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ABSTRACT

We suggest an approach to speech recognition where multiple sides
of a conversation in a dialog or meeting are processed and decoded
jointly rather than independently. We moreover introduce a practi-
cal implementation of this approach that demonstrates both language
model perplexity and speech recognition word error rate improve-
ments in conversational telephone speech. Specifically, we show that
such benefits can be had if a n-gram language model, in addition to
conditioning on immediately preceding words in an utterance, is also
allowed to condition on the estimated dialog-act of the immediately
preceding utterance of an alternate speaker.

Index Terms— Speech recognition, multi-speaker, graphical
models

1. INTRODUCTION

Humans are social beings and interact with and influence each other
in subtle, complex, and diverse ways. At the phonetic level, individu-
als speaking in a dialog or group may after a time converge on an im-
plicitly agreed upon rate-of-speech, pitch range, style of turn timing,
loudness quality, or other prosodic pattern [1, 2]. At the linguistic
level, is has been argued that conversations are, on balance, “easier”
to ascertain than monologues because of an alignment process that
eventually occurs between participants in order to allow each par-
ticipant to better and more efficiently meet their underlying goals of
a discourse [3, 4, 5]. And at more abstract levels still, the outward
behavior of an individual, including gestures and other mannerisms
(such as gait), will adjust depending on the set of individuals who
are participating in an interaction [6]. This property, moreover, has
recently been observed in computational social-network analyses of
measured situated speech data [7].

Indeed, most large vocabulary continuous speech recognition
(LVCSR) systems operate on corpora that originated from a con-
versation amongst two [8] or more [9] individuals, i.e., where the
aforementioned automatic and eventual alignment process almost
certainly occurs. LVCSR systems have as their basis statistical ma-
chine learning and information theory, where representing such in-
teractions can be shown mathematically to have benefit. For exam-
ple, it has long been known [10] that when two random sources X1

and X2 are not independent (i.e., p(X1, X2) 6= p(X1)p(X2)), one
may obtain a more efficient code for the two if they are encoded
jointly rather than separately. In our case, X1, X2 might be two suc-
cessive utterances spoken by two different speakers in a dialog, or
they might correspond to the entirety of two sides of a conversation.
Similarly, in the domain of pattern classification where class labels
Y1, Y2 exist corresponding to the correlated sourcesX1, X2, there is

potential for improved accuracy if Y1, Y2 are decided jointly based
on the information in both X1, X2, rather than Yi being decided
based only on Xi, for i = 1, 2.

Most LVCSR systems, however, operate on data that has been
excised from its original context, where speech waveforms arising
from an interactive dialog between multiple individuals are first seg-
mented into isolated single-person utterances. These utterances are
then typically processed by the recognizer entirely independently of
each other. When this is the case, any resulting statistical depen-
dency between interlocutors is lost entirely. It is perhaps unfortunate
that the very interactions and influence that social scientists study is
that which LVCSR systems ignore, as modeling such influence could
greatly benefit the practice of speech recognition, not to mention the
field of machine translation which might similarly yield benefits.

Of course, representing such phenomena has its downside as
well, as the curse of dimensionality will place greater requirements
on the amount of training-data, to produce such a model, and on the
computational resources (memory and available computing power)
to decode with such a model. A research goal, therefore, is to de-
velop new practical multi-party conversational decoding strategies
that balance the trade-off between model accuracy (by representing
inter-speaker dependency), and practical realism (any such method
must consider the above limitations).

Fortunately, there is nowadays wide availability of large amounts
of training data that are sufficient to demonstrate the utility of such
an approach. Even so, past work has occurred only infrequently on
inter-speaker dependency modeling for speech recognition. As best
as we can tell, only one study did this [11] where the authors repre-
sented inter-speaker dependency at the language level by allowing
the language model of a speaker’s first words in an utterance to con-
dition on the most recently spoken word of a previous speaker —
the study showed language model perplexity benefits in both conver-
sational telephone speech and meeting scenarios, but no word-error
results were given. In this work, we propose a method where the
language model of all the speaker’s words in an utterance may con-
dition on the most recently spoken dialog act [12] of a previous
and alternate speaker. By representing this dependency, we show
that we achieve an improvement in both language model perplexity
and speech recognition word error on the conversational corpora
Switchboard.

2. MULTI-SPEAKER CONVERSATION MODELING

In standard LVCSR, we are given an isolated length-T acoustic
segment of speech x̄1:T (typically in the form of a list of fea-
ture vectors for a single acoustic channel) and the goal is to de-
termine the resulting length-N sequence of words w1:N where



both the sequence and its length N is unknown. This is typi-
cally done using a (generative) hidden Markov model (HMM) to
produce a joint model p(x̄1:T , w1:N ) = p(x̄1:T |w1:N )p(w1:N ),
where p(x̄1:T |w1:N ) is the acoustic model, and p(w1:N ) is the
(often n-gram) language model, and then decoding occurs via
w∗

1:N∗ ∈ argmaxN,w1:N
p(x̄1:T |w1:N )p(w1:N ).

We propose instead a general framework of multi-speaker con-
versation modeling. We have separate acoustic feature vectors (say
from different microphones) for K audio channels corresponding
to K speakers x̄11:T , . . . , x̄

K
1:T . We assume in this work that the

number of speakers is known a priori and each speaker has her
own channel. We also assume that all acoustic sequences are of
the same length (meaning that much of each speaker’s acoustics
might represent silence, although an implementation might choose
to optimize this). We wish to decode the words for each speaker
w1

1:N1
, . . . , wK1:NK

, where wk1:Nk
is a length-Nk word sequence

corresponding to speaker k. The length of (xk1:T , w
k
1:Nk

) might span
in total over an entire discourse, rather than over a single utterance,
so the sequence lengths will be much longer than is typically the
case for isolated utterances. Moreover, each speaker will speak a
different number of words (i.e., Ni is typically unequal to Nj for
i 6= j). We assume the existence of a model of the multi-speaker
joint distribution p(x̄11:T , . . . , x̄

K
1:T , w

1
1:N1

, . . . , wK1:Nk
) and we wish

to decode via:

(w∗1
1:N∗

1
, . . . , w∗K

1:N∗
K

) (1)

∈ argmax
N1:K ,w

1
1:N1

,...,wK
1:Nk

p(x̄11:T , . . . , x̄
K
1:T , w

1
1:N1

, . . . , wK1:NK
)

Such a joint distribution would allow for the representation of a va-
riety of linguistic inter-speaker phenomena. For example, phonetic
entrainment [1] would mean a dependency would exist directly be-
tween x̄i and x̄j (i 6= j). Linguistic alignment [4] would imply de-
pendency between the corresponding word strings. The implemen-
tation details of such dependencies will determine both the model
tractability and any demands on amounts of training data. Indeed,
there is a vast diversity of modeling choices implicit in Equation 1.

The work of [11] fits entirely within the above framework.
Therein, K was set to 2 (in the meeting scenario all other speak-
ers were collapsed down to a single individual for the sake of
dependency modeling), and a standard tri-gram language model
for each speaker p(wt|wh(t)) was augmented with information
about the most recent word spoken by the alternate speaker as in
p(wt|wh(t), at) where wh(t) is the history up to time t− 1 and at is
the most recent (relative to t) alternate speaker’s word. The authors
demonstrated improved perplexity on both conversational telephone
and meeting data.

There are several potential problems, however, with this imple-
mentation. The first is that this language model was used only for
the first few words of the current speaker’s utterance, the rest of the
utterance used a language model independent of the other speaker
(the authors found no benefit to having a dependency between at
and words wτ for τ > t + 1). The second is that the variable at
may have any value in the lexicon, so in the 3-gram case, the model
P (wt|wt−1, wt−2, wa) has as many data demands as does a four-
gram language model.

In this work, we consider a language model that applies to all
words in the current utterance (addressing problem 2 above) and that
conditions on only the dialog act (DA) [12] of the alternative speaker
(addressing problem 1). Discourse patterns in natural conversations
and meetings are well known to provide useful information about
human conversational behavior. DAs, which reflect the functions

that utterances serve in a discourse, may therefore be beneficial as
a knowledge source, even across speaker. In our work, a 3-gram
language model therefore becomes:

P (wt|ht) = P (wt|wt−1, wt−2, dt) (2)

where dt is the dialog act (estimate) of the previous sentence of the
alternative speaker relative to word wt. This model, moreover, is
applied to all words of a current utterance rather than just the first.

3. EXPERIMENTS

There are many ways to implement the aforementioned ideas in a
practical automatic speech recognition system. Ideally, we would
decode the K channels simultaneously. Even single-channel (K =
1) speech recognition decoding is expensive, however, so typically a
multi-pass strategy is used where multiple highly-scoring hypothe-
ses of a first pass system are represented using a lattice which is
then used to constrain the search in latter passes which rescore the
first-pass lattice hypotheses. Extending this to K > 1 channels,
each channel should have its own lattice, and these multiple lat-
tices should somehow be jointly decoded, using the above language
model as a means through which hypotheses in different lattices may
interact.

In [13], it was shown how graphical models (GMs) can be used
to represent a lattice — more recent work [14, 15] shows how graph-
ical models can express a system that corresponds to more than one
lattice and how the standard GM decoding algorithms can automat-
ically produce the joint alignment of multiple lattices. Such an ap-
proach can be used here as well, where each lattice has its own de-
coding sub-graphical model which consists a rescoring-word node
that depends both on the two previous word nodes (in the tri-gram
case) as well as a DA node for the previous speaker. These sub-
graphs can then be combined with a separate GM that represents
a DA tagger [16]. All coupled together, such a graph would rep-
resent the multi-speaker speech recognition and dialog act tagging
of a multi-channel dialog or meeting. Such a modular approach is
certainly attractive from a conceptual perspective, since pre-existing
and pre-trained GM components can be glued together in an almost
unmodified form to produce one large joint decoder. On the other
hand, the “product” of two or more channels, coupled with a simul-
taneous DA tagger for each channel would produce an enormous
state space, even with each channel’s state space reduced via a lat-
tice representation.

Another approach, therefore, that is more tractable but is an ap-
proximation of the above, is to perform the lattice rescoring process
in two steps. The first step produces speech lattices for each chan-
nel, like the above, but then a separate DA tagger is used to estimate
dialog act for each utterance based either on the one-best lattice hy-
potheses (what we adopt herein), or even on the entire lattice itself.
After this is done, we can use the DA tag hypothesized from the
first-pass system as an observed variable in a second-pass system to
represent the inter-speaker dependency. Note, the DA tag doesn’t
itself entail such dependency, rather the DA tag is used to condition
on in a DA-based language model (Equation 2) that considers the
dependency of utterance words on the dialog act of the most recent
sentence from another speaker. In such a case, the decoding sys-
tem considers only one channel (and in fact one utterance) at a time,
and therefore the complexity is significantly less that of the first ap-
proach, and in fact is not much more difficult than a standard ASR
system. The primary change is in the language model.

In this work, we have in fact attempted both of these approaches,
but found that the first case required more memory for state-space



Table 1. Switchboard Dialog Act tag accuracy using GMTK
model dev set test set

generative model 85.1 83.0%
hidden backoff model 86.7 84.2%

Table 2. Perplexity results using dialog act based language model
model dev set test set
trigram 335.3 381.7

DA-based trigram 302.0 344.5
improvement 14.1% 9.7%

representation than what was available to us at the time (8GB). How-
ever, the second method is quite practical and produces good results
(see below).

For either approach, we need access to a good dialog act tag-
ger, a problem that has many possible solutions. In this work, we
have adopted the DA tagger models described in [16, 17]. The train-
ing set for our dialog act tagger was taken from the results of the
1998 JHU workshop [18], which consists 1155 Switchboard phone
conversations with 186467 sentences. For the tagged data in [18],
we extracted three fifth (sw00utt–sw10utt) as the training set, one
fifth (sw11utt–sw12utt) as the development set, and the rest one fifth
(sw13utt) as the test set. Similar to [16], we have used the graphical
models toolkit (GMTK) [19] to train and test the dialog act tagger.
We tested two models: the generative model [16] and the “hidden
backoff model” as described in [17]. The primary novel feature of
the hidden backoff model is that sub-DA states are assumed to exist
but are not labeled in the training data. Using a hidden state variable,
these hidden states are learned in a backoff-model via the use of an
embedded-Viterbi style EM algorithm — See [17] for details. The
results are shown in Table 1, and are consistent with [17] in stating
that the hidden-backoff approach produces a high-quality DA tagger.

Before proceeding to our speech recognition task, we wanted
to ensure that there were at least perplexity gains for our DA-based
language model (Equation 2) over a baseline model. We used the
hidden backoff model trained in the previous step as the dialog act
tagger and tagged the rest of the Switchboard corpus and the en-
tire Fisher corpus. The overall data set has 1991 conversations and
305116 sentences. Based on this, we trained a DA-based trigram
language model P (wi|wi−1, wi−2, da) using a factored language
model (FLM) [20] as in the SRI language model toolkit [21]. In
an FLM, the model may contain different backoff orders, different
smoothing techniques and so on. These parameters were optimized
using genetic search on a development set consisting of the eval1998
and eval2000 data sets which contain 40 conversations with 3586
sentences. The best obtained model has as backoff path [20] in
P (wt|wt−1, wt−2, da) as follows: first drop side DA information
da, then wt−2, and wt−1 to a unigram, and finally drop wt to a uni-
form distribution. Each level uses Kneser-Ney smoothing. We used
this model to calculate perplexity on the test set, which is eval2001
which contains 60 conversations with 5859 sentences. The results
are shown in Table 2. Quite promisingly, the table shows that the
DA-based trigram model can indeed help reduce perplexity, which
means that knowing the DA of the alternate speaker, at the very least,
makes one more confident about the current correct set of words.

We tested our trained DA-based trigram FLM on the switch-
board eval2001 test set, where thin word lattices were generated by

lattice word

lattice node

consistency

transition

time frame

first node

rescore word

consistency

prologue chunk epilogue

prev. word

side DA

Fig. 1. Decoding graph using a word lattice and a DA-based trigram

Table 3. Word error rate using dialog based language model
model dev set test set

bi-gram baseline 29.3% 28.5%
tri-gram GMTK rescore 27.8% 26.0%

DA-lm 27.0% 25.5%

the SRI MFCC-based within-word system[22]. Word lattices were
represented using dynamic Bayesian networks as described in [13].
The decoding graphical model used in our experiment is shown in
Figure 1 — limited space precludes us from fully describing this
model, but we give an outline herein. At the high level, the graph
may be seen as having two parts: the upper part is a graphical mod-
els representation of word lattices, as described in [13]. The lower
part is the rescoring model. A middle part of the graph contains a
variable (consistency) that glues the lattice together with a new
rescoring language model. This variable ensures that only predic-
tions from the word lattice are matched for trigram rescoring. The
bottom part of the graph includes an observed variables (side DA)
that contain the most recent DA of the alternate speaker. That is, the
probability of rescore word may depend on two previous word
tokens as well as the DA.

We tested the DA-based trigram model trained as described
above. In order to produce DA tags, the one-best hypothesis from
the lattice is used as input to the DA tagger, and the resulting tags
are considered as “truth”, even though they might have errors. We
note again that the DA-dependent language model was trained on
tags possibly containing such errors (we did not evaluate oracle DA
tags as that would be less realistic). The DA-based LM is com-
pared with a normal tri-gram rescoring LM that has been trained on
the same data (Switchboard and Fisher) but without the use of DA
information.

All experiments, again, were tested using GMTK and the results
are given in Table 3. The “baseline” results row shows the word-
error (WER) of the one-best results only from the word lattices. The
“GMTK rescore” WER shows the word error rates of standard tri-
gram rescoring from the lattices using GMTK. The last row, “DA-
lm”, shows our new model where prediction is based on also having
access to the previous alternate speaker’s DA tag. The results show,
both on the development set and the test set, a small but significant



improvement in WER over the trigram model. Informally, we have
found that the nature of the errors that are corrected are quite differ-
ent than what might be expected when going to a 4-gram language
model. For example, if the previous DA is a “question”, then that
significantly changes the set of likely responses relative to the case
where the DA is a “back channel”. Ideally, however, future work
will lead to detailed error analysis being performed to enable the full
study of the nature of the errors that are corrected, an activity that
might itself also lead to either novel linguistic insight or confirma-
tion of existing theories of discourse patterns.

4. CONCLUSIONS

We described a new model for speech recognition whereby multiple
speakers in a conversation are decoded jointly, rather than separately,
thus taking advantage of any dependency across speakers. We have
produced an initial and practical implementation of this idea: we
have augmented a standard language model with an estimate of the
dialog act of a sentences spoken by other speakers in a conversa-
tion. Our new model yields improvements in both language model
perplexity and speech recognition word error.

In future work, we wish to make progress on full simultaneous
decoding, e.g., the first approach mentioned in Section 3. Recent
work showing how different segmentations can yield benefits [23]
(albeit for translation) supports the case that this would yield fur-
ther improvements, as a fully joint multi-speaker decoder would, in
a sense, be deciding both the segmentation and word strings for mul-
tiple speakers simultaneously and jointly.
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