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ABSTRACT

We introduce a method for expressing word lattices within a dynamic
graphical model. We describe a variety of choices for doing this, in-
cluding a technique to relax the time information associated with
lattice nodes in a way that trades off hypothesis expansion with pre-
sumed segmentation boundary accuracy. Our approach uses a set
of time-inhomogeneous and algorithmically expressed conditional
probability tables to encode the lattice. The approach was imple-
mented as part of the graphical model toolkit, and word error rate
improvements on the Switchboard corpus indicate that our technique
is a viable means to incorporate large state space speech recognition
systems into a graphical model.

Index Terms— word lattice, graphical model, DBN, dynamic
Bayesian network, dynamic graphical network, GMTK

1. INTRODUCTION

Large vocabulary continuous speech recognition (LVCSR) systems
often require multiple recognition passes in order to be computation-
ally viable. Often, a first pass system will produce an /N-best list or a
word lattice, both of which represent a collection of top scoring sen-
tence hypotheses produced using a relatively simple system. These
hypotheses are then re-scored by a more accurate and more compu-
tationally complex second pass system. The hope is that somewhere
within the first-pass lattice lie accurate hypotheses which can then be
teased out using the more complex and precise second stage. Indeed,
the use of word lattices in multi-pass systems has been crucial to the
success of almost all modern LVCSR systems [[1} 2} [3].

There is a variety of ways of producing a complex and accu-
rate second pass system. Many systems use more advanced or better
trained language models (LMs). For example, re-scoring enables the
use of advanced parse-based language models with long time depen-
dencies, something that could result in a computational explosion if
done naively in a first pass. Other systems might still use a hidden
Markov model (HMM) with more advanced acoustic models, where
there are many additional underlying hidden states and correspond-
ing Gaussian mixtures and components.

One type of second-pass system that is receiving increasing at-
tention is dynamic graphical models (such as dynamic Bayesian net-
works (DBNs) and/or conditional random fields) [4]. This type of
model often represents a variety of explicit and intricate aspects of
the speech signal (such as articulatory features [S], or various cross-
speaker or multi-stream information [6]). Algorithmic efforts to
enable these complex models to produce first-pass hypotheses is a
worthy research goal, but we may simultaneously evaluate certain
aspects of these models using a lattice to limit the state space, some-
thing that does not require the more complex inference procedures.
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In this paper, we introduce a method for representing standard
word lattices as encountered in LVCSR using graphical models, and,
in particular, dynamic Bayesian networks. We will see that there are
anumber of structural choices when representing lattices in this way.
We have implemented one such choice, and we show that it is a com-
putationally viable and representationally rich direction in which to
pursue novel forms of speech recognition systems. Such a repre-
sentation allows lattice scores to be easily incorporated into the vast
collection of statistical models that can be quickly expressed using
a graphical model. This is an important achievement as it allows
complex graphical model systems to be easily used in a multi-pass
speech recognition system.

2. WORD LATTICES AND GRAPHICAL MODELS

Both Bayesian networks and word lattices are represented using di-
rected graphs. In this section, we give a brief review and define
terminology so as to avoid their confusion.

A word lattice consists of a directed graph D = (N, L) where
N is a set of graph nodes, and £ C N X N is a set of directed
links between two nodes, so that if (n1,n2) € L then there is a
link from n1 to na. Nodes typically represent time points, and we
will use the notation 7(n) to indicate the time point associated with
node n. In this paper, we assume that time points within a lattice are
quantized to frame granularity, meaning that both our time variable ¢,
and also 7(n), are integers in units of “time frame.” Links represent
words along with a number of possible scores (acoustic, language,
posterior, etc.) Figure [T] shows a simple example. Without loss of
generality, we focus on lattices where there is a unique starting and
ending node. A lattice represents a language consisting of all word
strings that can be generated by the lattice. Treating the lattice as a
standard Mealy-style finite automaton, link labels are taken from an
output alphabet. More information may be found in [7].

Fig. 1. Word lattice example

A graphical model (GM) is a graphical representation of fac-
torization properties of families of probability distributions. When
instantiated, a GM also includes local score functions such as condi-
tional probability tables (CPTs). In particular, a DBN consists of a
directed acyclic graph (DAG) G = (V, E) where V is a set of ver-
tices (corresponding to random variables) and F is a set of directed
edges. We say that a given probability distribution p factors with re-
spect to G if all factorization properties of the DBN G are consistent
in p. More details may be found in [8].



Using nodes/links for lattices and vertices/edges for graphical
models allows us to refer to nodes and vertices unambiguously.

3. GRAPHICAL MODEL WORD LATTICES

There are several ways that the information in a lattice can be used
to constrain the set of possible sentence hypotheses in a graphical-
model-based decoder. In this section, we describe three possibilities.

3.1. Lattice sequencers without time constraints

In the simplest case, a lattice is merely a representation of a stochas-
tic sequencer, where words may follow other words regardless of
what time it is, as long as they are within one of the word sequences
represented by the lattice. While a lattice node n would ordinarily
possess a specific time point 7(n), in this view we ignore this infor-
mation and only utilize the fact that a node is a branching point in
the lattice where a set of new words may stochastically follow.
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Fig. 2. The known-target representation

To represent this in a graphical model, we introduce two ran-
dom variables (vertices) at each time frame, a vertex named “lattice
node” and a vertex named “lattice link.” Let N; be the lattice node
vertex and L; be the lattice link vertex at time frame ¢. N; = 7 in-
dicates that at time ¢ the lattice is currently at node ¢. Clearly, the
two successive values NVy—1 = ¢, N; = j determine a particular lat-
tice link Ly = £ only if (¢,5) € L is link value £. The meaning
of a time “frame” depends on the current use of the lattice. For ex-
ample, when used as a representation of a constrained search space
in a speech recognition system, a time frame takes on its normal
meaning (e.g., 10ms acoustic frame steps). When the lattice is used
for word re-scoring, however, the time frames might correspond to
words (more on this below). In either case, we introduce a third bi-
nary random variable at each time point 7; € {0, 1} that indicates
node transition. In other words, if 73 = 1 then the hypothesis is
that at time ¢, we should move from the current lattice node to one
of its next valid nodes. In this particular model, the transition nodes
are redundant, since the probability of transitioning could be folded
into the CPT for the lattice nodes, but we introduce binary control
variables of this sort, since they are needed when using a DBN such
as this as a sub-module within a more complex DBN.

There are still, however, two distinct ways of representing with
these random variables the lattice node transition information. In the
first case, the target (or destination) node is made available right at
transition time (i.e., when 7; = 1). Since both the source and target
are known at this point, the target node along with the newly de-
termined link is selected and carried forward in time throughout the
duration of this new link. We call this the known-target approach; it
is depicted in Figure 2] (we use the standard GMTK-style DBN de-
scription as described in [9]]). If there is a transition, 7% = 1, then N,
is selected randomly based on a set of valid follow-on nodes starting
from the node indicated by the value of N;_;. Also, the value of L,
which indicates a link, is determined based on N;_1 and N; — thus,
the new node is available right at transition time. If 73 = 0 then there
is no transition, so we just copy previous values, i.e., Ly = L;—1
and Ny = N;_; with probability one, carrying this link information
along throughout the duration of the link. At the beginning of the

graph, there are several extra beginning-of-sentence nodes. The first
node vertex in the figure is always equal to the identity of the start-
ing node in the lattice. The transition vertex is observed to be one so
that N; is a random variable with values corresponding the second
possible nodes in the lattice (e.g., n1 and ns in Figure[T).
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Fig. 3. The known-source representation

An alternative and perhaps more interesting strategy also exists.
It may be that the target node is revealed only at the next transition
time, so the current link is not known until then. This current link in-
formation made available at the next transition is carried backwards
in time throughout the link duration. We call this the known-source
approach, and it is depicted in Figure[3] Most of the vertices are the
same as above. In this model, however, Ny starts out with a value
equal to the start node of the lattice and this is carried forward in
time while there is no transition. At some time point £ > 0 there
will be the first 73 = 1 event at which point the next set of nodes are
stochastically chosen. The previous node N;_; and the new node
Ny then determine the link Lz_; which is then carried back in time
due to the fact that for all time less than # no transition occurs (and
so link values were only copied backwards). This proceeds in an
analogous way for future transitions. In this approach, additional
observed vertices are required at the end of the graph (say time 7T').
Here, a special last node vertex is observed with value equal to the
terminal node. A special last transition vertex is observed to be unity
which ensures that the combination of N7_1 and last node are used
to determine the set of valid possible final links.

We know of no theoretical advantage or disadvantage between
the two approaches. It is perhaps the case, however, that the known-
target approach is more intuitive since it requires only forward di-
rected edges. Therefore, we continue our discussion only of this
case.

3.2. Using time information

Clearly, not using time information as was done in the previous
section implies a much larger set of sentence hypotheses that vary
only in word segmentation times. A typical lattice, however, is not
only a word sequencer, but it also indicates exact word segmentation
boundaries via the node times. In this section, we describe how to
incorporate such information into a graphical model.
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Fig. 4. Time-homogeneous CPTs

Our first representation utilizes only time-homogeneous CPTs in
the DBN, that is, ones whose probability values do not change with



time. This DBN is shown in Figure[d] (known-target case). There are
several differences from Figure 2] First, we see a new time obser-
vation vertex at each time frame Y, observed as Y; = ¢ for all ¢.
Second, there is an observed child variable C; = 1 for all ¢ that is
defined so as to provide a consistency constraint among its parents.
The CPT p(C = 1|YT+ = t, Ny—1 = i, Ny = j) is created based on
the lattice, defined so that the only way to explain C; = 1 with non-
zero probability is when it is possible in the lattice at time ¢ to move
from node ¢ to node j. This way, the surviving hypotheses where
T: = 1 are the ones corresponding to valid lattice transitions, and if
for any reason 7; = 1 at a point invalid with respect to the lattice,
that hypothesis will get annihilated (i.e., is given zero probability).
We have so far seen two extreme cases in the use of the lat-
tice’s time information. Section ignored 7(n) completely, and
this section so far describes a model which forces transitions to oc-
cur at times prescribed by the model. An alternative hybrid ap-
proach allows “slack™ at time transition points. Given two integers
€1,€e2 € {0,1,...}, we may allow a word transition from node ¢ to
a next possible node to occur no earlier than €; time frames earlier
than 7(4), and no later than e, time frames latter than 7(¢). If we
set €4 = e2 = 0, we of course recover the earlier model in this
section, and if €1 = €2 = oo we recover the model of Section|3.1
Allowing positive finite values, however, has two effects. First, it
increases computation relative to €; = e2 = 0 since additional word
segmentations are allowed. Secondly, if word sequence information
is reliable, but segmentation information is noisy, this allows a sec-
ond pass system some leeway regarding when a word may begin and
end thereby producing acoustic score variants, something that may
improve accuracy (the standard evaluation tool, NIST’s sclite,
utilizes word boundary information e.g., for time-mediated scoring).
With this hybrid scheme in mind, we next describe how it is
possible to avoid the extra vertices in Figure[d]if we allow the CPTs
in the DBN to be time-inhomogeneous. Most CPTs in an HMM
or DBN are such that they contain the same set of probabilities
for all time. In other words, p(N; = j|N¢—1 = i, Ty = b) =
f(i,7,b) where the function f(-) does not change with time. A
time-inhomogeneous CPT would allow a different set of CPT prob-
abilities for each time point. Indeed, the approach simulates a time-
inhomogeneous CPT in that the time observation Y; was used along
with the CPT p(C¢| Y, N¢, N;—1) that encodes everything for all
time. Rather than doing this, however, we can revert back to the
graph in Figure 2] if the CPT pi(N; = j|Ni—1 = i, Ty = b) =
f(t,,7,b) is time-inhomogeneous, i.e., is a function of time.

Algorithm 1: Inhomogeneous Algorithmic CPT f(t, 4, j, b)
if g(t) < 7(i) — €1 then

if b = 1 then
| return 0.0 ;
else
| return 1{i = j};
end
elseif g(t) > 7(i) + €2 then
| return 0.0 ;
else
if b = 1 then
| return pp(j|4)
else
| return 1{: = j};
end

end

This CPT can in fact be implemented algorithmically based on
information contained within the lattice and the €1, €2 slack vari-

ables, as shown in Algorithm In the algorithm, the return state-
ment provides the final resulting probability value. The symbol 1{A}
is a binary {0, 1}-valued indicator variable that is 1 only if event A
is true. For now, g(t) = t is the identity function (more on this in
Section[3.3]below). We describe the algorithm via its three sections.
In the first case, we have not yet reached the valid time range of the
transition ¢ < 7(z) — €1. Here, any hypothesized transition b = 1
is annihilated (equivalent to the observed child in Figure[d). A non-
transition b = 0 on the other hand simply copies the node from time
t — 1 to time ¢. In the second case, we are beyond the region of the
transition ¢ > 7(¢) + €2, an event that is immediately killed off (why
this occurs is described in the next paragraph).

In the third case, we are within the transition’s time region. Here,
if a transition is hypothesized b = 1 we then return pp (j|¢) which is
the probability directly from the lattice of moving to node j starting
at node . For example, in Figure|l| we have that pp(n1|no) = 0.7
and pp(n2|ne) = 0.3. If j is not a valid next node when starting
at node j, then pp(j|i) = 0. The only tricky part of the algorithm
is this third case where a non-transition b = 0 also induces a copy.
The reason is that the lattice must force at least one transition to oc-
cur within its transition region. If a b = 0 event received a zero
probability say at the beginning of a transition region, that hypoth-
esis would be incorrectly annihilated since it might go on, in the
following frame, to validly hypothesize a transition. The only hy-
potheses that should be annihilated are those that survive the entire
transition region without making a transition. This may thus create
events where ¢ > 7(i) + €2, but these are then cleared up by case
two above.

The logic for the matching CPT p(L¢|L¢—1, Nt, Ny—1,T%) fol-
lows similar reasoning and is omitted to save space. Obviously, the
above CPTs do not normalize since we may have » . p:(j[i,b) =
0 for certain 7 and b. Indeed, the DBN with the observed child
(Figure {4)) also does not globally normalize. We have, thus, effec-
tively created an undirected graphical model with a global normal-
ization constant that is not being computed. Of course, since this
is a generative model, this constant is needed neither for maximum-
likelihood training nor for decoding (a conditional model or discrim-
inative training of this model would need at least an estimate of this
constant though).

3.3. The utility of explicit time

The lattices above can be used for a number of purposes, including
constrained automatic speech recognition (ASR) and simple lattice
re-scoring, say with an improved LM. This latter application is how
we have so far tested this approach (Sectionfd). In this case, however,
there is no need to keep successive time frames at the granularity typ-
ical in ASR —in such cases, whenever there is no transition, the graph
essentially would make successive identical copies of the DBN state
at each time point, significantly slowing down performance. The
only time “important” events occur are at the time points at which
the lattice allows a transition.

We can exploit this observation by including an additional ob-
served time parent vertex. These time parents indicate the succes-
sion of not-necessarily contiguous time frames at which the true lat-
tice events occur. This can be represented by a function g(t), where
g(t) is the time frame at which the t** real event in the lattice oc-
curs. This information can significantly reduce the state space of
the DBN. Therefore, we have a new variable T, = g(t) for all ¢ as
shown in Figure[5] Fortunately, in Algorithm[I} we have already ex-
pressed this part of the logic via function g(¢) with its new meaning
here rather than the identity as described in Section 3.2} In prac-
tice, rather than incorporating the function g(¢) into Algorithm [1]as
a mapping for each lattice, we instead pass only the ordinate values



of g(t) directly into the algorithm — this approach has some ad-
vantages since values need only be computed once, yielding further
speedups when the lattice is re-used many times. Indeed, we have
found overall that our shrinking time approach improves decoding
time by more than a factor of 100 for the lattices we tested.
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Fig. 5. Time observations indicate frames of real lattice events

4. EXPERIMENTS

To demonstrate our methodology’s feasibility, we evaluate using a
lattice re-scoring framework word lattices that had been generated,
under a bi-gram LM, by the SRI International 5x decipher system [[10]
for use in the EARS continuous telephone speech (CTS) recognition
systemm We used eval1998 + eval2000 as the development set (to
adjust LM weights) and eval2001 as a test set.

‘We implemented graphical model lattices in the Graphical Model
Toolkit (GMTK) [9] by creating new conditional probability tables
objects “lattice node CPT” and “lattice link CPT”. These CPTs get
their information directly from HTK SLF files [11] (i.e., the CPTs
themselves read the lattice information directly from the lattice files,
thus allowing us to easily utilize lattices that have been produced by
other speech recognition systems).

In the long run, we wish to use GMTK for a variety of novel
LVCSR tasks, including re-scoring using multi-speaker LMs [6].
Therefore, our lattices are unique in that they were strung together
to represent one side of an entire conversation. Thus, the lattices
correspond on average to 5 minutes of speech! As far as we know,
such long lattices have never been re-scored before — it is much more
typical to re-score lattices corresponding to an individual utterance.

We must first, of course, augment the graphical models to in-
clude a LM. There are standard graphical representations of n-gram
LMs [4]. The full graphical model we used for tri-gram re-scoring
is shown in Figure[6] where the bottom portion implements the word
tri-gram. Here, a transition causes a new word to be generated both
based on the LM and based on the lattice. The LM is a standard
DARPA back-off model, also supported in GMTK. A consistency
variable is then used to make sure that the re-scored word is iden-
tical to the corresponding next lattice word (all other cases are an-
nihilated). A bi-gram (or four-gram) lattice model can also easily
be expressed, where the re-scored word depends on previous one (or
three) words rather than only the previous two. In our experiments,
the lattice CPT itself is set up to utilize the acoustic scores contained
in the lattice, but to ignore the associated lattice LM scores since
new LM scores are obtained directly from the new LM.

For our baseline result, we computed the best scoring lattice hy-
pothesis using both the acoustic and LM scores within the lattice.
Next we utilized our own bi- and tri-gram models (trained using
much more data than that used for the bi-gram within the lattices).
The model used was the initial model of Section [3.2] without slack
variables. Results are shown in Table [T] for the test set, where all
weights were optimized on the development set. As can be seen,
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Fig. 6. Word lattices re-scoring with a tri-gram language model.

there is appreciable test-set improvement in word-error rate (WER)
over the baseline. Decoding time, moreover, was comparable to
standard lattice re-scoring systems which means that our technique
is viable to add a lattice-based pruned hypothesis space to a vari-
ety of speech recognition systems expressed by a graphical model.
In fact, when we attempted to re-score a 5-minute long lattice us-
ing the SRI lattice-tool, it ran out of memory, but GMTK
with its algorithmic CPT was able to do a complete re-scoring in
only 1.7 seconds, both on a 3.2 GHz 8GB Pentium-4 IA-32 class
machine. Moreover, since we are utilizing a graphical model, our
infrastructure allows much more than just re-scoring the lattice, or
its utilization in a second-pass system. Rather, our representation
allows lattice scores to be incorporated into the vast collection of
statistical models expressible by a graphical model.

Table 1. Word lattice re-scoring word error rates

model WER  rel. impr.
baseline  28.5% -
bigram  27.5% 3.5%
trigram  26.0% 8.8%
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