-
ing baseline and our generalized rules. Final conclusions are
presented in Section 7.

2. BACKGROUND: CLASSIFIER
COMBINATION

The underlying goal of classifier combination theory is to
identify the conditions under which the combination of an
ensemble of classifiers yields improved performance com-



pared to the individual classifiers. One widely investigated
combination method is the mean rule, where the outputs of
the individual classifiers are averaged:

P (cjx1; :::; xN ) =

NX
n=1

�nP (cjxn) (1)

where P (cjxn) is the probability for class c given by the nth

classifier, and �n is the weight for the n0th classifiers which
uses feature vector xn.

Classification is related to regression. In that case, several
theoretical studies[16, 6] have shown that mean-rule com-
bination is successful (a lower mean-squared error) when
the errors of each system are independent. Error reduction is
related to ensemble bias (the degree to which the averaged
output of the ensemble of classifiers diverges from the true
target function) and variance (the degree to which the en-
semble members disagree) [23, 30, 6]. Generally, a low error
requires both a low bias and variance, but since variance is
reduced by averaging, it is sufficient to combine classifiers
with low bias.

Tumer & Ghosh [31] have related the degree of corre-
lation of classifier outputs to the ensemble error and have
quantified it in terms of Bayes error. The total ensemble clas-
sification error Et can be represented as the Bayes error Eb

and the added ensemble-incurred error Êa, where the rela-
tionship Et = Eb + �Ea holds. When combining unbiased
correlated classifiers, the added error can be shown to be

�Ea = Ea
1 + �(N � 1)

N

where N is the number of classifiers, � a measure of error
correlation, and Ea is the (common) added error of each
individual classifier. As can be seen, the added error grows
with the degree of classifier error correlation.

Producing ensemble members with decorrelated errors
can be achieved by a variety of methods, e.g., training classi-
fiers with different structures [31], varying the initial condi-
tions from which classifiers are trained, training on disjoint
[1] or partially overlapping data sets, specialized training
schemes, using different input signals [1], or different fea-
ture representations of the input [15]. Popular combination
methods include linear combinations of the output distribu-
tions (e.g., by averaging over, or multiplying, the outputs)
[13, 22], combining the outputs by a higher-level classifier,
Dempster-Shafer theory [29], and majority voting [24]. An
alternative approach is to model a dependence between clas-
sification errors [6, 31, 5].

Many studies on classifier combination focus on what we
call single-level classification. A typical single-level clas-
sification system consists of two components: a feature-
extraction component which maps the input signal to fea-
ture vectors, and a classification component which assigns
a class label to each feature vector. The desired classes are
thus directly recognized from the feature space without any
intermediate representation.

Speech recognition, however, requires a multi-level clas-
sification scheme because, for practical reasons, it is neces-

sary to re-use classifiers at a lower level (such as for sub-
phones, phones, or words) rather than attempting to dis-
criminate between an inordinate number of classes (e.g., the
number of possible sentences). In such case, the class C is
related to the features x1; :::; xN indirectly via some inter-
mediate representation Q, and the system often makes sim-
plifying conditional independence assumptions as in:

p(cjx1; :::; xN ) =
X
q

p(c; qjx1; :::; xN )

=
X
q

p(cjq)p(qjx1; :::; xN )

Classifier combination can be applied at any intermediate
stage in a multi-level classification system. The combina-
tion methods, however, should ideally take into account
the requirements of the last stage (i.e., the Bayes error for
the final class variable C). Successful combination methods
in a multi-level classification system therefore might differ
greatly from those combination methods which have proved
beneficial for single-level classification.

Classifier Combination in Speech Recognition
Different partial recognition hypotheses can in principle

be combined at either the feature, sub-phone, phone, word,
or sentence level. In this study, we concentrate on combina-
tion at the phone level. Most approaches to phone-level com-
bination have used different acoustic preprocessing tech-
niques to generate an ensemble of classifiers trained on dif-
ferent feature spaces [19, 12, 20]; in some cases, the speech
signal is split into a number of narrower frequency bands
and the ensemble classifiers operate on individual subbands
[26, 25]. Combination methods have in general used either
the mean rule (Equation (1)) or the product rule: 1

P (cjx1; :::; xN ) =

QN
n=1 P (cjxn)

Z
(2)

where Z is a normalizing constant.
The mean rule is useful for combining uni-modal distri-

butions into a single multi-modal distribution. Since mixing
increases entropy [9], such a procedure is poor for repre-
senting low-entropy distributions where probability is con-
centrated in narrow input-space regions. In such cases, the
product rule is useful, where each classifier must supply
probability to the correct class, but may also supply prob-
ability to incorrect classes as long as one or more of the
other classifiers do not supply probability to those incorrect
classes. These are therefore called “AND” style combination
schemes [21] since only the logical AND of each classifier’s
probabilistic decision will survive combination. It is also the
case that such a combination scheme is useful when the un-
derlying distributions factorize over the probabilistic space
of C [14].

Virtually all the aforementioned studies reported the
largest performance increases for the product rule. This ap-
pears surprising since one may arrive at this rule by making

1This is of course equivalent to the mean rule applied to log probabili-
ties.



the assumption of conditional independence of the input fea-
tures given the output class [5]. This assumption is certainly
not true in general — neither different feature representa-
tions derived from nor different spectral sub-bands of the
same signal are conditionally independent given the class
[2]. On the other hand, producing low-entropy distributions
over HMM states from a product of sometimes incorrect
classifiers might outweigh this inaccuracy. Alternatively, as
argued in [4], an assumption that is incorrect for predictive
accuracy does not ensure discriminative inaccuracy.

In previous work [21] we additionally investigated other
rules such as the max rule:

P (cjx1; :::;xN ) =
maxnP (cjxn)PK
c=1maxn P (cjxn)

(3)

and the min rule:

P (cjx1; :::;xN ) =
minnP (cjxn)PK
c=1minn P (cjxn)

(4)

We found that significant error reductions occurred with the
AND rules (product and min) whereas the sum and the max
rule (OR style rules) yielded only slight improvements and
sometimes even worsened global performance.

In the following sections we present new AND-style
combination rules which generalize the standard combina-
tion rules and can also be used as joint classifier training
schemes.

3. BASIC COMBINATION ARCHITECTURE
This section describes our combination architecture. We

use L neural network classifiers, each a multi-layer percep-
tron (MLP). Each classifier uses the multiple logistic2 non-
linearity in the final layer:

zlk =
exp(alk)P
k0 exp(alk0)

where zlk is the kth output of the lth classifier. These outputs
are combined using one of the soon-to-be-defined combina-
tion rules

Vk = combination rule(z1k; z
2
k; : : : ; z

L
k ):

The combined outputs are re-normalized, thereby producing
the final combined system outputs

zk =
VkP
j Vj

:

This architecture is depicted in Figure 1.
Under normal circumstances, each classifier is trained

separately using the standard back-propagation algorithm.
During testing the outputs of each of the sub-classifiers are
combined using a combination rule, and then used in subse-
quent stages of classification. In Section 5, we will consider
methods to jointly train the different classifier systems.

2Often referred to as the “softmax” function, but we call it the multiple
logistic function in this paper to avoid any confusion with our soft minimum
and maximum functions defined in Section 4.
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Figure 1: Architecture and notational definitions used in this paper.
Input features xl are presented to the lth classifier. These produce
linear outputs al which are then normalized using the multiple lo-
gistic function. For each output k of each of the L classifiers, the
values are combined using one of the combination methods, and
this produces value Vk. The result is once again normalized pro-
ducing the final probability mass function z at the output of the
combined system.

4. GENERALIZED COMBINATION RULES

This section presents new “soft” continuous rules that
generalize the often used “hard” combination rules such as
the mean (Eq 1), product (Eq 2), min (Eq 4), max (Eq 3).
This is done by defining a variety of soft minimum func-
tions, and then by showing how they generalize other rules.
Each function is dependent on a softness parameter �. For
notational convenience, we also define single letter versions
of the function using a superscripted V .

We define the smin function as follows:

V
(s)
k

�
= smin�(z

1
k; z

2
k; : : : ; z

L
k )

�
=

 
LX
l=1

(zlk)
��

!�1=�

A second rule useful when the arguments are probabilities
(0 < zk < 1 8k) is defined as follows:

V
(p)
k

�
= psmin�(z

1
k; z

2
k; : : : ; z

L
k )

�
= exp

0
@�

 
LX
l=1

(ln 1=zlk)
�

!1=�1A

We define a third min function as follows:

V
(e)
k

�
= esmin�(z

1
k; z

2
k; : : : ; z

L
k ) =

LX
l=1

zlke
��zlkPL

`=1 e
��z`

k

as well as a corresponding version when the input lies within



the range 0 < zk < 1:

V
(q)
k

�
= qsmin�(z

1
k; z

2
k; : : : ; z

L
k )

= exp

 
LX
l=1

ln(zlk)(1=z
l
k)

�PL
`=1(1=z

`
k)

�

!

For each of the soft minimum functions, there exists
a dual “soft maximum” function3 obtained by negating
the value of �. For example, we may define a function

smax�(�)
�
= smin(��)(�). Note that all of the minimum func-

tions approach the true min function as � gets large since:

min(z1; z2; : : : ; zL) = lim
�!1

*min�(z1; z2; : : : ; zL)

These soft functions are useful because they approximate
the minimum (resp. maximum) functions as � gets large and
positive (resp. as � gets large and negative). These func-
tions are also continuous and differentiable with respect to
their arguments. And surprisingly, they generalize most of
the functions that are commonly used in classifier combina-
tion systems. For example, smin�1 is the sum rule, smin1 is
a scaled harmonic mean, psmin1 is the product rule, and so
on. For certain values of � and certain combination meth-
ods, some interesting new rules result, such as a “harmonic
product” rule using psmin with � = �1. Figure 2 depicts
all the generalizations made by the various soft combination
rules.
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Figure 2: The soft minimum rules generalize many of the more
common combination rules (and specify some new ones) depend-
ing on the value of �.

5. DERIVATION OF JOINT TRAINING
ALGORITHMS

As mentioned above, unlike hard combination rules such
as min and max, the soft versions are continuous and differ-
entiable. Therefore, a new learning algorithm can be defined

3Not to be confused with the standard softmax function used for neural
networks which, in this paper, we refer to as the multiple logistic function.

that jointly trains the L networks. According to the analysis
presented in Section 2, a joint training rule should encour-
age the classifiers to perform as well as possible, but should
also encourage any errors, if they must be made, to be as
statistically independent as possible.

It might at first seem counterintuitive to jointly train net-
works in an attempt to produce independent errors. With
separate training, however, there is no independence guaran-
tee, instead there is only the hope that the solution arrived at
by each classifier will have this property. On the other hand,
by using an appropriate joint training rule, the error depen-
dence may be adjusted in a controlled fashion, encouraging
the classifiers to arrive at different solutions when it is ad-
vantageous to do so. Boosting [28], for example, is a method
where the manner in which later classifiers are trained is
dependent on the performance of earlier trained classifiers.
Other examples of joint training include the mixture of ex-
perts architecture [17] (where each sub-classifier essentially
manages a subspace of the original feature space) and joint
training of product distributions [14].

A joint training algorithm can be defined for any of the
soft combination rules mentioned in Section 4. The follow-
ing analysis will be needed.

First, we need the derivatives of the soft minimum func-
tions. The first one is as follows:4

@V
(s)
k

@zlj
=

 
Vj

zlj

!1+�

Æjk (5)

Note that when � > 1, the derivative with respect to the
smallest argument of smin has the largest value. When �
gets large, this gradient approaches unity, while the deriva-
tive with respect to larger arguments approaches zero. The
exact opposite is true when � < 1 and gets smaller, i.e., the
derivative with respect to the largest element has the largest
value. This behavior is as expected, since for the smin func-
tion, the outputs of the networks other than the minimum do
not survive combination when � is large enough. Therefore,
they need not change. Only the network with the smallest
output should have a non-zero gradient.

The derivatives for the other three soft-min rules are as
follows:

@V
(e)
k

@zlj
=

Vj

zlj

�
ln zlj= lnVj

���1
Æjk ;

@V
(p)
k

@zlj
=

e��z
l
jP

` e
��z`

j

(1� �zlj + �Vj)Æjk ;

and

@V
(q)
k

@zlj
=

Vj

(zlj)
�+1

P
`(z

`
j)
��

(1� � ln zlj + � lnVj)Æjk :

These derivatives have interpretations similar to Equa-
tion (5), i.e., when � gets large, the derivatives approach

4Here, Æij is the Dirac delta.



unity only when j corresponds to the index for the small-
est argument.

For a cost function, we use the relative entropy between
the targets tk and the final combined network outputs zk
(i.e., J =

P
k tk ln tk=zk). As in normal back-propagation,

we compute @J
@w for each weight w in all of the networks,

and perform gradient descent. When the classifiers are MLP-
based, the difference between independent training and joint
training is that each network has an output-layer “delta” [6]
dependent on the other networks (the hidden-layer deltas
and the remaining update steps are identical). This can be
seen by noting that

@J

@zlj
=
X
k

@J

@zk

@zk

@zlj
=

1

Vj

@Vj

@zlj
(zj � tj)

which leads to the definition of the output delta for the the
kth output of the lth network:

Ælk =
@J

@alk
=
X
j

@zlj

@alk

@J

@zlj

=
X
j

(Æjk � zlk)
zlj
Vj

@Vj

@zlj
(zj � tj)

In this form, the derivative of the appropriate soft minimum
rule (or in fact, any rule possessing a derivative) may be sub-
stituted in place of @Vj=@zlj in the above to obtain the final

output layer deltas. First, define �jk
�
= (Æjk � zlk)(zj � tj).

For each of the soft minimum functions, we get the follow-
ing output layer deltas:

Æ
l(s)
k =

X
j

�jk

 
Vj

zlj

!�

(6)

Æ
l(p)
k =

X
j

�jk
�
ln zlj= lnVj

���1
(7)

Æ
l(e)
k =

X
j

�jk
zlje

��zljP
` z

`
je
��z`

j

(1� �zlj + �Vj) (8)

Æ
l(q)
k =

X
j

�jk
1

(zlj)
�
P

`(z
`
j)
��

(1� �zlj + �Vj) (9)

We provide an intuitive explanation of Equation (6) which
can be expanded as follows:

Æ
l(s)
k =

�
Vk

zlk

��

(zk � tk)� zlk
X
j

(zj � tj)

 
Vj

zlj

!�

(10)

This equation says that Æl(s)k is the difference of two terms.
First, if there is a single network (L = 1), one obtains the

normal delta rule, zk � tk. In the general case where L > 1,
the first term is similar to the normal delta term for single
network training (weights are decreased if zk > tk) except
that the difference is weighted according to how close the
output zlk is to the determining element. The determining el-
ement is defined as the minimum (respectively maximum) if
� > 1 (respectively if � < 1). The second term measures
how well the combined classifier system is doing overall on
this training pattern, but this score is an average over all out-
put units, each weighted according to the proximity of that
unit to the determining element.

Note that with this rule delta, if one network classifier is
right and the other is in error, both networks will be encour-
aged to produce the right solution. However, if � > 0, then
the network that was in error will be allowed to pursue a
more relaxed solution (i.e., other outputs will be encouraged
to increase) because during the minimum-like combination,
those additions will not effect the final result. This delta rule
then, in some sense, corrects both networks in response to
errors, but allows (and perhaps encourages) them to come
up with different solutions to the problem.

The delta rules for the other soft minimum functions can
be understood in an analogous manner.

6. EXPERIMENTS AND RESULTS
In this section, we evaluate the above combination

schemes as follows. We report results for 1) a baseline sys-
tem using standard combination rules with embedded train-
ing, 2) the new combination rules applied to independently
trained networks, 3) jointly trained networks, and 4) jointly
embedded trained networks.

We use the OGI Numbers95 telephone-speech continu-
ous numbers corpus [8] with 3233 utterances for training,
357 for cross-validation, and 1206 for testing. The classi-
fiers are initialized using the hand-labelled phone transcrip-
tions part of the Numbers95 distribution. We use an ensem-
ble of L = 2 3-layer MLP-based classifiers for the acoustic
modeling component, each trained on different feature rep-
resentations of the speech signal (RASTA-PLP and MFCC).
The dimensionality of the RASTA-PLP feature space is 18,
that of the MFCC feature space is 26. We use a window of
9 frames at the input level, which corresponds to approxi-
mately 115 ms of speech. The number of input units in each
network is 234 (26*9) and 162 (18*9), respectively. In order
to compensate for the different dimensionalities of the fea-
ture spaces the MFCC network has 400 hidden units, com-
pared to 578 hidden units in the RASTA-PLP network. The
number of output units is 32 (which equals the number of
HMM states in the system) for both networks.

Baseline experiments
As a baseline system, the MLPs are independently trained

using backpropagation, a KL-distance based cost function,
and multiple logistic outputs. We trained two bootstrap net-
works in a single training pass and combined their outputs
using the four combination rules (max, min, product and
sum) described above. The results are shown in Table 1.
Throughout the paper we report results obtained from 10 dif-
ferent test runs for each case, with varying language model



weights (1 to 10). This was done to compare the behavior of
combination rules across a range of conditions simulating
different degrees of acoustic reliability.

WER MFCC RASTA min max prod sum

min 7.0% 8.4% 6.0% 6.7% 5.9% 7.1%
av 7.6% 8.7% 6.6% 7.5% 6.3% 7.1%
max 9.1% 10.3% 7.7% 8.5% 7.3% 8.0%

Table 1: Results for baseline combination experiments; minimum,
average and maximum word error rate for 10 different test runs
with varying language model factor

WER (%)
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Figure 3: Word error rates for different � values.

Similar to our previous studies [20, 21], we find that the
product rule achieves the lowest word error rate. For all em-
bedded training experiments we therefore only use product
combination of acoustic scores. After embedded training,
the best baseline system achieves a minimum word error rate
of 5.1% (5.5% average, 6.2% maximum).

New combination schemes
We evaluated the new combination rules without using

embedded training with a variety of � values as shown in
Figure 3. Note again that negative � values result in soft
maximum rules. We found that changes to � in the range
�10 to 10 did not entail appreciable variation in word er-
ror rate. We did verify that the psmin rule with � = 1 was
similar to the standard product rule, as expected.

Joint training
In our next set of experiments, we jointly trained the

acoustic classifiers using the newly developed soft combi-
nation schemes, and we combined their outputs after each
iteration of embedded training. One difficulty in using the
new rules is finding appropriate values for �. Because of
low sensitivity to � (Figure 3), we used the same � value
(2.0) for all rules in our joint training experiments. We again
compared different rules (the standard rules and the respec-
tive soft min rule) for output score combination after the
first training pass. The results are shown in Figure 4. Several
points are worth noting. First, certain mismatches between
the combination rule used for training and that used for test-
ing sharply increase word error rate. This concerns the smin
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Figure 4: Joint training using new soft minimum functions and
tested with various combination strategies.

WER smin psmin esmin qsmin
min 5.7% 4.8% 5.6% 6.7%
av 5.9% 5.2% 6.1% 7.2%
max 6.3% 6.0% 6.8% 7.8%

Table 2: Word error rates for different min rules after embedded
training. Boldface numbers show the best result overall.

and psmin rules in those cases where an “AND” rule (prod-
uct or one of the min rules) is used for training and an “OR”
(sum or max) rule is used for testing. Combination with the
appropriate rule, however, yields a reasonable performance -
in almost all cases, a significant reduction in word error rate
is achieved compared to the baseline. In the case of train-
ing with the esmin and qsmin rules, by contrast, word error
rates are much higher – our conjecture is that a � value of
2 is is too small since these versions are “softer” than smin
and psmin. None of the joint training results as yet surpasses
basic product rule combination of individually trained clas-
sifiers.

For embedded training, only the “AND” combination
rules were used. The word error rates obtained by the four
different min rules are shown in Table 2. The psmin joint
training scheme used together with the product combina-
tion rule significantly (p < 0:002) outperforms the baseline
product combination scheme. It should be noted that, at the
time of writing, many possible combinations of � values and
rules have not been explored in our embedded joint training
scheme, so larger gains might still be achievable.

In order to verify our initial assumption that combination
improves when the errors of the individual classifiers are un-
correlated, we computed error correlation on the outputs of
the individually-trained networks and the jointly-trained net-
works. The correlation coefficients (Table 3) indeed show
that error correlation is much lower for the jointly trained
classifiers, as expected.

baseline smin psmin esmin qsmin
� 0.68 0.57 0.49 0.60 0.52

Table 3: Correlation coefficients for classifier outputs.



7. DISCUSSION
In this paper, we have presented new techniques that gen-

eralize previously used combination rules, such as the mean,
product, min, and max functions. These new continuous and
differentiable forms be used both for combination of inde-
pendently trained classifiers and also as objective functions
in new joint classifier training schemes. We demonstrated
the application of these rules to both combination and joint
training using different input features, and we analyze their
effects on word recognition accuracy. We found a significant
word-error improvement over the product rule using a joint
training scheme and product rule combination.

In future work, we plan on more thoroughly investigating
the effect of the different rules and � values on combination
and joint training performance for a variety of tasks.
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