
On Approximate Non-submodular Minimization
via Tree-Structured Supermodularity

Yoshinobu Kawahara Rishabh Iyer Jeffery A. Bilmes
Osaka University

ykawahara@sanken.osaka-u.ac.jp
University of Washington, Seattle

rkiyer@u.washington.edu
University of Washington, Seattle

bilmes@u.washington.edu

Abstract

We address the problem of minimizing non-
submodular functions where the supermod-
ularity is restricted to tree-structured pair-
wise terms. We are motivated by several real
world applications, which require submodu-
larity along with structured supermodular-
ity, and this forms a rich class of expressive
models, where the non-submodularity is re-
stricted to a tree. While this problem is
NP hard (as we show), we develop several
practical algorithms to find approximate and
near-optimal solutions for this problem, some
of which provide lower and others of which
provide upper bounds thereby allowing us to
compute a tightness gap. We also show that
some of our algorithms can be extended to
handle more general forms of supermodular-
ity restricted to arbitrary pairwise terms. We
compare our algorithms on synthetic data,
and also demonstrate the advantage of the
formulation on the real world application of
image segmentation, where we incorporate
structured supermodularity into higher-order
submodular energy minimization.

1 Introduction

Minimizing submodular functions, which appears in a
variety of problems in machine learning and related
fields, has been actively studied for several decades.
This problem is polynomially-solvable and several ef-
ficient algorithms have been developed [9, 22]. While
submodularity is natural in many applications, for oth-
ers it is restricting from a modeling perspective, and
thus much recent work has focused on non-submodular
optimization [7, 13, 16, 19, 24]. Algorithms for this

Appearing in Proceedings of the 18th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2015, San Diego, CA, USA. JMLR: W&CP volume 38.
Copyright 2015 by the authors.

are either combinatorial (like greedy or local search)
[7, 19] or rely on relaxations [29, 31]. This occurs
very naturally, for example, in the context of infer-
ence in Markov random fields and image segmenta-
tion [4, 16, 30].

Unfortunately, the most general formulation of this
problem is a difference of submodular functions, that
is if h(A) = f(A)+(−g(A)) = f(A)+ḡ(A) where g and
f are submodular (ḡ = −g is supermodular), then h
can represent any discrete set function [24]. Minimiz-
ing such functions is very hard and in fact inapprox-
imable [13]. In some applications, however, we do not
require this most general form, and a restricted form
of supermodularity suffices. In this paper, we consider
non-submodular minimization where supermodularity
comes only from terms with specific structures, i.e.,
tree-structured pairwise, and later generalize these to
arbitrary pairwise terms. That is, ḡ =

∑
(i,j)∈E φij

where E are the edges of a tree or a graph. This is an
important special case of non-submodular minimiza-
tion, where we might use the specific structure of the
problem to obtain a practical algorithm or to incor-
porate prior information into submodular minimiza-
tion. Thus, we are additively combining the extremes
of polytime solvable problems: on the one hand, we
have f which is submodular, and regardless of the tree-
width, we can minimize it in polynomial time; and on
the other hand, we have ḡ that, in the case of a tree,
can be minimized exactly and efficiently using dynamic
programming even when it uses non-submodular and
non-supermodular potentials.

We are motivated by several real world applications,
where we want to model structured supermodularity
along with submodularity. For example, in the con-
text of image segmentation, submodularity represents
the smoothness (attractive potentials) in an image
while supermodularity represents the roughness (re-
pulsive potentials). Thus, by incorporating supermod-
ular terms on reliable edges obtained by some detector
in addition to a submodular energy, we might expect
to get better segmentation than when using the sub-
modular energy alone. For example, a supermodular
forest or tree could be used to add encouragement for

On Approximate Non-submodular Minimization via Tree-Structured Supermodularity

certain pairs of pixels to be labeled unequally, and for-
est edges could be created perpendicularly across de-
tected image edges obtained via a separate image edge
detection algorithm. We show proof-of-concept results
for this application in Section 5.2.

Our primary contributions are the development of
four distinct algorithms having different properties,
alternating minimization, dual decomposition, con-
tinuous relaxation/rounding, and the submodular-
supermodular procedure, each of which exploits the
structure of the supermodular term and the submod-
ularity of the submodular term. These algorithms to-
gether provide both upper and lower bounds to the
problem, and thus are useful to obtain an approximate
or ε-optimal solutions. We compare the performance
of our algorithms on synthetic data thereby providing
evidence for which should be used in applications, and
also demonstrate the advantage of the formulation in
image segmentation.

The remainder of this paper is organized as follows.
We first define notation and preliminaries. Then, in
Section 2, we first formulate non-submodular mini-
mization with a tree-structured supermodular term,
and characterize this problem. Then in Section 3, we
develop the four aforementioned algorithms. In Sec-
tion 4, we consider the case where the supermodular
term is more general, i.e., consists of arbitrary pair-
wise supermodular functions. Finally, we investigate
the empirical performance of our proposed algorithms
in Section 5, and conclude in Section 6. We also de-
scribe the details for the derivation of the continuous
relaxation algorithm in Appendix A. Most proofs are
described in the supplementary material.

Notations and Preliminaries: A set function f :
2V→ R is called submodular if f(S) + f(T) ≥ f(S ∪
T) + f(S ∩ T) for all S, T ⊆ V, where V = {1, . . . , d}
is a finite set [9, 22]. If (−f) is submodular, then f is

called supermodular. We denote by f̂ the Lovász ex-
tension of a set function f , i.e., a continuous function

f̂ : RV→ R defined by

f̂(x) =
∑l−1
j=1(x̂j − x̂j+1)f(Uj) + x̂lf(V),

where Uj = {i ∈ V : xi ≥ x̂j} and x̂1 > · · · > x̂l are
the m distinct values in the elements of x ∈ RV . It is
known that f is submodular if and only if f̂ is convex
[22]. Also, a bi-set function g : 22V→ R is called simple
bi-submodular [27] if

g(S, T)+g(S ′, T ′) ≥ g(S∪S ′, T ∪T ′)+g(S∩S ′, T ∩T ′)

for all (S, T), (S ′, T ′) ∈ 22V . This means that if we fix
one of the coordinates of g(S, T), it is a submodular
function in the other coordinate. We denote by eS ∈
{0, 1}V , the characteristic vector of S ⊆ V, i.e., eS =∑
i∈S ei, where ei is the i-th unit vector.

2 Non-submodular Minimization with
Tree-Structured Supermodularity

In this section, we first formulate non-submodular
minimization with tree-structured supermodularity,
and then further characterize this problem (the
non-tree case is considered in Section 4). Given a
finite set V := {1, . . . , d} and a tree T = (V, E) whose
vertices correspond to the elements in V, we consider
the following optimization problem:

min
x∈{0,1}V

E(x) = min
x∈{0,1}V

f(S(x)) +
∑

(i,j)∈E

ψij(xi, xj),

(1)
where f : 2V→ R is a submodular function, S :
{0, 1}V→ 2V is a mapping from a characteristic vector
to the corresponding subset and ψij : {0, 1}2→ R+

is strictly supermodular on a pair in E . That is, ψij
satisfies the following inequality equation:

ψij(0, 0) + ψij(1, 1) > ψij(1, 0) + ψij(0, 1). (2)

The objective in problem (1) is therefore not sub-
modular. Also, there is no loss or gain in generality
by requiring the pairwise functions ψij to be strictly
supermodular as any modularity (or pairwise sub-
modularity) can be absorbed into f . Unfortunately,
this problem is already NP hard.

Algorithm 1 Alternating minimization (AM).

Input: α and y0. Output: xt−1 and yt−1.
1: Set t← 1.
2: while not converged do
3: xt ← argminx∈{0,1}V Eα(x,yt−1).

4: yt ← argminy∈{0,1}V Eα(xt,y) and then t← t+ 1.
5: end while

Algorithm 2 AM with simple scheduling (AM-Simple).

Input: α0 ≈ 0(> 0), y0 and C. Output: xt−1.
1: Set t← 1.
2: repeat
3: (xt,yt)← AM(αt−1,yt−1).
4: αt ← C × αt−1 and then t← t+ 1.
5: until xt−1 = yt−1 holds

Algorithm 3 AM with greedy scheduling (AM-Greedy).

Input: y0. Output: xt−1.
1: Set α0 ← 0 and t← 1.
2: repeat
3: αt ← argmaxα[Eα(xt−1,yt−1) −

Eα(x∗α,yt−1
,y∗α,yt−1

)], where (x∗α,yt−1
,y∗α,yt−1

)

is the output of AM(α,yt−1).
4: (xt,yt)← AM(αt,yt−1) and then t← t+ 1.
5: until xt−1 = yt−1 holds

Theorem 1. Problem (1), where E are the edges of a
forest, is NP hard.

Yoshinobu Kawahara, Rishbh Iyer, Jeff Bilmes

Proof. The idea is to reduce this problem to the vertex
cover problem. Given an instance of the vertex cover
problem, i.e., a graph G = (V,E), define an auxiliary

graph Ĝ = (V̂ , Ê) as follows. V̂ = V ∪ V̄ , where V̄ are
a set of |V | appended vertices V̄ = {̄i, i ∈ V }. Fur-

thermore, Ê = {(i, j), (i, j̄), ī, j), (̄i, j̄)},∀(i, j) ∈ E.
Hence the auxiliary graph has 2|V | vertices and 4|E|
edges. Now define the submodular function as f(X) =∑

(i,j)∈E C(1−xi)xj̄ +
∑
i∈V xi. Note that f is a pair-

wise submodular function. Define the supermodular
tree function as T (X) =

∑
i∈V C.I(xi = xī). In both

functions, ensure that the constant C ≥ n. Then for
any vertex cover, X in G, we have that f(X)+T (X) =
|X|. Furthermore, if X is not a vertex cover, the term∑

(i,j)∈E C(1 − xi)xj̄ +
∑
i∈V C.I(xi = xī) > 0, and

hence, f(X) ≥ C ≥ n. Correspondingly, the mini-
mum solution to this problem, is the minimum vertex
cover, which is NP hard to find.

The problem (1) is a special case of non-
submodular minimization problems, but here the non-
submodularity comes only from the tree-structured
term. The above theorem shows that even restrict-
ing the supermodularity to a tree does not help in
terms of the hardness. We shall, however, provide sev-
eral approximate and near optimal algorithms to this
problem that are, fortunately, made possible by the
fact that the supermodularity is restricted to a tree.

Approaches to Optimization We consider four
approaches to Problem (1): Alternating Minimiza-
tion (AM), Dual Decomposition (DD), Continuous Re-
laxation with rounding (CR), and the Submodular-
Supermodular Procedure (SSP). Basically, DD and
CR optimize lower bounds of the original problem
while AM and SSP provide upper bounds. In each
case, we theoretically analyze these algorithms, and
finally empirically compare them in Section 5.

3 Optimization

The four approaches to problem (1) are described in
the following subsections: AM in subsection 3.1; DD
in subsection 3.2, CR in subsection 3.3; and SSP in
subsection 3.4. Our algorithms require submodular
minimization as a subroutine, which can be performed
efficiently in general [2] and even more efficiently for
sub-classes of submodular functions (e.g., generalized
graph-cuts [17, 23]). Exact inference on trees is always
efficient and easy using dynamic programming.

3.1 Alternating Minimization (AM)

Since exact minimization of each term individually in
Eq. (1) can be efficiently solved, one can apply a sim-
ple alternating minimization (AM) procedure (Algo-

0 0.02 0.04 0.06 0.08 0.1
26

27

28

29

30

31

32

Solutions by AM for different
(,) at each iter. of AM−Greedy
(,) at each iter. of AM−Simple (C=1.2)
(,) at each iteration of AM−Simple (C=1.8)
(,) at each iteration of AM−Simple (C=2.5)

α
α
α
α
α

Value of α

εα
εα
εα
εα

Va
lu

e
of

 ε
α

(0.042, 30.58)

(0.095, 31.09)

(0.068, 31.17)

(0.050, 31.08)

31.4325

Figure 1: Sols. by AM for various α, and pairs (Eα, α) at

each iter. of AM-Simple (with various Cs) and AM-Greedy.

rithm 1). Define the following:

Eα(x,y) = f(S(x))+
∑

(i,j)∈Eψij(yi, yj)+α ·dh(x,y),

(3)
where α ≥ 0 and dh : {0, 1}V×V→ R is the Ham-
ming distance. Starting with an arbitrary initial y0 ∈
{0, 1}V , AM alternately minimizes Eα(x,y) with re-
spect to x while y is held fixed and then vice-verse.1

That is, we iterate

xt = argmin
x∈{0,1}V

Eα(x,yt−1) and yt = argmin
y∈{0,1}V

Eα(xt,y).

This procedure always decreases the value of Eα until
convergence.2 Although, at convergence, x and y are
not necessarily equal, the final value of Eα offers an
upper bound of the original problem (1) due to the
following proposition:

Proposition 2. Given any x,y, z ∈ {0, 1}V such that
x 6= y, then there exists a finite ᾱ such that

Eᾱ(x,y) ≥ Eᾱ(z, z) = E(z).

Since dh(x,y) > 0 (due to x 6= y), the proof of this
proposition is obvious from Eq. (3).

The direct application of AM to Problem (3), how-
ever, does not necessarily produce a useful solution to
the original problem (1). This is because, if we set a
relatively large α to make x = y at termination, the
distance term in Eq. (3) is dominant and the proce-
dure quickly gets stuck near y0. A solution is to utilize
appropriate scheduling of α to ensure a sequence of so-
lutions gradually move towards each other. How to do
this optimally is an interesting issue, but in this work
we introduce a simple (but reasonable) strategy to in-
crease the value of α gradually until both solutions are
equivalent. Denote a multiplier by C > 1, and then
update α as α ← C × α (AM-Simple, Algorithm 2).
This scheduling is not worse at each step than just
Algorithm 1 in the sense of the following proposition:

Proposition 3. Let α1 < α2 and y0 ∈ {0, 1}V . Then,
if (x∗1,y

∗
1) ← AM(α1,y0) and (x∗2,y

∗
2) ← AM(α2,y

∗
1)

1We do not necessarily need to start from y, we could
start from x just as well.

2 Convergence here means Eα(xt+1, yt+1) ≥ Eα(xt, yt)−
TOL for a given α and some tolerance TOL ≥ 0.

On Approximate Non-submodular Minimization via Tree-Structured Supermodularity

Algorithm 4 Dual decomposition (DD) for problem (1).

Input: δ0 ≈ 0. Output: xt (and yt).
1: Set t← 1.
2: while δt does not converge do
3: Set ct ← 1/t.
4: xt ← argminx∈{0,1}V f(S(x)) + δ>t−1x.

5: yt ← argminy∈{0,1}V
∑

(i,j)∈E ψij(yi, yj)− δ
>
t−1y.

6: δt ← δt−1 + ct · g(xt,yt) (g is a subgradient of L
with respect to δ)

7: end while

and (x̄∗, ȳ∗) ← AM(α2,y0), then there exists some
minimal value, say α̃, for α1 such that for all α1 ≥ α̃,
we have that the objective at α2 satisfies:

Eα2
(x∗2,y

∗
2) ≤ Eα2

(x̄∗, ȳ∗).

We further enhance the scheduling of α using a greedy-
like procedure, as shown in Algorithm 3 (AM-Greedy).
Here, at each outer iteration, we choose an α (Line 3
of Algorithm 3), chosen via binary search, such that
Eα decreases the most from the previous candidate so-
lution. This scheduling, in fact, works well in practice
as will be seen below in the experimental section.

Figure 1 shows a typical example of solutions by AM
with different α and sequences of solutions (until con-
vergence) by AM-Simple and AM-Greedy, where we
note that x = y holds only for solutions by AM with
α > 0.044 and also for solutions at convergence by
AM-Simple and AM-Greedy. For AM, the α values
are chosen by hand, and for the other procedures, the
sequence α values are determined automatically (and
increase at each iteration).3 We note that for small
α, the final Eα can get smaller since the two sides are
less constrained to be equal, and the submodular and
supermodular terms can be relatively independently
optimized. The figure shows that the objective value
for AM with x = y (which is 31.4325) is worse than the
ones for the other variants. In particular, AM-Greedy
achieves an objective value, with x = y, of 30.58.

3.2 Dual Decomposition (DD)

In the AM approach, we ensure feasible solutions by
adjusting α in a manner that works well in practice,
but it is indeed heuristic. A more systematic approach
(and often applied to ML problems) is dual decompo-
sition [20], or Lagrangian relaxation, which is quite
naturally applied to problem (1). We note that [20]
considers this approach for Markov random field sub-
modular sub-problems with pairwise potentials (where
graph cuts can provide a solution), but the approach
is just as applicable for an arbitrary submodular func-
tion f . We reformulate the original problem (1) in the

3This is an example with data generated as in the man-
ner described in Section 5.1.

following (equivalent) form:

min
x,y∈{0,1}V

f(S(x)) +
∑

(i,j)∈E

ψij(yi, yj)(=: E(x,y))

s.t. xi = yi (i ∈ V). (4)

It is obvious that the solutions of problems (1) and (4)
are equivalent. Note that the minimization with re-
spect to each part in Eq. (4) is solvable efficiently
with submodular minimization (for the first term) or
dynamic programming (DP) (for the second), respec-
tively. This motivates us to solve the dual problem

max
δ

L(δ) = max
δ

min
x,y∈{0,1}V

E(x,y) + δ>(x− y), (5)

where δ ∈ RV is the Lagrangian coefficients, in place
of the primal one (4). This always provides a lower
bound of the primal although we do not necessarily
have strong duality. However, for some function E(x),
strong duality might hold, as stated in the following:

Proposition 4. If there exist δ∗ and x∗ such that

x∗ ∈ argmin
x

f(S(x)) + (δ∗)>x and

x∗ ∈ argmin
x

∑
(i,j)∈Eψij(xi, xj)− (δ∗)>x,

then x∗ is an optimal solution to problem (1) and
hence L(δ∗) = E(x∗).

Similar statements appear in multiple papers on the
MAP inference on MRFs [10, 20, 28]. The condi-
tions of the proposition correspond to the subproblems
agreeing on a minimizing x of E(x). Since agreement
implies optimality of the dual, it can only occur af-
ter the algorithm finds the tightest lower bound. Al-
though agreement is not guaranteed, if we do reach
such a state, then Proposition 4 ensures an exact so-
lution to problem (1).

Each subproblem is still solvable efficiently. Since L(δ)
is concave on δ (and non-differentiable), the outer op-
timization (with respect to δ) can be performed by a
subgradient methods or block coordinate descent. In
Algorithm 4, we show pseudo-code of DD with a sub-
gradient method.

Dual decomposition is also useful since it provides both
a lower bound L(δ) to the optimal objective value, and
also an upper bound (we use min[E(x,x), E(y,y)]).
In both cases, for our results below, the bounds are
computed right after line 5 of Algorithm 4

3.3 Continuous Relaxation (CR)

For MAP inference on MRFs, it is well known that
dual decomposition is equivalent to solving the dual
of a linear programming (LP) relaxation of the orig-
inal problem [30]. Therefore, many algorithms based
on the LP relaxation have been actively discussed in

Yoshinobu Kawahara, Rishbh Iyer, Jeff Bilmes

this context. In this subsection, we consider a convex
relaxation approach to problem (1). Consider the fol-
lowing relaxation of problem (1) to the domain [0, 1]V :

min
x∈[0,1]V ,µ∈[0,1]4|E|

f̂(x) +
∑

(i,j)∈E

∑
x̄ij∈{0,1}2

ψij(x̄i, x̄j)µij,x̄ij ,

s.t.
∑

x̄ij∈{0,1}2
µij,x̄ij = 1,

∑
i∈V

µij,x̄ij = xj ,

∑
j∈V

µij,x̄ij = xi, (6)

where µ = {µij,x̄ij} are the alternative variables for

this representation, and f̂ is the Lovász extension of
f and hence is convex. Therefore, this is basically
an extended formulation of LP relaxation methods for
MAP inference on MRFs, but using the Lovász exten-
sion. Although several optimization methods, includ-
ing dual decomposition, can be applied to this prob-
lem, we develop an algorithm based on Alternating
Direction Method of Multipliers (ADMM) [8, 5] in the
current subsection. This is because ADMM possesses
superior convergence properties. Note that it can be
intractable to solve Eq. (6) directly by a constrained
convex solver due to the representation of the Lovász
extension. Also note that the application of ADMM
to a discrete problem is not straightforward and thus
it is beyond the scope of this paper to apply it directly
to problem (4).

For simplicity, we denote by 〈ψ,µ〉 the second term
in the objective and by Aµ = 1|E| and Bµ = Cx
the sets of the equality constraints. The augmented
Lagrangian for ADMM is then given by

Lρ(x,µ, δ) =f̂(x) + 〈ψ,µ〉+

[
δ1

δ2

]>[
Aµ− 1|E|
Bµ− Cx

]
+ (ρ/2)(‖Aµ− 1|E|‖22 + ‖Bµ− Cx‖22),

where δ1 ∈ R|E| and δ2 ∈ R2|E| are the Lagrangian
coefficient vectors and ρ > 0 is the penalty parameter.
Then, ADMM consists of the iterates:

xk+1 ⇐ argmin
x∈[0,1]V

Lρ(x,µ
k, δk) (7a)

µk+1 ⇐ argmin
µ∈[0,1]2V

Lρ(x
k+1,µ, δk) (7b)

δk+1
1 ⇐ δk1 + ρ(Aµk+1 − 1|E|),

δk+1
2 ⇐ δk+1

2 + ρ(Bµk+1 − Cxk+1)
(7c)

While the minimization for µ in step (7b) is a quadratic
problem, the one for x in step (7a) is a non-smooth
convex problem. Thus, for example, we can apply
proximal gradient methods to solve this step. Since
the objective consists of the Lovász extension of a
submodular function and a least-squares term, we can
calculate the proximal operator as a minimum-norm-
point (MNP) problem, as in a (not entirely straight-
forward) fashion similar to [1, 2, 23] (for details, see

Algorithm 5 Continuous relaxation with rounding (CR)

for problem (1).

Input: µ0, δ1,0, δ2,0 and ρ > 0. Output: x∗.
1: Set t← 1.
2: while not converged do
3: xt+1 ← argminx∈[0,1]V Lρ(x,µt, δt) (by solving

MNP, see Appendix A).
4: µt+1 ← argminµ∈[0,1]4|E| Lρ(xt+1,µ, δt) (by solving

the convex minimization).
5: δ1,t+1 ← δ1,t + ρ(Aµt+1 − 1|E|), δ2,t+1 ⇐ δ2,t +

ρ(Bµt+1 − Cxt+1).
6: end while
7: Round xt+1 to a integral solution x∗.

Appendix A below). In general, this problem might
not be tractable in practice for large problems. How-
ever, if the submodular function has a specific struc-
ture and can be solved efficiently, such as a generalized
graph-cut function, often found in practice, this could
lead to a scalable algorithm for solving the problem
[17, 23]. Also we note that since it is known that spar-
sity or even tree-structures can be used to accelerate
the calculation of the quadratic problem, the structure
of our problem (1) can accelerate the computation of
Eq. (7b).

A solution for problem (6) is not necessarily inte-
gral, and hence we must apply rounding. Although
there are several possible deterministic and random-
ized rounding algorithms [25] that could be applied
directly to our case, we use the node-based rounding of
[25] in the experiments below. Algorithm 5 shows the
pseudo-code of our continuous relaxation algorithm.

3.4 Submodular-Supermodular Procedure
Using Pairwise Structures (SSP)

The Submodular-Supermodular procedure (SSP) [24,
13] is a set of heuristics for minimizing a general set
functions. [13] propose a number of different variants
of the submodular-supermodular procedures that have
worked well for a variety of problems. The most gen-
eral algorithms do not specifically exploit the struc-
ture of the problem, and work for arbitrary sums of
submodular and supermodular terms. In particular,
they use the modular upper and lower bounds of a
submodular function, in a Majorization-Minimization
framework [15, 14, 13, 12]. We consider two variants
here, which exploit the specific structure.

In one variant of SSP, we iteratively minimize the
sum of a submodular function and a supermodular
function by replacing the supermodular part by its
(typically, modular) upper bound [11] at every iter-
ation. Here, we describe an efficient special form of
the submodular-supermodular procedure for minimiz-
ing E(x) in Eq. (1) with a modular upper bound that
can be calculated easily based on the structure of a
pairwise supermodular function. For each pair (i, j) ∈

On Approximate Non-submodular Minimization via Tree-Structured Supermodularity

E(x), let us define b1
ij ,b

2
ij ∈ R2, respectively, as

b1
ij =

[
ψij(1, 0)

ψij(1, 1) + ψij(0, 0)− ψij(1, 0)

]
and

b2
ij =

[
ψij(1, 1) + ψij(0, 0)− ψij(0, 1)

ψij(0, 1)

]
Note that all elements in b1

ij and b2
ij are always

positive from the supermodularity and the positivity
of ψij . Then, ψij(xi, xj) can be represented as

ψij(xi, xj) = ψij(0, 0)·(1−x>ij12)+min{x>ijb1
ij ,x

>
ijb

2
ij},
(8)

where xij = [xi, xj]
>. This function is bi-submodular.

Then, for a given x̄ij , define a vector b̃ij as

b̃ij = b1
ij (if x̄ij = (1, 0)>), b2

ij (if x̄ij = (0, 1)>) and

(b1
ij + b2

ij)/2 (otherwise). (9)

Then, hx̄ij (xij) := ψij(0, 0)(1 − x>ij12) + x>ijb̃ij =

ψij(0, 0) + x>ij(b̃ij − ψij(0, 0)12) is a modular upper
bound that is tight with respect to a given point
x̄ij , which can be calculated easily. By summing
up this for all pairs in E , we have a modular upper
bound of the original supermodular term. Thus,
we can apply SSP with hx̄ij , and iteratively solve
xt+1 ← argminx∈{0,1}V f(S(x)) +

∑
(i,j)∈E hx̄ij (xij),

until convergence.

Another variant of SSP is the Supermodular-
Submodular procedure, where one replaces the sub-
modular function f by its modular upper bound [11],
and then minimizes the supermodular function [13].
Here, we replace f by its upper bound mf , and opti-
mize mf (S(x)) +

∑
(i,j)∈E ψij(xij). In this case, the

resulting term is expressed as a tree, which can be min-
imized exactly via dynamic programming. Moreover,
under certain assumptions on f and ψ, these admit
approximation guarantees.

Lemma 5. Assuming that f is monotone submod-
ular, and the tree function ψ is non-negative, the
supermodular-submodular procedure achieves an ap-
proximation factor of |S(x∗)| ≤ n.

We can improve this factor, based on the curvature
of f [14, 12]. The proof is given in Appendix A.
The submodular-supermodular procedure also attains
an approximation factor if we slightly change the for-
mulation. Assume we are given a submodular tree
function ψ, and a supermodular function f . Instead
of the minimization problem, consider the problem of
maximizing f(X) + ψ(X). Notice that both problems
are equivalent from an optimization perspective. The
submodular-supermodular procedure then achieves a
1/2 approximation under certain assumptions.

Lemma 6. The submodular-supermodular procedure
achieves a 1/2 approximation, as long as the submod-
ular function ψ is monotone submodular, and the func-
tion f is non-negative.

4 Arbitrary Pairwise Supermodularity

The optimization methods described above can be ap-
plied to the case of arbitrary pairwise supermodular
terms, directly or with minor changes, except for AM.
That is, the applicability of CR and SSP do not change
for a general graph G = (E ,V), in place of a tree T ,
for defining the pairwise term in Eq. (1). And, DD
can be applied similarity simply by solving three inner
subproblems.

Here, we describe a particular instance of DD appli-
cable to arbitrary pairwise terms. Let Gi = (Vi, Ei)
(i ∈ {1, 2}) be two acyclic subgraphs of the mas-
ter graph G, with V1 = V2 = V, E1 ∪ E2 = E
and E1 ∩ E2 = ∅ (for example, if G is a grid graph,
then E1 may contain all horizontal edges of G and
E2 all vertical ones). Then, the objective E(x) be-
comes the sum of the submodular part and the pair-
wise terms corresponding to these subgraphs E(x) =
f(S(x)) +

∑
(i,j)∈E1 ψij(xi, xj) +

∑
(i,j)∈E2 ψij(xi, xj).

Then, by preparing variables for each term as well as
Eq. (4), we have again an equivalent problem for the
minimization:

min
x,y,z∈{0,1}V

f(S(x)) +
∑

(i,j)∈E1

ψij(yi, yj) +
∑

(i,j)∈E2

ψij(zi, zj)

s.t. xi = yi, xi = zi.

The minimization can be solved efficiently for each
subproblem. Hence, we solve the dual given by

max
δ1,δ2

L(δ1, δ2) = max
δ1,δ2

E(x,y, z)+δ>1 (x−y)+δ>2 (x−z)

where E(x,y, z) is the objective of the primal prob-
lem and δ1, δ2 are the Lagrangian coefficients. Similar
to the tree case, L(δ1, δ2) is concave on (δ1, δ2), we
can apply the subgradient method or the coordinate
descent method to solve the dual.

5 Experimental Evaluation

In Subsection 5.1, we investigate and compare the per-
formance of the four proposed approaches on synthetic
data. Then, we apply them to image segmentation in
Subsection 5.2. The experiments below were run on a
2.6 GHz 64-bit computer using Matlab. For the calcu-
lation of a maximum flow problem (for the second), we
used a C++ implementation modified from the shared
code by Kohli et al. [18].

5.1 Evaluation on Synthetic Data

Our first experiment was performed with synthetic
data generated as follows. First for a submodular func-
tion, we used a modular plus concave-over-modular
function

√
w1(S) + αw2(V \ S) with randomly cho-

sen vectors w1, w2 in [0, 1]n, and the objective in [21],

Yoshinobu Kawahara, Rishbh Iyer, Jeff Bilmes

100 101 102

30

35

40

45

50

55

60

65

SSP
AM−SImple
AM−Greedy
DD (Lower Bound)
DD (Upper Bound)
CR (Lower Bound)

Time [s] (log-scale) Time [s] (log-scale)
100 101 10280

90

100

110

120

130

SSP
DD (Lower Bound)
DD (Upper Bound)

Figure 2: Typical examples (for a concave-of-modular
function of |V| = 324) of solution sequences by the algo-
rithms for the cases with a tree-structured supermodular
term (left) and arbitrary pairwise ones (right).

10 20 30 400

2

4

6

SSP
AM−Simple
AM−Greedy
DD
CR

LB by DD

U
B

 -
 L

B

800 850 900
0

20

40

60

80

100

LB by DD

U
B

 -
 L

B

SSP
AM−Simple
AM−Greedy
DD
CR

Figure 3: Lower bounds (by DD) vs. ε-optimality, i.e. (up-
per bounds by the algorithms)− (LB (by DD)), for several
instances (left: concave-of-modular funct., right: objective
in [21] with the tree-structured term).

f(S) =
∑
i∈V

∑
j∈S sij −λ

∑
i,j∈S sij , where λ is a re-

dundancy parameter and {sij} is a random similarity
matrix. And for the supermodular part, we randomly
generated a tree or an undirected graph over nodes
V, where we used GENRMF available from DIMACS
Challenge4 to generate a graph and also find a mini-
mum spanning tree on the graph for the tree case. We
created a supermodular potential by first randomly as-
signing values ψij(0, 0) and ψij(1, 1) in [0, 1], and then
randomly giving values on ψij(0, 1) and ψij(1, 0) such
that these satisfy the inequality in Eq. (2). Figure 2
shows typical examples of algorithmic convergence for
a concave-over-modular function with a supermodu-
lar tree-structured or arbitrary pairwise term, where
|V| = 324. Figure 3 shows the plots of lower bounds
(by DD) vs. upper bounds by the algorithms for dif-
ferent sizes of instances for the cases with two sub-
modular functions and a tree-structured supermodu-
lar term. In general, CR ran significantly slower and
didn’t complete in some cases. SSP obtained a reason-
able solution very quickly, but then got stuck at local
optima — a reasonable hybrid approach would be to
warm-start DD with SSP (not shown).

5.2 Application to Image Segmentation

We formulated segmentation in an image as prob-
lem (1), where we used the tree-structured term to
incorporate information about edges into submodu-
lar energy minimization. As a submodular potential,
we used the robust Pn Potts model [18] (with binary
labels), where the unary, pairwise and higher-order

4
The 1st DIMACS Int’l Algo. Implementation Challenge, 1990.

See http://dimacs.rutgers.edu/Challenges/.

edge
pixel

triplet for
supermodular term

Figure 4: Construction of

triplets for the supermod-

ular term.

terms are respectively given by

φi(xi) = θTφT (xi) + θcolφcol(xi) + θlφl(xi) (i ∈ V),

φij(xi, xj) =

{
0 if xi = xj ,
θp + θv exp(θβ‖Ii − Ij‖2) otherwise

,

φc(xc) =

 0 if xi = lc, ∀i ∈ c,
|c|θα(θhp + θhv exp(−(θhβ/|c|)‖

∑
i∈c(f(i)− µ)2‖)

otherwise
,

where φT , φcol and φl are potentials from Texton-
Boost [26],5 color and location, Ii and Ij are the
color vectors of pixel i and j, f(·) is a function evalu-
ated on all constituent pixels of the superpixel c and
µ =

∑
i∈c f(i)/|c|, respectively. Here, we used binary-

segmented images in MSRC data [26] (1/2 images were
used for training) and applied similar parameters to
the ones used in [18]:

θT = 0.7, θcol = 0.2, θl = 0.27, θp = 1.0, θv = 1.5, θβ = 8.0,

θα = 0.8, θhp = 0.2, θhv = 0.5, θhβ = 12.0.

Segments C for the higher-order potential were gen-
erated from mean-shift [6]. Moreover, with edges
obtained by a popular edge detector (the Prewitt
method), the tree-structured supermodular term was
constructed as follows: first, we generated a set of
triplets of pixels that stride across detected image edge
boundaries, as shown in Figures 4 and 5 (upper right).
Then, we found a minimum-spanning tree (forest) on
pixels included in all triplets and set a supermodular
potential on each pair in the tree.

Figure 5 (bottom left) shows a typical example by the
robust Pn Potts model (which either entirely misses
the background between the bench slats (shown), or
removes significant portions of the bench from the fore-
ground (not shown)), and our formulation which re-
duces this problem (bottom right). For the optimiza-
tion in our formulation, we used AM-Greedy (Algo. 3)
with the maximum flow algorithm. As can be seen, the
addition of the supermodular forest significantly im-
proves the quality of the segmentation in background
regions where the submodular-only potential fails.

5TextonBoost is originally a method for multiple classes
segmentation. We used its outputs as the labeling on a
main object and others. For the training, the half of all
images in the whole MSRC data was used.

On Approximate Non-submodular Minimization via Tree-Structured Supermodularity

Figure 5: Original image (upper left), supermodular for-

est (upper right), segmentation result with the robust Pn

model (bottom left) and segmentation result with our for-

mulation (bottom right).

6 Conclusions

We have developed algorithms for minimizing the sum
of a submodular function and a tree-structured super-
modular term based on four different approaches. We
further describe extensions of the framework to the
case with arbitrary pairwise terms. We investigated
the performances of the proposed algorithms with syn-
thetic data and applied the formulation to image seg-
mentation, where information on image edges detected
beforehand is incorporated through the supermodular
term into the energy, showing improved results.

A Derivation of the MNP Problem
for Eq. (7a)

We first offer some preliminaries necessary for this sec-
tion. For a submodular function f with f(∅) = 0, the
submodular polyhedron P (f) ⊆ RV and the base poly-
hedron B(f) ⊆ RV are respectively defined as

P (f) = {z ∈ RV : z(S) ≤ f(S)(∀S ⊆ V)} and

B(f) = {z ∈ P (f) : z(V) = f(V)},

where z(S) =
∑
v∈S zv (for S ⊆ V). For any vector c ∈

RV , we denote by f c(S) the reduction of f by c, i.e., fc

is defined as fc(S) = minT ⊆S f(T)+c(S\T) (S ⊆ V).
Note that P (fc) = {z ∈ P (f) : z ≤ c} (cf. Figure 6
(left)). Also for any vector c ∈ RV , the translation
of a submodular function f by c, i.e., (f + c)(S) =
f(S) + c(S), is submodular (cf. Figure 6 (right)).

For a vector v ∈ RV , v[a,b] means a vector whose i-th
element is defined as

v[a,b],i =

 a for i s.t. vi ≤ a,
vi for i s.t. a ≤ vi ≤ a,
b for i s.t. vi ≥ b.

In this appendix, we describe the detail of the deriva-
tion of the minimum-norm-point (MNP) problem to

z2

P(f)

0 z1

c

P(f)c

z2

P(f)

0 z1

B(f)

B(f+c)

P(f+c)

c

c

Figure 6: Illustrations of the submodular/base polyhedra

of the reduction of submodular function f by a vector c

(left) and the translation of f by a vector c (right).

calculate the proximal operator for solving Eq. (7a).
As described in Section 3.3, Eq. (7a) involves the min-
imization of the sum of the Lovász extension of a sub-
modular function and a quadratic term. Since this is
a non-smooth convex problem, it can be solved with
the proximal gradient method, such as FISTA (the fast
iterative shrinkage-thresholding algorithm) [3]. Here,
the calculation of the proximal operator in our case is
reduced to the following problem:

min
x∈[0,1]V

f̂(x) + λ‖x− a‖22. (10)

where a ∈ RV . Note that we have the constraint on
the range of x. Although we might be able to solve
problem (10) by a general non-smooth convex solver, it
can take much time due to the structure of the Lovász
extension. However, we can find a solution to Eq. (10)
by solving the problem without the constraint [0, 1]V :

min
x̃∈RV

f̂(x̃) + λ‖x̃− a‖22 = min
x̃∈RV

max
t∈B(f)

x̃>t + λ‖x̃− a‖22

= max
t∈B(f)

−
∑
i∈V

t2i /(4λ) + tiai,

(11)

where note that the last problem is equivalent to the
so-called minimum-norm-point (MNP) problem (see,
for the details of the derivation, [2]).

Theorem 7. Let (x̃∗, t∗) be an optimal pair to prob-
lem (11). Then, x∗ := x̃∗[0,1] is an optimal solution to

problem (10).

Thus, we can solve Eq. (7a) by iteratively (in the prox-
imal gradient method) solving the MNP problem (w/o
the constraint) (11) and thresholding the solution.

Acknowledgments: We thank the UW-MELODI
for discussions. This material is based upon work
supported by the National Science Foundation under
Grant No. IIS-1162606, and by a Google, a Microsoft,
and an Intel research award. Rishabh Iyer also ac-
knowledges support from the Microsoft Research Ph.D
Fellowship Award.

References

[1] F. Bach. Structured sparsity-inducing norms through
submodular functions. In Advances in Neural Infor-

Yoshinobu Kawahara, Rishbh Iyer, Jeff Bilmes

mation Processing Systems, volume 23, pages 118–
126. 2010.

[2] F. Bach. Learning with submodular functions: A con-
vex optimization perspective. Foundations and Trends
in Machine Learning, 6(2–3):145–373, 2013.

[3] A. Beck and M. Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202,
2009.

[4] L. Bordeaux, Y. Hamadi, and P. Kohli. Tractability:
Practical Approaches to Hard Problems. Cambridge
University Press, 2014.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eck-
stein. Distributed optimization and statistical learn-
ing via the alternating direction method of multipliers.
Found. & Trends in Mach. Learn., 3(1):1–122, 2011.

[6] D. Comaniciu and P. Meer. Mean shift: A robust ap-
proach toward feature space analysis. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 24(5):603–
619, 2002.

[7] D.-Z. Du, R.L. Graham, P.M. Pardalos, P.-J. Wan,
W. Wu, and W. Zhal. Analysis of greedy approxi-
mations with nonsubmodular potential functions. In
Proc. of the 19th Ann. ACM-SIAM Symp. on Discrete
Algorithm (SODA’08), pages 167–175, 2008.

[8] J. Eckstein and D.P. Bertsekas. On the Douglas-
Rachford splitting method and the proximal point al-
gorithm for maximal monotone operators. Mathemat-
ical Programming, 55(1-3):293–318, 1992.

[9] S. Fujishige. Submodular Functions and Optimization.
Elsevier, 2nd edition, 2005.

[10] A.M. Geoffrion. Lagrangian relaxation for integer pro-
gramming. Math. Prog. Study, 2:82–114, 1974.

[11] R. Iyer and J. Bilmes. The submodular Bregman
and Lovász-Bregman divergences with applications.
In NIPS, 2012.

[12] R. Iyer and J. Bilmes. Submodular Optimization with
Submodular Cover and Submodular Knapsack Con-
straints. In NIPS, 2013.

[13] R. Iyer and J.A. Bilmes. Algorithms for approximate
minimization of the difference between submodular
functions, with applications. In UAI, 2012.

[14] R. Iyer, S. Jegelka, and J. Bilmes. Curvature and
optimal algorithms for learning and minimizing sub-
modular functions. In NIPS, 2013.

[15] R. Iyer, S. Jegelka, and J. Bilmes. Fast
semidifferential-based submodular function optimiza-
tion. In ICML, pages 855–863, 2013.

[16] S. Jegelka and J.A. Bilmes. Submodularity beyond
submodular energies: coupling edges in graph cuts. In
Computer Vision and Pattern Recognition (CVPR),
Colorado Springs, CO, June 2011.

[17] S. Jegelka, H. Liu, and J.A. Bilmes. On fast approxi-
mate submodular minimization. In Advances in Neu-
ral Information Processing Systems, volume 24, pages
460–468. 2011.

[18] P. Kohli, L. Ladický, and P.H.S. Torr. Robust higher
order potentials for enforcing label consistency. In-
ternational Journal of Computer Vision, 82:302–324,
2009.

[19] V. Kolmogorov and C. Rother. Minimizing nonsub-
modular functions with graph cuts – A review. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
29(7):1274–1279, 2007.

[20] N. Komodakis, N. Paragios, and G. Tziritas. MRF
energy minimization and beyond via dual decompo-
sition. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 33(3):531–552, 2011.

[21] H. Lin and J. Bilmes. Multi-document summarization
via budgeted maximization of submodular functions.
In NAACL-HLT, pages 912–920, 2010.

[22] L. Lovász. Submodular functions and convexity. In
A. Bachem, M. Grötschel, and B. Korte, editors,
Mathematical Programming – The State of the Art,
pages 235–257. 1983.

[23] K. Nagano and Y. Kawahara. Structured convex op-
timization under submodular constraints. In Proc. of
the 29th Ann. Conf. on Uncertainty in Artificial In-
telligence (UAI’13), pages 459–468, 2013.

[24] M. Narasimhan and J.A. Bilmes. A submodular-
supermodular procedure with applications to discrim-
inative structure learning. In UAI, pages 404–412,
2005.

[25] P. Ravikumar, A. Agarwal, and M.J. Wainwright.
Message-passing for graph-structured linear pro-
grams: Proximal methods and rounding schemes.
Journal of Machine Learning Research, 11:1043–1080,
2010.

[26] J. Shotton, J. Winn, C. Rother, and A. Criminisi.
Textonboost: Joint appearance, shape and context
modeling for multi-class object recognition and seg-
mentation. In ECCV, pages 1–15, 2006.

[27] A.P. Singh, A. Guillory, and J.A. Bilmes. On bisub-
modular maximization. In Proc. of the 15th Int’l
Conf. on Artificial Intelligence and Statistics (AIS-
TATS’12), pages 1055–1063, 2012.

[28] D. Sontag, A. Globerson, and T. Jaakkola. Introduc-
tion to dual decomposition for inference. In S. Sra,
S. Nowozin, and S. J. Wright, editors, Optimization
for Machine Learning. MIT Press, 2011.

[29] M.J. Wainwright, T. Jaakkola, and A.S. Willsky.
MAP estimation via agreementontrees: Message-
passing and linear programming. IEEE Trans. on In-
formation Theory, 51(11):3697–3717, 2005.

[30] M.J. Wainwright and M.I. Jordan. Graphical models,
exponential families, and variational inference. Foun-
dations and Trends in Machine Learning, 1(1–2):1–
305, 2008.

[31] T. Werner. Revisiting the linear programming re-
laxation approach to Gibbs energy minimization
and weighted constraint satisfaction. IEEE PAMI,
32(8):1474–1488, 2010.

On Approximate Non-submodular Minimization via Tree-Structured Supermodularity

Proof of Proposition 3

We first see that there always exists a lower bound
of α such that the distance term becomes smaller (or
equivalent) after AM for an initial y0, i.e.,

dh(x∗,y∗) ≤ dh(x1,y0)

where x1 ∈ argminx Eα(x,y0) and pair (x∗,y∗) is
the output of AM with inputs (α,y0). First, it
is obvious that dh(x∗,y∗) is a non-increasing func-
tion for α (while E(x∗,y∗) is non-decreasing). If
α = 0, then x∗ ∈ argminx f(S(x)) and y∗ ∈
argminy

∑
(i,j)∈E ψij(yi, yj) and thus dh(x∗,y∗) takes

some finite value. Meanwhile, if α → ∞, then
dh(x∗,y∗) becomes 0. Therefore, the statement holds
(we denote by α̃ the lower bound). Since we can find a
small value of E for an initial with a smaller distance
term for a common α, the statement of the proposition
follows from dh(x∗1,y

∗
1) < dh(x1,y0) from the above

statement.

Proof of Proposition 4

For the given δ∗ and x∗, it is obvious that

L(δ∗) = E(x∗,x∗) + δ∗(x∗ − x∗) = E(x∗,x∗)

≥ min
x,y∈{0,1}V ,xi=yi(i∈V)

E(x,y) = min
x∈{0,1}V

E(x).

Meanwhile, since L(δ) is the Lagrangian relaxation of
the original problem, we always have

L(δ∗) ≤ min
x∈{0,1}V

E(x). (12)

Thus, taking the above two equations together, we
have the equality in Eq. (12), which shows the state-
ment of the proposition.

Proof of Lemma 5

This result directly follows from the fact that the mod-
ular upper boundmf (X) is an approximation of f such
that [15],

f(X) ≤ mf (X) ≤ |X|
1 + (|X| − 1)(1− κf (X))

f(X)

(13)

where κf (X) is the curvature of f [14]. In the worst
case, this factor is |X|. Now let x∗ be the opti-
mal solution, and S(x∗) be the corresponding set.

Denote α(X) = |X|
1+(|X|−1)(1−κf (X)) , and let x̂ be

the exact solution to the problem minxm
f (S(x)) +∑

i,j∈E ψij(xi, xj). The following chain of inequalities

hold:

f(S(x̂)) +
∑
i,j∈E

ψij(x̂i, x̂j)

≤ mf (S(x̂)) +
∑
i,j∈E

ψij(x̂i, x̂j)

≤ mf (S(x∗)) +
∑
i,j∈E

ψij(x
∗
i , x
∗
j)

≤ α(S(x∗))f(S(x∗)) +
∑
i,j∈E

ψij(x
∗
i , x
∗
j)

≤ α(S(x∗))[f(S(x∗)) +
∑
i,j∈E

ψij(x
∗
i , x
∗
j)]

Hence this provides a α(S(x∗)) ≤ |S(x∗)| approxima-
tion.

Proof of Lemma 6

In this case, we assume we are given the maximization
problem,

max
x

f(S(x)) +
∑
i,j∈E

ψij(xi, xj) (14)

where ψ is a submodular tree, and f is a supermodu-
lar function. Note that this is equivalent to the orig-
inal problem, just changing the min to a max, and
correspondingly interchanging the submodularity and
supermodularities. This is different from the origi-
nal problem in the sense that simple interchanging the
max and min (which can be done my adding a minus
sign), changes the signs of the submodular function.
In order to ensure that the functions f and ψ are pos-
itive even after changing the sign, we would need to
shift the functions.

Assuming this is done, we can provide an approx-
imation guarantee for this setup. In this case, we
use a simple surrogate for the submodular function
ψ. Since we assume ψ is monotone submodular, it
is easy to see that, ψij(xi, xj) ≤ ψij(xi) + ψij(xj) ≤
2ψij(xi, xj). The algorithm then just uses the function
ψij(xi) + ψij(xj) as a surrogate, and solves the prob-
lem maxx f(S(x)) +

∑
i,j∈E ψij(xi) + ψij(xj). Since

f is supermodular, this is submodular minimization,
which can be performed exactly. Again, let x̂ be the
solution using the surrogate function, and x∗ be the
optimal solution. Then, the following chain of inequal-

Yoshinobu Kawahara, Rishbh Iyer, Jeff Bilmes

ities hold:

f(S(x̂)) +
∑
i,j∈E

ψij(x̂i, x̂j)

≥ f(S(x̂)) +
∑
i,j∈E

1

2
[ψij(x̂i) + ψij(x̂j)]

≥ 1

2
{f(S(x̂)) +

∑
i,j∈E

[ψij(x̂i) + ψij(x̂j)]}

≥ 1

2
{f(S(x∗)) +

∑
i,j∈E

[ψij(x
∗
i) + ψij(x

∗
j)]}

≥ 1

2
{f(S(x∗)) +

∑
i,j∈E

ψij(x
∗
i , x
∗
j)}

Hence this provides a 1/2 approximation.

Proof of Theorem 7

To prove Theorem 7, we need the following lemmas:

Lemma 8. Let f be a submodular function. For
any β ∈ R and b ∈ RV>0, t∗ is optimal for

mint∈P (f)
wi(ti)
bi

if and only if t∗ + βb is optimal for

mint∈P (f+βb)
wi(ti)
bi

, where wi : R→ R.

Lemma 9. Let f be a submodular function with
f(∅) = 0. And, let x ∈ [0, 1]V with unique values
u1 > · · · > ul, taken at sets A1, . . . ,Al. Then, for
c ∈ RV<0, s is optimal for maxs∈P (fc) x>s if and only if
s(A1∪· · ·∪Ai) = f(A1∪· · ·∪Ai) for all i = 1, . . . , l−1.

Proof of Lemma 9. It is obvious that (s+c)(A1∪· · ·∪
Ai) = (f + c)(A∪ · · · ∪ Ai) if and only if s(A1 ∪ · · · ∪
Ai) = f(A∪· · ·∪Ai) for all i = 1, . . . , l−1. Therefore,
the statement follows from Lemma 8 and, for example,
Proposition 4.2 in [2] because P ((f + c)c) = P (f +
c).

Now, we have the proof of Theorem 7 as follows.

Proof of Theorem 7. Since t∗ = 2α(a − x̃∗), we know
from Lemma 9 that the dual problem of Eq. (10) is

max
s∈P (f

2λ(a−1|V|))

−
∑
i∈V

s2
i /(4λ) + siai. (15)

Let ψi(x̃i) = λ(x̃i−ai)2 and ψ∗i (−ti) = t2i /(4λ)− tiai.
Also, for i ∈ V, let s∗i be a maximizer of −ψ∗i (−si) over
(−∞,max(t∗i , 2λ(ai − 1))]. Then, the pair (x∗, s∗) is
optimal for Eq. (10) and Eq. (15) if and only if (a)

(ηi(x
∗
i , s
∗
i) :=) x∗i s

∗
i + ψi(x

∗
i) + ψ∗i (−s∗i) = 0

and (b) f(x̃∗) = (s∗)>x∗.
For i such that x̃∗i < 0 (i.e., x∗i = 0), we have t∗i =
2λ(ai− x̃i) (> 2λ(ai− 1)) and thus s∗i = 2λai. Hence,
(a) is met because ψi(0) = λa2

i . For i such that 0 ≤
x̃∗i ≤ 1, (a) is met from the optimality of Eq. (11)

because x∗i = x̃∗i and t∗i is still larger than 2α(ai − 1).
And for i such that x̃∗i > 1 (i.e., x∗i = 1), we have

ηi(x
∗
i , s
∗
i) = s∗i + λ(1− ai)2 + (s∗i)

2/(4λ)− s∗i ai.

On the other hand, since t∗i < 2λ(ai − 1), we have
s∗i = 2λ(ai − 1). Therefore, we have ηi(1, s

∗
i) = 0.

And, (b) follows from Lemma 9.

	Introduction
	Non-submodular Minimization with Tree-Structured Supermodularity
	Optimization
	Alternating Minimization (AM)
	Dual Decomposition (DD)
	Continuous Relaxation (CR)
	Submodular-Supermodular Procedure Using Pairwise Structures (SSP)

	Arbitrary Pairwise Supermodularity
	Experimental Evaluation
	Evaluation on Synthetic Data
	Application to Image Segmentation

	Conclusions
	Derivation of the MNP Problem for Eq. (7a)

