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Abstract

Several key problems in machine learning, such as feature selection and active
learning, can be formulated as submodular set function maximization. We present
herein a novel algorithm for maximizing a submodular set function under a car-
dinality constraint — the algorithm is based on a cutting-plane method and is
implemented as an iterative small-scale binary-integer linear programming proce-
dure. It is well known that this problem is NP-hard, and the approximation factor
achieved by the greedy algorithm is the theoretical limit for polynomial time. As
for (non-polynomial time) exact algorithms that perform reasonably in practice,
there has been very little in the literature although the problem is quite impor-
tant for many applications. Our algorithm is guaranteed to find the exact solution
finitely many iterations, and it converges fast in practice due to the efficiency of
the cutting-plane mechanism. Moreover, we also provide a method that produces
successively decreasing upper-bounds of the optimal solution, while our algorithm
provides successively increasing lower-bounds. Thus, the accuracy of the current
solution can be estimated at any point, and the algorithm can be stopped early
once a desired degree of tolerance is met. We evaluate our algorithm on sensor
placement and feature selection applications showing good performance.

1 Introduction

In many fundamental problems in machine learning, such as feature selection and active learning,
we try to select a subset of a finite set so that some utility of the subset is maximized. A number of
such utility functions are known to be submodular, i.e., the set function f satisfies f(S) + f(T ) ≥
f(S ∩ T ) + f(S ∪ T ) for all S, T ⊆ V , where V is a finite set [2, 5]. This type of function can
be regarded as a discrete counterpart of convex functions, and includes entropy, symmetric mutual
information, information gain, graph cut functions, and so on. In recent years, treating machine
learning problems as submodular set function maximization (usually under some constraint, such as
limited cardinality) has been addressed in the community [10, 13, 22].

In this paper, we address submodular function maximization under a cardinality constraint:

max
S⊆V

f(S) s.t. |S| ≤ k, (1)

where V = {1, 2, . . . , n} and k is a positive integer with k ≤ n. Note that this formulation is
considerably general and covers a broad range of problems. The main difficulty of this problem
comes from a potentially exponentially large number of locally optimal solutions. In the field of
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combinatorial optimization, it is well-known that submodular maximization is NP-hard and the
approximation factor of (1− 1/e) (≈ 0.63) achieved by the greedy algorithm [19] is the theoretical
limit of a polynomial-time algorithm for positive and nondecreasing submodular functions [3]. That
is, in the worst case, any polynomial-time algorithm cannot give a solution whose function value is
more than (1 − 1/e) times larger than the optimal value unless P=NP. In recent years, it has been
reported that greedy-based algorithms work well in several machine-learning problems [10, 1, 13,
22]. However, in some applications of machine learning, one seeks a solution closer to the optimum
than what is guaranteed by this bound. In feature selection or sensor placement, for example, one
may be willing to spend much more time in the selecting phase, since once selected, items are used
many times or for a long duration. Unfortunately, there has been very little in the literature on
finding exact but still practical solutions to submodular maximization [17, 14, 8]. To the best of our
knowledge, the algorithm by Nemhauser and Wolsey [17] is the only way for exactly maximizing
a general form of nondecreasing submodular functions (other than naive brute force). However, as
stated below, this approach is inefficient even for moderate problem sizes.

In this paper, we present a novel algorithm for maximizing a submodular set function under a cardi-
nality constraint based on a cutting-plane method, which is implemented as an iterative small-scale
binary-integer linear programming (BILP) procedure. To this end, we derive the submodularity cut,
a cutting plane that cuts off the feasible sets on which the objective function values are guaranteed
to be not better than current best one, and this is based on the submodularity of a function and its
Lovász extension [15, 16]. This cut assures convergence to the optimum in finite iterations and
allows the searching for better subsets in an efficient manner so that the algorithm can be applied
to suitably-sized problems. The existing algorithm [17] is infeasible for such problems since, as
originally presented, it has no criterion for improving the solution efficiently at each iteration (we
compare these algorithms empirically in Sect. 5.1). Moreover, we present a new way to evaluate an
upper bound of the optimal value with the help of the idea of Nemhauser and Wolsey [17]. This
enables us to judge the accuracy of the current best solution and to calculate an ǫ-optimal solution
for a predetermined ǫ > 0 (cf. Sect. 4). In our algorithm, one needs to iteratively solve small-
scale BILP (and mixed integer programming (MIP) for the upper-bound) problems, which are also
NP-hard. However, due to their small size, these can be solved using efficient modern software
packages such as CPLEX. Note that BILP is a special case of MIP and more efficient to solve in
general, and the presented algorithm can be applied to any submodular functions while the existing
one needs the nondecreasing property.1 We evaluate the proposed algorithm on the applications of
sensor placement and feature selection in text classification.

The remainder of the paper is organized as follows: In Sect. 2, we present submodularity cuts and
give a general description of the algorithm using this cutting plane. Then, we describe a specific
procedure for performing the submodularity cut algorithm in Sect. 3 and the way of updating an
upper bound for calculating an ǫ-optimal solution in Sect. 4. And finally, we give several empirical
examples in Sect. 5, and conclude the paper in Sect. 6.

2 Submodularity Cuts and Cutting-Plane Algorithm

We start with a subset S0 ⊆ V of some ground set V with a reasonably good lower bound γ =
f(S0) ≤ max{f(S) : S ⊆ V }. Using this information, we cut off the feasible sets on which the
objective function values are guaranteed to be not better than f(S0). In this section, we address
a method for solving the submodular maximization problem (1) based on this idea along the line
of cutting-plane methods, as described by Tuy [23] (see also [6, 7]) and often successfully used in
algorithms for solving mathematical programming problems [18, 11, 20].

2.1 Lovász extension

For dealing with the submodular maximization problem (1) in a way analogous to the continuous
counterpart, i.e., convex maximization, we briefly describe an useful extension to submodular func-
tions, called the Lovász extension [15, 16]. The relationship between the discrete and the continuous,
described in this subsection, is summarized in Table 1.

1A submodular function is called nondecreasing if f(A) ≤ f(B) for (A ⊆ B). For example, an entropy
function is nondecreasing but a cut function on nodes is not.
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Table 1: Correspondence between continu-
ous and discrete.

(discrete) (continuous)

f : 2V → R
Eq. (2)
=⇒ f̂ : R

n → R

S ⊆ V
Eq. (3)
⇐⇒ IS ∈ R

n

f is submodular
Thm. 1
⇐⇒ f̂ is convex

v
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Figure 1: Illustration of cutting plane H . For H∗

and c∗, see Section 3.2.

Given any real vector p ∈ R
n, we denote the m distinct elements of p by p̂1 > p̂2 > · · · > p̂m.

Then, the Lovász extension f̂ : R
n → R corresponding to a general set function f : 2V → R, which

is not necessarily submodular, is defined as

f̂(p) =
∑m−1

k=1 (p̂k − p̂k+1)f(Uk) + p̂mf(Um), (2)

where Uk = {i ∈ V : pi ≥ p̂k}. From the definition, f̂ is a piecewise linear (i.e., polyhedral) func-

tion.2 In general, f̂ is not convex. However, the following relationship between the submodularity

of f and the convexity of f̂ is given [15, 16]:

Theorem 1 For a set function f : 2V → R and its Lovász extension f̂ : R
n → R, f is submodular

if and only if f̂ is convex.

Now, we define IS ∈ {0, 1}n as IS =
∑

i∈S ei, where ei is the i-th unit vector. Obviously, there is

a one-to-one correspondence between IS and S. IS is called the characteristic vector of S.3 Then,

the Lovász extension f̂ is a natural extension of f in the sense that it satisfies the following [15, 16]:

f̂(IS) = f(S) (S ⊆ V ). (3)

In what follows, we assume that f is submodular. Now we introduce a continuous relaxation of the

problem (1) using the Lovász extension f̂ . A polytope P ⊆ R
n is a bounded intersection of a finite

set of half-spaces — that is, P is of the form P = {x ∈ R
n : A⊤

j x ≤ bj , j = 1, · · · , m}, where
Aj is a real vector and bj is a real scalar. According to the correspondence between discrete and

continuous functions described above, it is natural to replace the objective function f : 2V → R and

the feasible region {S ⊆ V : |S| ≤ k} of the problem (1) by the Lovász extension f̂ : R
n → R and

a polytope D0 ⊆ R
n defined by

D0 = {x ∈ R
n : 0 ≤ xi ≤ 1 (i = 1, · · · , n),

∑n

i=1xi ≤ k},

respectively. The resulting problem is a convex maximization problem. For problem (1), we will use

the analogy with the way of solving the continuous problem: max {f̂(x) : x ∈ D0}. The question
is, can we solve it and how good is the solution?

2.2 Submodularity cuts

Here, we derive what we call the submodularity cut, a cutting plane that cuts off the feasible sets
with optimality guarantees using the submodularity of f , and with the help of the relationship be-
tween submodularity and convexity described in Thm. 1. Note that the algorithm using this cutting
plane, described later, converges to an optimal solution in a finite number of iterations (cf. Thm. 5).
The presented technique is essentially a discrete analog of concavity cut techniques for continuous
concave minimization, which rests on the following property (see, e.g., [11]).

Theorem 2 A convex function g : R
n → R attains its global maximum over a polytope P ⊂ R

n at
a vertex of P .

2For a submodular function, the Lovász extension (2) is known to be equal to

f̂(p) = sup{pT
x : x ∈ B(f)} (p ∈ R

n),

where B(f) = {x ∈ R
n : x(S) ≤ f(S) (∀S ⊂ V ), x(V ) = f(V )} is the base polyhedron associated with

f [15] and x(S) =
∑

i∈S
xi.

3For example in case of |V | = 6, the characteristic vector of S = {1, 3, 4} becomes IS = (1, 0, 1, 1, 0, 0).
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First, we clarify the relation between discrete and continuous problems. Let P be a polytope with
P ⊆ D0. Denote by S(P ) the subsets of V whose characteristic vectors are inside of P , i.e.,
IS′ ∈ P for any S′ ∈ S(P ), and denote by V (P ) the set consisting of all vertices of P . Note
that any characteristic vector IS ∈ P is a vertex of P . Also, there is a one-to-one correspondence
between S(D0) and V (D0). Now clearly, we have

max{f(S′) : S′ ∈ S(P )} ≤ max{f̂(x) : x ∈ P}. (4)

If we can find a subset P̄ where the function value of f̂ is always smaller than the currently-known
largest value, any f(S̄) for S̄ ∈ S(P̄ ) is also smaller than the value. Thus, the cutting plane for the

problem max{f̂(x) : x ∈ D0} can be applied to our problem (1) through the relationship (4).

To derive the submodularity cut, we use the following definition:

Definition 3 (γ-extension) Let g : R
n → R be a convex function, x ∈ R

n, γ be a real number
satisfying γ ≥ g(x) and t > 0. Then, a point y ∈ R

n defined by the following formula is called
γ-extension of x in direction d ∈ R

n \ {0} (with respect to g) where θ ∈ R ∪ {∞}:

y = x + θd with θ = sup{t : g(x + td) ≤ γ}. (5)

We may have θ = ∞ depending on g and d, but this is unproblematic in practice. The γ-extension
of x ∈ R

n can be defined with respect to the Lovász extension because it is a convex function.

The submodular cut algorithm is an iterative procedure. At each iteration, the algorithm keeps a
polytope P ⊆ D0, the current best function value γ, and a set S∗ ⊆ V satisfying f(S∗) = γ. We
construct a submodular cut as follows. Let v ∈ V (P ) be a vertex of P such that v = IS for some
S ∈ S(P ), and let K = K(v; d1, . . . , dn) be a convex polyhedral cone with vertex v generated by
linearly independent vectors d1, . . . , dn, i. e., K = {v + t1d1 + · · · + tndn : tl ≥ 0}. For each

i = 1, · · · , n, let yl = v + θldl be the γ-extension of v in direction dl with respect to f̂ . We choose
the vectors d1, . . . , dn so that P ⊂ K and θl > 0 (cf. Sect. 3.1). These directions are not necessarily
chosen tightly on P (in fact, the directions described in Sect. 3.1 enclose P but also a set larger).
Since the vectors dl are linearly independent, there exists a unique hyperplane H = H(y1, · · · , yn)
that contains yl (l = 1, · · · , n), which we call a submodular cut. It is defined by (cf. Fig. 1)

H = {x : eT Y −1x = 1 + eT Y −1v}. (6)

where e = (1, · · · , 1)T ∈ R
n and Y = ((y1 − v), · · · , (yn − v)). The hyperplane H generates

two halfspaces H− = {x : eT Y −1x ≤ 1 + eT Y v} and H+ = {x : eT Y −1x ≥ 1 + eT Y v}.
Obviously the point v is in the halfspace H−, and moreover, we have:

Lemma 4 Let P ⊆ D0 be a polytope, γ be the current best function value, v be a vertex of P such
that v = IS for some S ∈ S(P ) and H− be the halfspace determined by the cutting plane, i.e.,
H− = {x : eT Y −1x ≤ 1 + eT Y v}, where Y = ((y1− v), · · · , (yn− v)) and y1, . . . , yn are the
γ-extensions of v in linearly independent directions d1, . . . , dn. Then, it holds that

f(S′) ≤ γ for all S′ ∈ S(P ∩H−).

Proof Since P ⊂ K = K(IS ; d1, · · · , dn), it follows that P ∩ H− is contained in the simplex

R = [IS , y1, · · · , yn]. Since the Lovász extension f̂ is convex and the maximum of a convex
function over a compact convex set is attained at a vertex of the convex set (Thm. 2), the maximum

of f̂ over R is attained at a vertex of R. Therefore, we have

max{f̂(x) : x ∈ P ∩H−} ≤ max{f(x) : x ∈ R} = max{f̂(v); f̂(y1), · · · , f̂(yn)} ≤ γ.

From Eq. (4), max{f(S′) : S′ ∈ S(P ∩H−)} ≤ max{f̂(x) : x ∈ P ∩H−} ≤ γ.

The above lemma shows that we can cut off the feasible subsets S(P ∩ H−) from S(P ) without
loss of any feasible set whose objective function value is better than γ. If S(P ) = S(P ∩H−), then
γ = max{f(S) : |S| ≤ k} is achieved. A specific way to check whether S(P ) = S(P ∩H−) will
be given in Sect. 3.2. As v ∈ S(P ∩H−) and v /∈ S(P ∩H+), we have

|S(P )| > |S(P ∩H+)|. (7)

The submodular cut algorithm updates P ← P ∩H+ until the global optimality of γ is guaranteed.
The general description is shown in Alg. 1 (also see Fig. 2). Furthermore, the finiteness of the
algorithm is assured by the following theorem.
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Figure 2: Outline of the
submodularity cuts algo-
rithm.

Algorithm 1 General description of the submodularity cuts algorithm.

1. Compute a subset S0 s.t. |S0| ≤ k, and set a lower bound γ0 = f(S0).
2. Set P0 ← D0, stop← false, i← 1 and S∗ = S0.
3. while stop=false do
4. Construct with respect to Si−1, Pi−1 and γi−1 a submodularity cut Hi.
5. if S(Pi−1) = S(Pi−1 ∩Hi

−) then
6. stop← true (S∗ is an optimal solution and γi−1 the optimal value).
7. else
8. Update γi (using Si and other available information) and set S∗ s.t. f(S∗) = γi.
9. Compute Si ∈ S(Pi), and set Pi ← Pi−1 ∩Hi

+ and i← i + 1.
10. end if
11. end while

Theorem 5 Alg. 1 gives an optimal solution to the problem (1) in a finite number of iterations.

Proof In the beginning, |S(D0)| is finite. In view of (7), each iteration decreases |S(P )| by at least
1. So, the number of iterations is finite.

3 Implementation

In this section, we describe a specific way to perform Alg. 1 using a binary-integer linear program-
ming (BILP) solver. The pseudo-code of the resulting algorithm is shown in Alg. 2.

3.1 Construction of submodularity cuts

Given a vertex of a polytope P ⊆ D0, which is of the form IS , we describe how to compute linearly
independent directions d1, · · · , dn for the construction of the submodularity cut at each iteration of
the algorithm (Line 4 in Alg. 1). Note that the way described here is just one option and any other
choice satisfying P ⊂ K can be substituted.

If |S| < k, then directions d1, . . . , dn can be chosen as −el (l ∈ S) and el (l ∈ V \ S). Now we
focus on the case where |S| = k. Define a neighbor S(i,j) of S as

S(i,j) := (S \ {i}) ∪ {j} (i ∈ S, j ∈ V \ S).

That is, the neighbor S(i,j) is given by replacing one of the elements of S with that of V \ S. Note
that IS(i,j)

− IS = ej − ei for any neighbor S(i,j) of S. Let S(i∗,j∗) be a neighbor that maximizes

f(S(i,j)) among all neighbors of S. Since a subset S of size k has k × (n − k) neighbors S(i,j)

(i ∈ S, j ∈ V \ S), this computation is O(nk). Suppose that S = {i1, . . . , ik} with i1 = i∗

and V \ S = {jk+1, . . . , jn} with jn = j∗. If f(S(i∗,j∗)) > γ, we update γ ← f(S(i∗,j∗)) and

S∗ ← S(i∗,j∗). Thus, in either case it holds that γ ≥ f(S(i∗,j∗)). As an example of the set of

directions {d1, . . . , dn}, we choose

dl =

{
ej∗ − eil

if l ∈ {1, . . . , k}
ejl
− ej∗ if l ∈ {k + 1, . . . , n− 1}

−ej∗ if l = n.
(8)

It is easy to see that d1, . . . , dn are linearly independent. Moreover, we obtain the following lemma:

Lemma 6 For the directions d1, . . . , dn defined in (8), a cone

K(IS ; d1, . . . , dn) = {IS + t1d1 + · · ·+ tndn : tl ≥ 0}

contains the polytope D0 = {x ∈ R
n : 0 ≤ xl ≤ 1 (l = 1, · · · , n),

∑n

l=1xl ≤ k}.

The proof of this lemma is included in the supplementary material (Sect. A). The γ-extensions, i.e.,
θ’s, in these directions can be obtained in closed forms. The details of this are also included in the
supplementary material (Sect. A).
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Algorithm 2 Pseudo-code of the submodularity cuts algorithm using BILP.

1. Compute a subset S0 s.t. |S0| ≤ k, and set a lower bound γ0 = f(S0).
2. Set P0 ← D0, stop← false, i← 1 and S∗ = S0.
3. while stop=false do
4. Construct with respect to Si−1, Pi−1 and γi−1 a submodularity cut H .
5. Solve the BILP problem (9) with respect to Aj and bj (j = 1, · · · , nk), and let the optimal

solution and value Si and c∗, respectively.
6. if c∗ ≤ 1 + eT Y −1vi−1 then
7. stop← true (S∗ is an optimal solution and γi−1 the optimal value).
8. else
9. Update γi (using Si and other available information) and set S∗ s.t. f(S∗) = γi.

10. Set Pi ← Pi−1 ∩H+ and i← i + 1.
11. end if
12. end while

3.2 Stopping criterion and next starting point

Next, we address the checking of optimality, i.e., whether S(P ) = S(P ∩ H−), and also finding

the next starting subset Si (respectively, in Lines 5 and 9 in Alg. 1). Let P̃ ⊆ R
n be the minimum

polytope containing S(P ). Geometrically, checking S(P ) = S(P∩H−) can be done by considering

a parallel hyperplane H∗ of H which is tangent to P̃ . If H = H∗ or H∗ is given by translating
H towards v, then S(P ) = S(P ∩ H−). Numerically, such a translation corresponds to linear
programming. Using Eq. (6), we obtain:

Proposition 7 Let c∗ be the optimal value of the binary integer program

max
x∈{0,1}n

{eT Y −1x : Ajx ≥ bj , j = 1, · · · , mk}. (9)

Then S(P ) ⊂ H− if c∗ ≤ 1 + eT Y −1v.

Note that, if c∗ > 1+eT Y −1v, then the optimal solution x∗ of Eq. (9) yields a subset of S(P \H−)
which can be used as a starting subset of the next iteration (see Fig. 1).

4 Upper bound and ǫ-optimal solution

Although our algorithm can find an exact solution in a finite number of iterations, the computational
cost could be expensive for a high-dimensional case. Therefore, we present here an iterative update
of an upper bound of the current solution, and thus a way to allow us to obtain an ǫ-optimal solution.
To this end, we combine the idea of the algorithm by Nemhauser and Wolsey [17] with our cutting
plane algorithm. Note that this hybrid approach is effective only when f is nondecreasing.

If the submodular function f : 2V → R is nondecreasing, the submodular maximization problem
(1) can be reformulated [17] as

max η s.t. η ≤ f(S) +
∑

j∈V \Sρj(S)yj (S ⊆ V ),∑
j∈V yj = k, yj ∈ {0, 1} (j ∈ V )

(10)

where ρj(S) := f(S ∪ {j})− f(S). This formulation is a MIP with regard to one continuous and
n binary variables, and has approximately 2n constraints. The first type of constraint corresponds
to all feasible subsets S, and the number of inequalities is as large as 2n. This approach is therefore
infeasible for certain problem sizes. Nemhauser and Wolsey [17] address this problem by adding the
constraints one by on and calculating a reduced MIP problem iteratively. In the worse case, however,
the number of iterations becomes equal to the case of when all constraints are added. The solution
of a maximization problem with a subset of constraints is larger than the one with all constraints, so
the good news is that this solution is guaranteed to improve (by monotonically decreasing down to
the true solution) at each iteration. In our algorithm, by contrast, the best current solution increases
monotonically to the true solution. Therefore, by adding the constraint corresponding to Si at each
iteration of our algorithm and solving the reduced MIP above, we can evaluate an upper bound of
the current solution. Thus, we can assure the optimality of a current solution, or obtain a desired
ǫ-optimal solution using both the lower and upper bound.

6
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5 Experimental Evaluation

We first empirically compare the proposed algorithm with the existing algorithm by Nemhauser and
Wolsey [17] in Sect. 5.1, and then apply the algorithm to the real-world applications of sensor place-
ment, and feature selection in text classification (Sect. 5.2 and 5.3, respectively). In the experiments,
we used the solution by a greedy algorithm as initial subset S0. The experiments below were run
on a 2.5GHz 64-bit workstation using Matlab and a Parallel CPLEX ver. 11.2 (8 threads) through a
mex function. If θ =∞ in Eq. (5), we set θ = θ1, where θ1 is large (i.e. θ1 = 106).

5.1 Artificial example

Here, we evaluate empirically and illustrate the submodularity cut algorithm (Alg. 2) with respect
to (1) computational time for exact solutions compared with the existing algorithm and (2) how
fast the algorithm can sandwich the true solution between the upper and lower bounds, using arti-
ficial datasets. The considered problem here is the K-location problem [17], i.e., the submodular
maximization problem (1) with respect to the nondecreasing submodular function:

f(S) =
∑m

i=1 maxj∈S cij ,

where C = cij is an m×n nonnegative matrix and V = {1, · · · , n}. We generated several matrices
C of different size n (we fixed m = n+1), and solved the above problem with respect to k = 5, 8 for
exact and ǫ optimal solutions, using the two algorithms. The graphs in Fig. 3 show the computational
time (log-scale) for several n and k = 5, 8, where the results were averaged over randomly generated
3 matrices C. Note that, for example, the number of combination becomes more than two hundred
millions for n = 45 and k = 8. As the figure shows, the required costs for Alg. 2 were less than the
existing algorithm, especially in the case of high search spaces. This could be because the cutting-
plane algorithm searches feasible subsets in an efficient manner by eliminating worse ones with the
submodularity cuts. And Fig. 4 shows an example of the calculated upper and lower bounds vs.
time (k = 5 and n = 45). The lower bound is updated rarely and converges to the optimal solution
quickly while the upper bound decreases gradually.

5.2 Sensor placements

Our first example with real data is the sensor placements problem, where we try to select sensor
locations to minimize the variance of observations. The dataset we used here is temperature mea-
surements at discretized finite locations V obtained using the NIMS sensor node deployed at a lake
near the University of California, Merced [9, 12] (|V | = 86).4 As in [12], we evaluated the set of
locations S ⊆ V using the averaged variance reduction f(S) = V ar(∅)− V ar(S) = 1

n

∑
sFs(S),

where Fs(S) = σ2
s − σ2

s|S is the variance reduction and σ2
s|S denote the predictive variance at lo-

cation s ∈ V after observing locations S ⊆ V . This function is monotone and submodular. The
graphs in Fig. 5 show the computation time of our algorithm, and the accuracy improvement of our
calculated solution over that of the greedy algorithm (%), respectively, for ǫ = 0.05, 0.1, 0.2. Both
the computation time and improvement are large at around k = 5 compared with other choices of k.
This is because the greedy solutions are good when k is either very small or large.

4The covariance matrix of the Gaussian process that models the measurements is available in Matlab Tool-
box for Submodular Function Optimization (http://www.cs.caltech.edu/∼krausea/sfo/).
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Figure 5: Computational time (left) and accuracy improvement over the greedy algorithm (right).

Table 1: Selected words with [the values of information gain, classification precision].

k greedy submodularity cuts

5 (tonn,‘agricultur’,trade,pct,‘market’)[2.59,0.53]→ (‘week’,tonn,trade,pct,‘washington’)[2.66,0.58]
10 ( . . .,week,oil,price,‘dollar’,‘offici’)[3.55,0.57]→ ( . . .,price,oil,‘bank’,‘produc’,‘blah’)[3.88,0.62]

5.3 Feature selection in text classification

Our second real test case is feature selection in document classification using the Reuters-21578
dataset. We applied the greedy and submodularity cuts algorithms to the training set that includes
7,770 documents with 5,180 words (features) and 90 categories, where we used the information
gain as a criterion [4]. Table 1 shows the selected words by the algorithms in the cases of k =
5, 10 (for the proposed algorithm ǫ = 0.003 in both cases) with the values of information gain and
classification precision (tp/(tp + fp), tp; true positive, fp; false positive). For classification on the
test set (3,019 documents with 5,180 words and 90 categories), we applied a Naive Bayes classifier
with the selected features. The submodularity cuts algorithm selected several different words from
that of the greedy algorithm. We can see that the words selected by our algorithm would have high
predictive power even though the number of the chosen words is very small.

6 Conclusions

In this paper, we presented a cutting-plane algorithm for submodular maximization problems, which
can be implemented as an iterative binary-integer linear programming procedure. We derived a cut-
ting plane procedure, called the submodularity cut, based on the submodularity of a set function
through the Lovász extension, and showed this cut assures that the algorithm converges to the opti-
mum in finite iterations. Moreover, we presented a way to evaluate an upper bound of the optimal
value with the help of Nemhauser and Wolsey [17], which enables us to ensure the accuracy of the
current best solution and to calculate an intended ǫ-optimal solution for a predetermined ǫ > 0.
Our new algorithm computationally compared favorably against the existing algorithm on artificial
datasets, and also showed improved performance on the real-world applications of sensor place-
ments and feature selection in text classification.

The submodular maximization problem treated in this paper covers broad range of applications in
machine learning. In future works, we will develop frameworks with ǫ-optimality guarantees for
more general problem settings such as knapsack constraints [21] and not nondecreasing submodular
functions. This will be make the submodularity cuts framework applicable to a still wider variety of
machine learning problems.
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