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Abstract

In any pattern classification task, errors are introduced because of the
difference between the true generative model and the one obtained via
model estimation. One approach to this problem uses more training data
and more accurate (but often more complicated) models. In previous
work we address this problem differently, by trying to compensate (post
log-likelihood ratio) for the difference between the true and estimated
model scores. This was done by adding a bias term to the log likelihood
ratio that was based on an initial pass on the test data, thereby producing
an intransitive classifier. In this work, we extend the previous theory by
noting that the bias term used before was sufficient but not necessary
for perfect correction. We derive weaker (necessary) conditions that still
lead to perfect correction, and therefore might be more easily obtainable.
We test a number of new schemes on an isolated word automatic speech
recognition task. Results show that by using the bias terms calculated
this way, the accuracy of classification substantially improves over the
baseline and over our previous results.

1 Introduction

Statistical pattern recognition is often based on Bayes decision theory[4], which aims to
achieve minimum error rate classification. Given an observationx, for each classification
decision, say classc′, a loss functionL(c′|c) is associated with the decision if the true
answer is classc. The goal is to find a classc∗ that minimizes the conditional riskR(c′|x)

c∗ = argmin
c′

R(c′|x) = argmin
c′

∑
c′

L(c′|c)P (c|x), (1)

The zero-one loss function is most commonly used

L(c′|c) = 1 − δc′c,

which means that the loss for a correct decision is zero, and for any wrong decision the loss
is 1, andδij is the Kronecker delta function. With this type of loss function, the decision
rule becomes

c∗ = argmax
c

P (c|x) = argmax
c

P (x|c)P (c), (2)
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which is based on the posterior probability and is called the minimum-error-rate decision
rule.

In multi-class classification, a Bayes’ classifier can be seen as a tournament style game,
where the winner between “players” is decided using likelihood ratios. Suppose the classes
(players) are{c1, c2, . . . , cM}, and the observation (game) isx, the winner of each pair of
classes is determined by the sign of the log likelihood ratioLij = ln P (x|ci)

P (x|cj)
. A practical

game strategy can be obtained by fixing an order of comparison,{i1, i2, . . . , iM}, where
classci1 plays classci2 , the winner plays classci3 , and so on until a final winner is ulti-
mately found. This yields a transitive game, because the the ultimate winner is the same
regardless of the comparison order.

To perform the procedure above, however, the correct likelihood ratios are needed, but
given a finite amount of training data this is never the case. In previous work [1], we in-
troduced a method to correct for the difference between the true and an approximate log
likelihood ratio. In this work, we improve on the method of correction by using an expres-
sion that can still lead to perfect correction, but is weaker than what we used before. We
show that this condition still achieves a significant improvement over baseline results, on
a medium vocabulary isolated word automatic speech recognition task. The paper is orga-
nized as follows: Section 2 describes the general scheme and describes past work. Section
3 discusses the weaker correction condition, and its various approximations. Section 4 pro-
vides various experimental results on an isolated word speech recognition task. Section 6
provides preliminary results using an iterative update scheme. Finally, Section 7 concludes.

2 Background

A common problem in all machine learning settings is lack of sufficient training — without
this, the estimated distribution does not well match the one encountered during testing. The
problem is no less acute in speech recognition. In a generative setting, this occurs since
instead of the real class conditional modelP (x|c), only the estimated quantitŷP (x|c) is
available. In the likelihood ratio scheme described above, the log-likelihood ratio that is

available for decision making iŝLij = ln P̂ (x|ci)

P̂ (x|cj)
rather than the true log ratioLij =

ln P (x|ci)
P (x|cj)

A difference betweenLij andL̂ij can cause errors because of inaccuracy in the estimation
procedure. One approach to correct for this inaccuracy is to use more complicated class
conditional likelihoods, more complicated functional forms ofLij , and/or more training
data. In previous work [1], we proposed another approach that requires no change in gen-
erative models, no increase in free parameters, no additional training data but still yields
improved accuracy. The key idea is to compensate for the difference betweenLij andL̂ij

using a bias termαij(x) based on test data1:

ln
P (x|ci)
P (x|cj)

= ln
P̂ (x|ci)
P̂ (x|cj)

+ αij(x) (3)

If it is assumed that a single bias term is used for all data, so thatαij(x) = αij , we found
that the bestαij is as follows:

αij =
1
2

(D(i‖j)−D(i‖j))− 1
2

(
D̂(i‖j)− D̂(i‖j)

)
, (4)

1In this and subsequent analysis, we assume uniform and therefore ignore priorsP (c) for sim-
plicity, but these can easily be used if desired.



whereD(i‖j) is the Kullback-Leibler (KL) divergence[3]. Under the assumption of sym-
metric KL-divergence for the true model (e.g., equal covariance matrices in the Gaussian
case), the bias term can be solved explicitly as

αij = −1
2

(
D̂(i‖j)− D̂(i‖j)

)
. (5)

We saw how the augmented estimated likelihood ratio leads to an intransitive game [7,
5], and we investigated a number of intransitive game playing strategies. Moreover, we
observed that if the correction was optimal, the true likelihood ratios would be obtained
which clearly are not intransitive. We therefore hypothesized and experimentally verified
that the existence of intransitivity was a good indicator of the occurrence of a classification
error.

This general approach can be improved upon in several ways. First, better intransitive
strategies can be developed (for detecting, tolerating, and utilizing the intransitivity of a
classifier); second, the assumption of symmetric KL-divergence should be relaxed; and
third, the above criterion is stricter than required to obtain perfect correction. In this work,
we advance on the latter two of the above three possible avenues for improvement.

3 Improved Intransitive Scheme

An αij(x) that solves Equation 3 is a sufficient condition for a perfect correction of the
estimated likelihood ratio since given such a quantity, the true likelihood ratio would be
attainable. This condition, however, is stricter than necessary because it is only the sign of
the likelihood ratio that is needed to decide the winning class. We therefore should ask for
a condition that corrects only for the discrepancy in sign between the true and estimated
ratio, as in the following:

sgn

[
ln

P (x|ci)
P (x|cj)

− αij(x)
]

= sgnln
P̂ (x|ci)
P̂ (x|cj)

. (6)

As can be seen, this condition is weaker than Equation 3, weaker in that any solution
to Equation 3 solves Equation 6 but not vice versa. Note also that Equation 6 provides
necessaryconditions for an additive correction term to achieve perfect correction, since
any such correction must achieve parity in the sign. Therefore, it might be easier to find a
better correction term since the criterion function (and therefore, set of possibleα values)
is less constrained. As will be seen, however, analysis of this weaker condition is more
difficult. In the following sections, we introduce several approximations to this condition.

3.1 The Sign function and its approximations

The main problem in trying to solve forαij(x) in Equation 6 is the existence of the sign
function. In this section, therefore, we work toward obtaining an analytically tractable
approximation. Let us at first assume that the function “sgn()” is the standard (+1/-1)-
valued sign function (-1 when its argument is less than zero, and +1 otherwise). We obtain
an approximation via a Taylor expansion as follows:

sgn(z + ε) = sgn(z) + εsgn′(z) + o(ε) = sgn(z) + ε(2H(z)− 1)′ + o(ε) (7)

where

H(z) =

{ 1 if z > 0,
1/2 if z = 0,
0 if z < 0,

is the unit step function, andH ′(z) = δ(z), whereδ(z) is the Dirac delta function and
satisfying

∫
f(z)δ(z) dz = f(0). Therefore we say that,

sgn(z + ε) = sgn(z) + 2εδ(z) + o(ε)



Of course, the Taylor expansion is valid only when the function is continuous and dif-
ferentiable, otherwise the error terms can be arbitrarily large. If we find and use a suit-
able continuous and differentiable approximation rather than the discrete sgn function, the
above expansion becomes more appropriate. There exists a trade-off, however, between the
quality of the sign function approximation (a better sign function should yield a better ap-
proximation in Equation 6) and the error cased by theo(ε) term in Equation 7 (a better sign
function approximation will have a greater error when higher-order terms are dropped). We
therefore expect that there will exist an optimal balance between the two.

Applying this to the left side of Equation 6, we get

sgn

[
ln

P (x|ci)
P (x|cj)

− αij

]
≈ sgnln

P (x|ci)
P (x|cj)

− 2αijδ

(
ln

P (x|ci)
P (x|cj)

)
.

where we have also made the simplifying assumption thatαij(x) = αij as we did before.
This can be plugged into Equation 6, and to findαij , the expected value of both sides
is taken with respect to distributionPij(x). If the true class ofx wasci, we should use
Pij(x) = P (x|ci) (similarly for cj). If neitherci nor cj is the true class, it does not matter
which distribution is used since when used in a game playing strategy, either winner will
ultimately play against the true class. Unfortunately, we do not know the true class at any

given point, so we integrate with respect to the the average, i.e.,Pij(x) ∆= 1
2 (P (x|ci) +

P (x|cj)). This is accurate because 1) again, when the true class is neitherci nor cj the
distribution used does not influence the result, and 2) in the two class setting (e.g., when
we know that eitherci andcj is the true class), this yields the true distributionP (x) in the
case of equal priors. With these assumption, we get:∫ (

sgnln
P (x|ci)
P (x|cj)

− 2αijδ

(
ln

P̂ (x|ci)
P̂ (x|cj)

))
Pij(x) dx =

∫
sgnln

P (x|ci)
P (x|cj)

Pij(x) dx−2αij

since the right term on the left of the equality simplifies for this choice ofPij(x). From
this, an expression forαij can be obtained, as:

αij =
1
2

∫
sgnln

P (x|ci)
P (x|cj)

Pij(x)dx− 1
2

∫
sgnln

P̂ (x|ci)
P̂ (x|cj)

Pij(x)dx

The first term is quite similar to the term we saw in the KL-divergence case, shown in the
first part of Equation 4. Again, because we have no information about the true class con-
ditional models, we assume this term to be zero (denote this as assumption B). Comparing
this assumption with the corresponding one for the KL-divergence case (assumption A),
we can see that in general they are not identical. In the Gaussian case, however, we can
show that A implies B.

Suppose the models are Gaussian so thatP (x|ci) = N(µi, σ
2
i ). As shown in [1], assump-

tion A becomes:
σ2

i

σ2
j

−
σ2

j

σ2
i

+ (µi − µj)2
(

1
σ2

j

− 1
σ2

i

)
= 0

which is true if and only if the variances are identical. Now assume assumption B, that the
covariances are identical, and (without loss of generality) thatµi < µj . The pointx̄ where
P (x̄|ci) = P (x̄|cj) is x̄ = 1

2 (µi + µ2) and henceP (x|ci) > P (x|cj) whenx < x̄ and
P (x|ci) < P (x|cj) whenx > x̄. Therefore,∫

sgnln
P (x|ci)
P (x|cj)

(P (x|ci)+P (x|cj)) dx =
∫ x̄

−∞
(P (x|ci)+P (x|cj)) dx−

∫ +∞

x̄

(P (x|ci)+P (x|cj)).



This is zero because
∫ x̄

−∞ P (x|ci) dx =
∫ +∞

x̄
P (x|cj) dx and

∫ +∞
x̄

P (x|ci) dx =∫ x̄

−∞ P (x|cj) dx. Therefore, A implies B.

We have found that the opposite (B implies A) is not true in general, so that assumption B
is less restrictive than A, at least in the Gaussian case.

Under this assumption, we can produce an expression for the resultingαij using the weak
law of large numbers as follows:

αij ≈
1
2

 1
Ni

∑
x∈ci

sgnln
P̂ (x|cj)
P̂ (x|ci)

+
1

Nj

∑
x∈cj

sgnln
P̂ (x|cj)
P̂ (x|ci)

 , (8)

whereNi andNj are number of samples from modelci andcj respectively. And like in [1],
since the true classes are unknown, we perform an initial classification pass to get estimates
and use these in Equation 8.

Note that there are two potential sources of error in the analysis above. The first is assump-
tion B, which we argue can be a less severe approximation than in the KL-divergence case.
The second is the error due to the discontinuity of the sign function. To address the second
problem, rather than using the sign function in Equation 8, we can approximate it a with
number of continuous differential functions in the hope of balancing the trade-off that was
mentioned above. On the left in Figure 1, we show three sign-function approximations, hy-
perbolic tangent, arctangent, and a shifted sigmoid function. On the right of the figure, the
shifted sigmoid is presented with several values of its free parameterbeta. In the following,
we derive expressions forαij for each of these sign approximations.
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Figure 1: Left: Several approximating sign function. Right: Shifted sigmoid with different
β values.

3.2 Hyperbolic tangent

In the hyperbolic tangent case:

sgnz ≈ tanh z =
ez − e−z

ez + e−z
.

which yields:

αij ≈=
1
2

∫
P̂ 2(x|cj)− P̂ 2(x|ci)
P̂ 2(x|ci) + P̂ 2(x|cj)

(P (x|ci) + P (x|cj)) dx



or again using the law of large numbers,

αij ≈
1
2

 1
Ni

∑
x∈ci

P̂ 2(x|cj)− P̂ 2(x|ci)
P̂ 2(x|ci) + P̂ 2(x|cj)

+
1

Nj

∑
x∈cj

P̂ 2(x|cj)− P̂ 2(x|ci)
P̂ 2(x|ci) + P̂ 2(x|cj)

 . (9)

3.3 Arctangent

We can also replace the sign function by arctangent.

sgnx ≈ 2
π

tan−1 x

In this case,

αij ≈
1
π

 1
Ni

∑
i∈ci

tan−1 ln
P̂ (x|cj)
P̂ (x|ci)

+
1

Nj

∑
i∈cj

tan−1 ln
P̂ (x|cj)
P̂ (x|ci)

 . (10)

3.4 Shifted Sigmoid

Sigmoid function is the solution of the differential equationy′ = y(1−y) and has the form

f(x) =
1

1 + e−βx
, where the free parameterβ (the inverse temperature) determines how

well the curve will approximate a discontinuous function (see Figure 1 right). Using the
sigmoid function, we can approximate the sign function as

sgnx ≈ 2
1 + e−βx

− 1,

Note that the approximation improves asβ increases. Hence,

αij ≈
1
2

 1
Ni

∑
i∈ci

1 − 2

1 + P̂ β(x|cj)

P̂ β(x|ci)

+
1

Nj

∑
i∈cj

1 − 2

1 + P̂ β(x|cj)

P̂ β(x|ci)

 . (11)

4 Experimental Evaluation

Similar to previous work, we implemented this technique on NYNEX PHONEBOOK[6, 2],
which is a medium vocabulary isolated word speech corpus. A Gaussian mixture hidden
Markov model (HMM) is used to calculate the probability scoresP̂ (x|ci) where in this case
x is a matrix of feature values, andci is a given spoken word. The HMM models use four
hidden states per phone, and 12 Gaussian mixtures per state. This yields approximately
200K free model parameters in total.

In our experiments, the steps are as follows: 1) calculateP̂ (x|ci) using full HMM inference
(no Viterbi approximation) for each test case and for each class (word); 2) classify the

examples using just the log likelihood ratiosL̂ij = log P̂ (x|ci)

P̂ (x|cj)
; 3) calculate the bias term

using one of the techniques described above; 4) classify again using the new improved
likelihood ratioSij = L̂ij + αij . In this case, since the procedure is no longer transitive,
we run 1000 random games (as in [1]) and choose the most frequent winner as the final
winner. The results are shown in Table 1.

In the table, the first column gives the size of the vocabulary (number of different classes) in
the test data; the first column shows the baseline which is using theL̂ij criteria; the rest are
the results using the bias terms. In the sigmoid case, the inverse temperature is set toβ = 1.
As we can see from the table, in all cases the new methods yield a significant improvement
in accuracy. For each method, the error rate is about the same after the correction.



vocab baselineL̂ij sign tanh atan sigmoid(β = 1)
75 2.3358 1.7584 1.7584 1.7581 1.7584
150 3.3107 2.8258 2.8382 2.8269 2.8258
300 5.2251 4.7524 4.7492 4.6984 4.7524
600 7.3927 6.6383 6.6109 6.5972 6.6383

Table 1: Word error rates using different approximations to the sign function.

5 Sigmoid with Different Temperatures

The shifted sigmoid function can be fine-tuned to approximate the sign function by chang-
ing the value ofβ as shown in Figure 1. This function is particularly useful since it allows
us to investigate the trade off mentioned in Section 3.1. The results are shown in Table 2
for β = {0.1, 1.0, 10, 100}.

vocab 0.1 1.0 10 100 KL-divergence (from [1])
75 1.8228 1.7584 1.5581 1.5708 1.9147
150 2.6502 2.8258 2.6523 2.4664 2.7228
300 4.7448 4.7524 4.2855 3.9502 4.2893
600 6.6581 6.6383 6.0409 5.6980 5.9144

Table 2: Word error rates using shifted sigmoid function with differentβ values:
{0.1, 1.0, 10, 100}

From the results we can see that the overall performance increases as we increase the in-
verse of temperature,β. This is because whenβ increases, the shifted sigmoid curve is a
better approximation to the sign function. Forβ = 100, the results here show an improve-
ment over the comparable KL-divergence results reported in [1] (shown in the right-most
column in the table). We are currently investigating largerβ values to determine when the
inaccuracies due to the Taylor error term start affecting the results (note, however, that for
the 75 word case, it seems this has occurred atβ = 100).

6 Iterative Classification

The scheme above relies on an initial classification run usingL̂ij to obtain the estimates
of the class identities on the test set. A second run is then used with the likelihood ratio
correction factorSij , producing improved class identity values. It therefore should be
possible to iterate this procedure such that further improvements are obtained (see also [1]).
We attempted this procedure using the new likelihood ratio results, as shown in Figure 2.
Unfortunately, we do not see any improvement, and in certain cases the error results start to
diverge. This behavior is different from what was seen using the KL-divergence criterion
in [1]. We plan to investigate and analyze these unexpected results further.

7 Conclusion

We extended the basic log likelihood ratio classification by compensating the difference
between real model and estimated model. Rather than focusing on the sufficient correction
factor as done in previous work, approximate the exact compensation using continuous
differentiable approximations of the sign function. Results show that by adding the bias
term under the different approximations, the error rates significantly decrease. Of all the
functions we used, the shifted sigmoid has the advantage in that it has a free parameter that
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Figure 2: iterative decoding

can be tuned. It is shown that when the parameterβ increases, the error rate also decreases.
In future work, we will further investigate this function, and will attempt to utilize higher
order terms in the Taylor expansion, will apply our methodology on new data sets, and since
none of these methods are transitive, we will further analyze why intransitively occurs and
how it can potentially be utilized.
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