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ABSTRACT
Coarticulation in speech is one of the most difficult problems for
automatic speech recognition (ASR) systems. The degree of coar-
ticulation is assumed to vary with contextual conditions, such as
differences in speaking rate, stress, etc. In the past, coarticulation
has been studied using only limited data sets and using acoustic-
phonetic methods such as formant analysis. We propose a method
that statistically analyzes the degree of coarticulatory influence on
features typically used for automatic speech recognition systems
(LPCs, MFCCs, RASTA, and compressed subband spectral en-
velopes). This method computes the Conditional Mutual Infor-
mation (CMI) between time/feature-position pairs under a variety
of coarticulatory conditions. We applied this method on a two-
hour subset of the Switchboard database and analyzed CMI for
various speaking rate, stress, and vowel category conditions. Re-
sults show that CMI is indeed larger for those phonetic conditions
believed to possess more coarticulation.

1. INTRODUCTION
Although automatic speech recognition has improved dramati-
cally in recent years, widespread use of speech recognition de-
vices is still far from a reality. One of the major shortcomings
of existing speech recognizer systems (as identified by [5] for
instance) is their limited capability to handle the coarticulation
that exists in everyday conversational speech. Coarticulation is
usually defined as a change in the acoustic-phonetic content of a
speech segment due to anticipation or preservation of adjacent
segments. Current techniques for statistical modeling used by
speech recognition systems (e.g., context-dependent phone mod-
els) are believed to be insufficient for capturing all coarticulatory
effects.

Phonetic research has identified a range of linguistic and ex-
tralinguistic conditions which affect the degree of coarticulation.
Although most of these studies [4, 3, 7] are based on articula-
tory data, it is widely assumed that corresponding acoustic effects
can be observed in the speech signal and that, if these conditions
are modeled in an ASR system, performance of the system can
be improved. Acoustic studies of coarticulation have so far con-
centrated on formant analysis (e.g. [8]); we are unaware of any
quantitative statistical analysis on a large speech corpus which
investigates the effects of coarticulation on the acoustic features
typically used by speech recognizers (mel-frequency cepstral co-
efficients (MFCC), linear predictive coefficients (LPC), etc.).

In this paper we present a methodology which allows us to an-

alyze the degree of influence of the surrounding acoustic context
directly on speech features for a variety of coarticulatory condi-
tions. Varying the coarticulatory condition, we observe the influ-
ence on acoustic features using the conditional mutual informa-
tion (CMI). We investigate several coarticulatory conditions in-
cluding: 1) speaking rate; 2) the degree of syllable stress (primary,
secondary, or unstressed); and 3) vowel quality (central/lax vs. pe-
ripheral). Our assumptions are that faster speaking rate and lower
degree of stress correlate with stronger coarticulation. Further-
more, we expect central and lax vowels to be more coarticulated
than peripheral vowels and diphthongs.

2. METHOD
2.1. Conditional Mutual Information The entropy [1] of a
random variable X is defined as

H(X) = �
X

x

p(x) log p(x)

and can be interpreted as the average amount of uncertainty, or
information, associated with the random variable X . The mutual
information I(X;Y ) between two random variables X and Y , is
defined as

I(X;Y ) = H(Y )�H(Y jX)

where H(Y ) is the entropy of the variable Y and H(Y jX) is
the conditional entropy of the variable Y given the variable X .
The mutual information I(X;Y ) measures the reduction in un-
certainty that Y provides about X and vice versa, since mutual
information is symmetric in its arguments. It thus gives an indica-
tion of the extent to which the variables X and Y are dependent,
or in other words, how predictable Y is given knowledge of X .

The Conditional Mutual Information (CMI) I(X;Y jQ) is the av-
erage entropy reduction of one variable X given knowledge of
another variable Y conditioned on the knowledge provided by a
third variable Q. That is,

I(X;Y jQ) = H(Y jQ)�H(Y jX;Q)

=
X

q

p(q)
X

x;y

p(x; yjq) log
p(x; yjq)

p(xjq)p(yjq)

=
X

q

p(q)I(X;Y jQ = q)

This last equation shows that CMI is the the average entropy re-
duction for different conditions, and that I(X;Y jQ = q) is the
entropy reduction for a particular condition q.



Feature num energy deltas frame win
type coeffs rate size

MFCC 12 yes yes 12.5 25
RASTA 8 yes yes 12.5 25
LPC 14 no yes 12.5 25.6
CSSE 22 no no 12.5 variable

Table 1: Details of different preprocessing methods used in CMI
experiments. Frame rate and window size are given in millisec-
onds.

We compute CMI for a variety of different feature sets including
mel-frequency cepstral coefficients (MFCCs), linear prediction
coefficients (LPC), relative spectral coefficients (RASTA) [2],
and cube-root-compressed sub-band spectral envelopes (CSSE).
These features were computed for a randomly selected two-hour
subset of the Switchboard corpus. Table 1 shows the details of
each preprocessing method, viz. the feature type, number of ba-
sic coefficients, whether energy and/or delta coefficients were in-
cluded, the frame rate, and the size of the analysis window.

For our present purpose, the X and Y variables correspond to
a particular pair of feature elements from the three-dimensional
space defined by the sequence of feature vectors. Let Xt be a
sequence of feature vectors, and Xi

t be the ith element of vector
Xt. We consider pairs from the three dimensional set of the form
f(Xi

t ;X
j

t�`) : `; i; jg for various “lags” `, and feature element
positions i and j. We first compute the CMI for each pair, and
then summarize this information by computing the average over
all i and j. This results in CMI plots as a function only of the (one
dimensional) time-lag `.

The condition Q = q corresponds to the coarticulatory con-
dition under investigation. This is done by labeling the speech
frames with a particular coarticulatory condition, and for each
case, computing the mutual information using only those frames
matching the condition. The specific label sets used will be de-
scribed separately for each experiment. All labels, however, were
derived from the same phone transcriptions, which were obtained
from an automatic alignment of the speech data using triphone
models.

To provide a meaningful time unit where one coarticulatory con-
dition can be compared with another, each individual CMI plot is
time normalized to the average duration of that condition. There-
fore, the abscissas are presented in sub-word units, where the
sub-word unit roughly corresponds to a syllable duration (about
200ms) for the speaking rate and stress plots, and phone duration
for the vowel category plots.

3. EXPERIMENTS
3.1. Speaking Rate It is usually assumed that fast speech ex-
hibits more coarticulatory effects than slow speech. A faster
speaking rate causes a larger degree of articulatory gesture overlap
- as a consequence, acoustic feature vectors corresponding to fast
speech should exhibit more inter-dependence. This should corre-

spondingly cause an increase in CMI between individual feature
vector components across time, compared to the more slowly ar-
ticulated portions of the speech signals.

We use the quantitative procedure mrate to determine the
speaking rate [6]. Mrate combines the results of multiple esti-
mators of speaking rate, each of which is based exclusively on
the acoustic signal. Therefore, no use is made of any lexical seg-
ment hypotheses. More specifically, the various estimators com-
pute: 1) the spectral moment of a full-band energy envelope, 2) a
peak count of the spectral energy envelope, and 3) a peak count
of pointwise cross correlation of subband energy envelopes. The
average of these measures, mrate, correlates fairly well1 with the
average number of syllables per segment and can thus be con-
sidered a reasonable indication of speaking rate. While a better
speaking rate indicator is desirable, this simple measure seemed
sufficient for our purposes.

The mrate values assigned to each frame in the two-hour dataset
were quantized into three categories: slow, medium, and fast. The
boundaries for these classes were placed at the 33rd and 66th per-
centiles, respectively, of the distribution of mrate values. As an
additional category, ’silence’ was also used, on which CMI was
not computed. The leftmost graphs of Figures 1 through 4 plot
the resulting CMI curves. On the vertical axis, these plots show
CMI2 and on the horizontal axis they show the temporal distance
(in terms of roughly the average syllable length) from the current
frame. The CMI values for the zero-lag point (“0”) are omitted
from the plots as these points express only the self-information
[1] (or entropy) of a feature vector with itself and are irrelevant for
the present study. As can be seen, for all types of speech features,
a faster speaking rate induces a larger CMI, which, according to
our assumptions, indicates greater coarticulation

3.2. Stress Another frequently encountered assumption is that
stressed portions of the speech signal are not as heavily coarticu-
lated as unstressed portions. In order to verify this assumption,
we assigned stress labels to the signals in our data set. Since
stress is a feature of the syllable nucleus, the data was segmented
into syllables. Each syllable was then assigned one of three stress
labels, primary stress, secondary stress, or unstressed, based on
the word context and the word-based stress marks in the Pron-
lex dictionary. It should be noted that this labeling does not re-
flect stress as it is realized in the actual speech signal but a hy-
pothesis of how it might be realized based on canonical lexical
definitions. This approximation was used because signal-based
stress detection algorithms are notoriously unreliable. The use
of syllable-sized segments entails a further problem: long sylla-
bles may already include much of the phonetic context that in-
fluences the stressed syllable nucleus. For such cases, the CMI
computed over a fixed range surrounding the entire syllable will
not reflect the true coarticulatory effect on the nucleus. For this
reason, long syllables were split into two parts, and CMI was com-
puted separately for each of these cases. The splitting threshold
was set at E(S)�1:5�stddev(S) where E(S) (resp. stddev(S))
is the mean (resp. standard deviation) of the syllable duration
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Figure 1: CMI for CSSE features. Speaking rate, stress, and vowel category.
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Figure 2: CMI for LPC features. Speaking rate, stress, and vowel category.
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Figure 3: CMI for MFCC features. Speaking rate, stress, and vowel category.
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Figure 4: CMI for RASTA-PLP features. Speaking rate, stress, and vowel category.

as computed on the data set. Syllables whose duration fell be-
low this threshold were not split; all other syllables were split in
half. This led to 10 labels overall, three possible stress labels for
short syllables (primary,secondary,unstressed) six possible labels
for long syllables (primary-beginning, primary-end, secondary-
beginning, secondary-end, unstressed-beginning and unstressed-
end), and ‘silence’.

The central graphs of Figures 1 through 4 show the resulting
CMI curves. Again, we see our assumptions confirmed: CMI
curves for neutral (unstressed) syllables exceed those for sec-
ondary stressed syllables, which in turn are higher than those for
primary stressed syllables. This holds for all types of features.

3.3. Vowel Quality Finally, we investigated the assumption
that central vowels such as schwa are more coarticulated than pe-
ripheral vowels and diphthongs. To this end, we divided the set of
vowels in the original phoneme set into two classes (central and
peripheral), as shown in the following table:

Central/Lax Vowels Peripheral Vowels
ah,ax,ih,eh,uh aa,ae,ao,aw,ay,eh,er,ey,iy,ow,uw

CMI values were computed separately for each category; the re-
sults are shown in the rightmost graphs of Figures 1 through 4.
The plots, once again, confirm the existence of greater coarticula-
tion for central and lax vowels.

4. DISCUSSION
For the various conditions typically assumed to increase coartic-
ulation (high speaking rate, unstressed syllables, and central/lax
vowels), we find a corresponding increase in the conditional
mutual information. This analysis has potentially important im-
plications for the front-end and acoustic model design of speech
recognition systems as it indicates the degree to which acoustic
realizations of feature vectors can be affected by contextual
factors under different coarticulatory conditions. Therefore, a
system that respects this acoustic contextual dependence might
perform better on everyday conversational speech.
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Notes
1The correlation coefficient is .6
2An empirical analysis was performed on the CSSE features to obtain

a significance level. By computing CMI on Gaussian noise audio signals
represented as CSSE features, it was found that a difference of greater
than about 0.01 bits could be considered significant. For other features
types, the significant difference would likely be smaller than 0.01 bits.
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