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Abstract

Most results for online decision problems with
structured concepts, such as trees or cuts, as-
sume linear costs. In many settings, how-
ever, nonlinear costs are more realistic. Ow-
ing to their non-separability, these lead to
much harder optimization problems. Going
beyond linearity, we address online approx-
imation algorithms for structured concepts
that allow the cost to be submodular, i.e.,
nonseparable. In particular, we show regret
bounds for three Hannan-consistent strategies
that capture different settings. Our results
also tighten a regret bound for unconstrained
online submodular minimization.

1. Introduction

Online decision problems require repeatedly choosing a
solution S with knowledge only of the costs for previous
decisions. The goal is to be in the long run competitive
to the best solution in hindsight. This online setting
becomes more challenging if in each round, a combina-
torial structure must be chosen as the solution, e.g., a
path or spanning tree (Kalai & Vempala, 2005; Koolen
et al., 2010; Kakade et al., 2009). Almost always, the
cost function is assumed to be linear, i.e., separable. Of-
ten, this separability is key to tackle the combinatorial
explosion of the decision space which otherwise poses
difficulties to methods based on maintaining weights.
Indeed, non-separability of the cost usually renders the
offline problem NP-hard. Then only approximation
algorithms are possible, a further complication. Ac-
cordingly, and despite the broad interest that online
problems have enjoyed in Machine Learning, results for
online combinatorial problems with nonlinear costs are
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quite scarce, and mostly relate to simple constraints or
problems that are solvable exactly. But the restriction
to separable costs fails to capture several real-world
situations. Therefore, we address online algorithms for
nonseparable, submodular costs.

In the online combinatorial setting, we have a ground
set E of elements, e.g., the edges in a fixed graph. In
each of T rounds, we must choose a structure St from
a family S ⊂ 2E that contains, e.g., all spanning trees,
or all matchings. Then the cost function ft is revealed
that determines the loss ft(St). If we knew ft, we
would solve the problem

min ft(S) subject to S ∈ S. (1)

Examples are routing or connectivity problems, where
the graph structure does not change over time, but the
cost f : 2E → R+ of the edges does. Usually, the cost
function is a sum w(S) =

∑
e∈S w(e) of nonnegative

edge weights w : E → R+. With this cost, Problem (1)
reduces to a well-studied problem like shortest path or
minimum spanning tree.

The sum of weights, however, fails to capture the cost
in many real-life situations. As an example, edges in a
graph might be operated by different companies, and
there is a discount for using the same company on many
edges. Similarly, some elements might have shared fixed
costs or depend on shared resources. Such discounts
are captured by submodular set functions. Thus, we
allow f to be a nondecreasing submodular set function.
A function f : 2E → R+ is submodular if it satisfies
diminishing marginal costs: for any A ⊆ B ⊆ E \ {e},
it holds that f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B).
The function is nondecreasing if for all A ⊆ B ⊆ E,
it holds that f(A) ≤ f(B). A sum of weights satisfies
diminishing costs with equality, and is thus called a
modular function. All separable functions are modular.
As opposed to submodular functions, modular functions
cannot express dependencies between the costs of two
elements. Recently, theoretical computer science has
seen a rising interest in combinatorial problems like (1)
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with submodular costs (Iwata & Nagano, 2009; Goel
et al., 2009; Koufogiannakis & Young, 2009). Such
submodular problems arise in a variety of applications,
such as the following.

Label Costs. Each element e ∈ E has a set of la-
bels (features) π(e) ⊂ L, and the cost f(S) of a
set S ⊆ E is the cost of the labels of its elements:
f(S) = c(

⋃
e∈S π(e)). Labels are shared among several

elements, and the cost of a set of labels L is additive:
c(L) =

∑
`∈L c(`) (ref. in (Hassin et al., 2007)). In a

network, the labels can correspond to transportation
media or edges maintained by the same company, and
choosing paths or trees spanning few labels lowers the
cost. Another application is reliable connectivity struc-
tures in networks: links do not break independently,
but share physical resources or other common sources
of failure. They belong to “Shared Risk Link Groups”
(Yuan et al., 2005), modeled by common labels. Re-
lated ideas have surfaced in computer security, where
the minimum label cut in an attack graph indicates
the lowest-cost prevention of an intrusion (Jha et al.,
2002). Finally, the “multiple query optimization prob-
lem” can be phrased as a label cost problem. In all
these examples, submodular costs allow even the cost
of the labels themselves to enjoy discounts.

Minimum power assignment. In wireless ad-hoc
networks, we seek a connectivity structure (e.g., a
spanning tree) that has minimum power requirement.
The power consumption of a node depends on the most
expensive edge it is using, p(v|S) = maxe=(v,u)∈S c(e),
and the total cost is the sum of the node costs, f(S) =∑
v∈V p(v|S) (Calinescu et al., 2003).

Image segmentation. Graph cuts are a versatile tool
in computer vision. Submodular edge costs allow to
couple edges and improve segmentations in difficult
settings (Jegelka & Bilmes, 2011a).

Stochastic optimization. In discrete mean-risk min-
imization, we aim to minimize a stochastic cost func-
tion over S while avoiding risks. The resulting op-
timization problems have cost functions of the form
f(S) =

∑
e∈S µe + Ω

√∑
e∈S σ

2
e – a submodular func-

tion. Instead of the root, other concave functions can
arise that yield submodular set functions (Atamtürk &
Narayanan, 2008).

1.1. Online setting and regret

We consider the full-information online setting: in
round t, the decision maker must choose a solution
St ∈ S, knowing only the costs up to round t − 1.
Upon this choice, the cost ft is revealed, and the player
incurs loss ft(St). Throughout rounds t = 1, . . . , T ,

one aims to minimize the regret, the difference to the
best fixed solution in hindsight:

R(T ) =
1

T

(
T∑
t=1

ft(St)−min
S∈S

T∑
t=1

ft(S)

)
. (2)

An algorithm is Hannan-consistent if its regret vanishes
as T → ∞. Regret is commonly used for problems
where the minimization for a known cost, minS∈S f(S),
can be solved exactly. But problems of the form (1)
with submodular costs are NP-hard; indeed, many
have non-constant lower bounds on the approximation
factor α. The factor α is a bound on the quality of a
solution S′ returned by a given algorithm, compared
to the optimal solution S∗: f(S′) ≤ αf(S∗). If E are
the edges in a graph G = (V,E), lower bounds on
α are Ω(|V |) for minimum spanning tree and perfect
matching (Goel et al., 2009), Ω(

√
|E|) for min (s, t)-cut

(Jegelka & Bilmes, 2011b), and Ω(|V |) for edge cover
(Iwata & Nagano, 2009).

Thus, in this work, we target online approximation
algorithms. Let α be the approximation factor at-
tained by an offline approximation algorithm that solves
minS∈S f(S) for a known submodular f . The α-regret
compares to the best solution that can be expected
in polynomial time and is used with approximations
(Kakade et al., 2009; Streeter & Golovin, 2008):

Rα(T ) =
1

T

(
T∑
t=1

ft(St)− αmin
S∈S

T∑
t=1

ft(S)

)
. (3)

1.2. Contributions and Roadmap

Building on offline approximation algorithms, we tackle
submodular cost functions in combinatorial online prob-
lems. This setting has also been termed “learning struc-
tured concept classes” – but, contrary to previous work,
we use nonlinear costs. In particular, we derive algo-
rithms that handle (i) non-separability for structures
that are beyond previous dynamic programming ap-
proaches (Lugosi et al., 2009), and (ii) approximations,
by exploiting properties of submodular functions. First,
we show two generic Hannan-consistent algorithms for
two main approximation strategies, one based on sub-
gradient descent (§2.1), and one based on a Follow-the-
leader scheme (§2.2). Table 1 shows regret bounds with
details plugged in for various problems. As a corol-
lary, our Theorem 1 tightens Theorem 1 in (Hazan &
Kale, 2009) for the unconstrained case. While the first
two parts address general submodular functions, the
third part focuses on a special class, namely label costs
(LC). This class allows better approximation factors
if class-specific algorithms are used. We reformulate
LC problems as cover-type problems, and derive an
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Table 1. Overview of regret bounds. The approximation factor α is underlined, k is the maximum frequency, U the universe
to cover. In a graph G = (V,E), n = |V |; for set cover, m is the number of sets. ∗for complete bipartite graphs

set cover vertex cover (s, t)-cut spanning tree perfect matching

subgradient desc. (§2.1) O(k
√
m/T ) O(2

√
m/T ) O(n

√
m/T ) – –

FPL (§2.2) – – O(nm/
√
T ) O(nm/

√
T ) O(nm/

√
T )

label cost (§2.3) O(ln |U |
√

|L|/T ) O(ln |E|
√

|L|/T ) O(
√
m|L|/T ) O(lnn

√
|L|/T ) O(|L|

√
|L|/T )∗

online algorithm that can use any offline algorithm for
the LC problem at hand. Beyond standard label costs,
our formulation extends to multiple labels and simple
discounts.

1.3. Related work

Most existing online and bandit algorithms for combina-
torial problems expect a modular (linear) cost function
(Kalai & Vempala, 2005; Koolen et al., 2010; Cesa-
Bianchi & Lugosi, 2009; Awerbuch & Kleinberg, 2004;
Balcan & Blum, 2007). Many exploit the separability
of this function to handle the exponential number of
choices, e.g., when maintaining weights. Submodular
functions are not separable in this way. One example
for non-separable costs with multi-task constraints is
(Lugosi et al., 2009). Their dynamic programming ap-
proach, however, works only for limited constraint sets
that keep the state graph small.

Unconstrained submodular minimization is not NP-
hard, and Hazan & Kale (2009) derive online algo-
rithms for this problem with a regret of O(m

√
T ) for

m elements. We partially build on their techniques.

Contrary to the problems in most of the work above,
most instances of Problem (1) are NP-hard. In general,
there is no generic solution for integrating approxima-
tions into online algorithms. Kalai & Vempala (2005)
extend the regret bound for the Follow-the-perturbed
leader (FPL) algorithm to NP-hard combinatorial prob-
lems with a modular cost function if there is an algo-
rithm that provides a coordinate-wise approximation to
the optimal solution; this does not apply here. Kakade
et al. (2009) show an example where FPL fails for the
greedy set cover algorithm, and ask how to use FPL in
general with approximations. In Section 2.2, we inte-
grate a class of approximation algorithms for Problem
(1) into the FPL framework. Kakade et al. (2009) show
how to derive online approximation algorithms from
offline algorithms, generalizing online gradient descent
(Zinkevich, 2003) by approximate projections. They
too consider only a certain family of cost functions and
pose the case of nonlinear costs as an open problem. A
straightforward use of their algorithm would yield ex-
ponential regret bounds, and also pose other problems
(Supplement, 2011).

For approximate submodular maximization, online
greedy methods exist (Streeter & Golovin, 2008)
that satisfy constraints in expectation only. Adap-
tive/interactive submodularity (Golovin & Krause,
2010; Guillory & Bilmes, 2011) also implies greedy
algorithms, but considers a setting different from ours.

1.4. Preliminaries and notation

The cost function f is defined on 2E , the power set of E.
The cardinality of E is m = |E|. Graphs are denoted
by G = (V,E). The α in the regret bound always
refers to the approximation factor of the corresponding
offline algorithm. Let χA ∈ {0, 1}E be the charac-
teristic vector of A ⊆ E, which means χA(e) = 1 if
e ∈ A and χA(e) = 0 otherwise. An important concept
for submodular functions is the submodular polyhedron
Pf = {x ∈ RE | x ·χA ≤ f(A) for all A ⊆ E}. For any
submodular f , it holds that f(A) = maxy∈Pf

y · χA.

The Lovász extension f̃ of f is the convex exten-
sion f̃ : RE+ → R with f̃(x) = maxy∈Pf

y · x, so

f̃(χA) = f(A) for all A ⊆ E (Lovász, 1983). This
definition shows that g = argmaxy∈Pf

y · x is a subgra-

dient of f̃ in x (Fujishige, 2005): it implies g ·x′ ≤ f̃(x′)
for all x′ ∈ RE+, and hence f̃(x′)− f̃(x) ≥ g · (x′ − x).
The greedy algorithm (Edmonds, 1970; Lovász, 1983)
finds the vector g in O(m logm) time. We will also use
that the sum of submodular functions is submodular,
and assume f to be nonnegative and nondecreasing.
For more details on submodular functions, see e.g. (Fu-
jishige, 2005; Lovász, 1983). Note that in a discrete
space, we use “modular” and “linear” interchangeably.

2. Strategies

Many approximation algorithms relate an inherently
difficult problem to an easier one, and we will build
on exactly this relation. Problem (1) is hard for two
reasons, and we categorize algorithms by which of those
reasons they address: (i) Problem (1) has combinatorial
constraints – unconstrained submodular minimization
is not NP-hard (ref. in (Fujishige, 2005)); (ii) the cost
function is nonseparable – for a separable f , many in-
stances are not NP-hard, e.g., minimum spanning tree.

Algorithms working with (i) treat f as a pseudo-boolean
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Algorithm 1 Rounded subgradient descent

Input: η > 0, initial x1 ∈ K
for t = 1 to T do

get St from xt by rounding with guarantee α
obtain ft
compute gt = argmaxg∈Pft

g · xt and

xt+1 = ΠK(xt − ηgt)
end for

function on indicator vectors, relax S to its convex hull,
and finally round the solution of the relaxed problem.
The relaxation is a convex non-smooth minimization
problem with linear constraints. Such a problem is nat-
urally amenable to an online, possibly exponentiated,
subgradient descent.

Algorithms motivated by (ii) replace f by a tractable

approximation f̂ , and minimize f̂ over S. We use this
f̂ in a specific way in the Follow-the-leader framework,
and show example functions that fit our framework.
The generic f̂ by (Goemans et al., 2009) does not fit
Algorithm 2, but we present a modification that works.

Finally, label costs permit better approximations that
the generic algorithms of type (i) and (ii) are not guar-
anteed to achieve. Thus, we derive a third framework
for label costs. It transforms the cost function and con-
straints into an equivalent problem – selecting labels –
that is the starting point for the online approximation.

2.1. Relaxations

We begin with an algorithm that operates on a relax-
ation and then uses rounding. The rounding procedure
determines the approximation factor; suitable proce-
dures exist for covering constraints (Iwata & Nagano,
2009) and cuts (Jegelka & Bilmes, 2011b).

Let K ⊆ [0, 1]E be the convex hull of the decision space
S ⊆ {0, 1}E ; both are described by the same linear
inequalities. The cost function on K corresponding to
ft on S is the convex Lovász extension f̃t. Algorithm 1
maintains two variables: it performs a subgradient
descent based on (Zinkevich, 2003) in continuous space
that yields xt, and then rounds to St. In each round
t, it takes a step into the direction of the negative
subgradient −gt of f̃t and projects back onto K. The
projection ΠK(y) = argminx∈K ‖x − y‖2 is in general
easier to solve than the full non-smooth relaxation.

Theorem 1. For a rounding scheme with ap-
proximation guarantee α, M = maxt ft(E), and
η =

√
m(M

√
T )−1, Algorithm 1 has an α-regret of

Rα(T ) ≤ αM
√
m/T = O

(
α
√
m/T

)
.

As a corollary, Theorem 1 improves a bound in (Hazan

& Kale, 2009), and makes it tight (using α = 1, S =
{0, 1}E and their thresholded rounding).

Corollary 1. The regret for online submodular mini-
mization with Algorithm 1 is bounded by O(

√
m/T ).

Crucial for the improvement is a bound on the norm
of the subgradient that uses gt ∈ Pf and ‖gt‖ ≤ ‖gt‖1
(Supplement, 2011):

Lemma 1. Let gt be a subgradient of ft (obtained as
in §1.4). Then ‖gt‖ ≤ βmaxA⊆E |ft(A)|−ft(∅), where
β = 1 if ft is nondecreasing, and β = 3 otherwise.

Proof. (Thm. 1, outline) The proof consists of two
steps. First, we bound the 1-regret for the sequence
{xt} analogous to (Zinkevich, 2003), and then use this
result to bound the α-regret for the sequence St. Let
S∗ ∈ argminS∈S

∑T
t=1 ft(S). The definition f̃t(x) =

maxg∈Pft
g · x implies f(S∗) = f̃(χS∗) and

T∑
t=1

f̃(xt)−
T∑
t=1

f(S∗) ≤
T∑
t=1

gt · xt −
T∑
t=1

gt · χS∗ .

A proof similar to that in (Zinkevich, 2003) leads to a
bound on the right hand side that we bound further:

2

T∑
t=1

gt · (xt − χS∗) ≤ max
x,y∈K

‖x− y‖2/η + ηT max
t
‖gt‖2

≤ m/η +M2Tη.

For the second inequality, we used ‖x − y‖2 ≤ m for
all x, y ∈ K because K ⊆ [0, 1]E . Furthermore, we
bounded the `2 norm of gt by Lemma 1:

‖gt‖ ≤ gt · χE ≤ maxt ft(E) ≤M.

Finally, the approximation guarantee for the rounding
procedure implies that f(St) = f̃(χSt

) ≤ αf̃(xt), so

T∑
t=1

f(St)− α
T∑
t=1

f(S∗) ≤ α
T∑
t=1

f̃(xt)− α
T∑
t=1

f(S∗)

≤ 0.5α(m/η +M2Tη ).

The regret bound follows with η =
√
m(M

√
T )−1.

A similar strategy works with exponentiated gradients –
the regret bounds are as for linear cost problems, scaled
by a factor α. The proof is analogous.

Suitable rounding techniques are not available for all
submodular-cost problems. Instead, several algorithms
approximate the cost function. This approach fits the
Follow-the-leader framework described next.
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2.2. Approximations of the cost

We now address algorithms of type (ii) that replace f

in Problem (1) by an approximation f̂ and solve the

resulting tractable problem instead. Several f̂ integrate
with the Follow-the-leader principle (Hannan, 1957).

This principle suggests playing the best S given
the costs observed so far: in round t, pick St =
argminS∈S

∑t−1
τ=1 fτ (S)+r(S) (Kalai & Vempala, 2005).

In the simplest case, the last term is a modular per-
turbation r(S) = r · χS by a random vector r (Follow-
the-perturbed-leader, FPL). But here, finding such a
minimizer St is NP-hard, and an St from an approxi-
mation algorithm is not enough (Kakade et al., 2009).
Instead, Algorithm 2 uses the exact expected minimizer
of the approximate costs, because the deviation of each
f̂t from ft is bounded, not only the sum. We define
two general conditions for f̂ :

C1 The approximation f̂ of f satisfies f(A) ≤ f̂(A) ≤
αf(A) for all A ∈ S.

C2 The following problem can be solved exactly in
polynomial time:

argminS∈S
∑

t
f̂t(S) + αr(S). (4)

Algorithm 2 Follow the approx. perturbed leader

Input: η > 0
pick r ∈ [0,M/η]E uniformly at random
for t = 1 to T do

approximate ft by f̂t
set St = argminS∈S

∑t−1
τ=1 f̂τ (S) + αr(S)

obtain ft
end for

These constraints apply in a variety of settings, as we
discuss later. Algorithm 2 integrates such an f̂ into
the FPL framework and adapts the perturbation r
accordingly. Condition (C2) ensures that we can find
St. Then we can bound the regret for submodular costs
in an approximation setting even with FPL.

Theorem 2. For an approximation f̂ that satisfies
(C1) and (C2), M = maxt ft(E), and η = 1/

√
2T ,

Algorithm 2 achieves an expected α-regret E[Rα(T )] ≤
2
√

2αmM/
√
T = O(αm/

√
T ).

Proof. (Outline) Let

St = argmin
S∈S

∑t−1

τ=1
f̂τ (S) + αr(S);

Ŝt = argmin
S∈S

∑t−1

τ=1
f̂τ (S); S∗t = argmin

S∈S

∑t

τ=1
fτ (S).

Similar to the proof of Lemma 3.1 in (Kalai & Vempala,
2005), we obtain a bound for the series of St+1:∑T

t=1
f̂t(St+1) ≤

∑T

t=1
f̂t(ŜT+1) + α(r(ŜT+1)− r(S1)).

To transfer this result to the series of St, we use that
f̂t(St) ≤ f̂t(St+1) + (f̂t(St)− f̂t(St+1)):

T∑
t=1

f̂t(St) ≤
T∑
t=1

f̂t(ŜT+1)

+

T∑
t=1

(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)).
(5)

Condition (C1) implies that∑T

t=1
f̂t(ŜT+1) ≤

∑T

t=1
f̂t(S

∗
T ) ≤ α

∑T

t=1
ft(S

∗
T ),

and that
∑T
t=1 ft(St) ≤

∑T
t=1 f̂t(St). Together with

Equation (5), this yields∑T

t=1
ft(St)− α

∑T

t=1
ft(S

∗
T )

≤
∑T

t=1
(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)).

It remains to bound the two terms on the right hand
side, and these bounds depend on r ∈ [0,M/η]E . The
expected difference of r terms can be bounded by
mM/η. For the other term, we extend a technique
in (Hazan & Kale, 2009) to the approximation set-
ting (Supplement, 2011) to bound the probability that
St 6= St+1, and reach the inequality∑T

t=1
E[f̂t(St)− f̂t(St+1)]

≤
∑T

t=1
P (St 6= St+1) max

A∈S
f̂(A) ≤ 2αmMTη.

Finally, combining these bounds yields

E
[ T∑
t=1

ft(St)
]
− α

T∑
t=1

ft(S
∗
T ) ≤ αMm/η + 2αmMTη.

Theorem 2 follows for η = 1/
√

2T .

2.2.1. Approximations fitting Algorithm 2

Conditions (C1) and (C2) show that a suitable approx-

imation f̂ is decisive. We list and derive examples for
f̂ that can be plugged into Algorithm 2.

Spanning tree and matching. The best approxima-
tion bound for minimum spanning tree (MST) and
perfect matching with general submodular costs is
O(|V |), and is achieved with the simple approxima-

tion f̂m(S) =
∑
e∈S f(e) (Goel et al., 2009). Since
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f̂m is additive, any standard algorithm for MST or
matching applies for (C2). (C1) holds by subadditivity
of f .

The simple f̂m, however, often leads to rather loose
approximation factors. We derive a better, nontrivial
approximation for the problem structure of cuts.

Minimum cut. For cuts, E is the set of directed edges
in a graph G = (V,E). We design f̂ to be separable
across certain groups of edges for tractability, but retain
submodularity on restricted sets to improve on f̂m. Let
{E−v }v∈V be the partition of E where E−v contains all
edges e = (u, v) with head v, and {E+

u }u∈V be the
analogous partition that assigns each edge e = (u, v)
to its tail node u. For either partition, we define an
approximate cost function:

f̂−(S) =
∑
v∈V

f(A ∩ E−v ); f̂+(S) =
∑
v∈V

f(A ∩ E+
v ).

By subadditivity, both functions are upper bounds on
f . Before starting Algorithm 2, we decide uniformly at
random whether to use f̂ = f̂− or f̂ = f̂+ and retain
this choice throughout. With this strategy, the factor
α in (C1) improves from m (for f̂m) to |V |/2:

Lemma 2. Let f̂ be randomly chosen between f̂− and
f̂+ with equal probabilities. Then f(S) ≤ E[f̂(S)] ≤
(|V |/2)f(S) for all minimal (s, t)-cuts S.

The lemma follows from the definition of f̂ and subad-
ditivity of f (Supplement, 2011).

To satisfy (C2), we compute the cut St via a generalized
flow problem. Polymatroidal network flows (Lawler &
Martel, 1982) generalize flow capacity constraints to
submodular functions capin

v and capout
v that restrict

the inflow and outflow of each node v, respectively.
Such a maxflow problem can be solved in polynomial
time. Its dual problem is a minimum cut with cut cost
c(S) = minA⊆S

∑
v capin

v (A∩E−v )+capout
v ((S\A)∩E+

v )
(Lovász, 1983). We thus set the capacity functions to

represent the cost in (C2). If f̂ = f̂−, then we set
capout

v to some large value so that c(S) only uses capin
v ,

and set capin
v (A) =

∑
t ft(A∩E−v ) +αr(A∩E−v ). The

procedure for f̂+ is analogous. Then (here for f̂−)

c(S) =
∑

v

∑
t
ft(S ∩ E−v ) + αr(S ∩ E−v )

=
∑

t
f̂t(S) + αr(S).

2.2.2. A generic approximation

A generic nontrivial approximation f̂ for submodular
functions was proposed by Goemans et al. (2009), but
it does not satisfy (C2) in a straightforward way. Its

functional form is f̂(S) =
√∑

e∈S w(e).

Nevertheless, it is possible to use its square. It satisfies
f̂2(A) ≤ f2(A) ≤ α2

g f̂
2(A) for all A ⊆ E, with αg =

O(
√
m logm). Even better, f̂2 is a modular function,

so we can use any online algorithm for linear costs:
when observing ft, we pretend to have seen f̂2t . The
regret might worsen by a constant factor, compared to
a linear loss of the same range as ft.

To state the regret bound, let ν = mint,S∈S ft(S). We
make the reasonable assumption that no ft is the con-
stant zero function, and then ν > 0. The following
Lemma is proved in (Supplement, 2011).

Lemma 3. Let R̂A be the regret of an online algorithm
A when used with linear cost functions with a range
like f̂2t . Using A with f̂2t when observing ft leads to an

αg-regret of Rαg
(T ) ≤ αgR̂A/ν.

2.3. Labels and related costs

The two previous sections proposed online algorithms
for general submodular functions. The associated ap-
proximation factors usually match their lower bounds.
However, certain sub-classes of submodular functions
admit better approximation factors. As an example,
the approximation factor for MST drops from linear to
logarithmic in |V | if f is a label cost function. There-
fore, we address a specific algorithm for label costs.

With label costs, each element e has a label π(e) ∈ L,
and the cost is the additive cost of the labels, f(S) =
c(
⋃
e∈S π(e)) =

∑
`∈π(S) c(`) (Hassin et al., 2007). We

assume here that the labels of the elements are fixed,
but the cost of the labels changes over time. We start
with trees and covers, and then generalize our technique
to related costs and other problems.

We intrinsically transform the decision space and state
the problem of selecting a structure as a label selection
problem with a covering constraint. Then we exploit
the simpler cost on the labels. The offline approxima-
tion algorithm helps find the desired labels.

Instead of directly choosing a structure, Algorithm
3 picks a set of labels Lt with minimum cost. This
Lt must be such that the set of elements E(Lt) =
{e|π(e) ∈ Lt} with labels in Lt contains the desired
structure St ∈ S, e.g., a tree. Given such an Lt, finding
a feasible St ⊆ E(Lt) is easy, and, by the definition of
ft, ft(St) ≤ ct(Lt). For trees, we find St by pruning the
graph to contain only edges E(Lt) and then compute
a spanning tree, St.

It remains to determine (i) by which criterion to choose
Lt, and (ii) how to find an Lt that contains the desired
structure. As to (i), we note that the cost function on
labels is modular. Therefore, we use an approximate



Online Submodular Minimization for Combinatorial Structures

Algorithm 3 Online label cost minimization

pick any S1 ∈ S; set L1 =
⋃
e∈S π(e), y1 = χL1

for t = 2 to T do
(yt, Lt) = ApproxProj(yt−1 − ηct−1, Lt−1, yt−1)
find St ⊆ E(Lt), St ∈ S
obtain ft and extract ct

end for

gradient descent. Algorithm 3 maintains a continuous
correspondent yt of Lt, and moves from yt into the direc-
tion of the negative gradient ct. To move the resulting
point to the feasible set, we use an approximate projec-
tion from (Kakade et al., 2009), denoted by ApproxProj.
This method applies because our re-formulation has
linear cost. The approximate projection relies on an
approximation algorithm - here, an algorithm to find a
suitable Lt, given a cost vector c.

Thus, as a last step, we show how to find a label set
Lt that contains a spanning tree. Given cost c, we
formulate a submodular cover problem:

min c(L) s.t. g(L) = g(L), (6)

for a nondecreasing submodular function g : 2L → N0.
We construct g to capture the tree constraint for E(L).
Let r : 2E → N0 be the rank function of a graphic
matroid defined by the given graph, that is, r(S) = |S|
if the subgraph induced by S does not contain any
cycles. Otherwise, r(S) is the size of the largest subset
of S that is cycle-free. The function r is submodular
and nondecreasing. If S is a spanning tree, then r(S) =
r(E) = |V | − 1. We define

g(L) = r(E(L)). (7)

This function g is also submodular, integral and non-
decreasing, and g(L) = g(L) = r(E) if and only if
E(L) contains a spanning tree. Problem (6) is solved
by a greedy algorithm for submodular cover (Wolsey,
1982), with approximation factor α = H(max` g(`)) =
O(log |V |). Here, H(n) is the nth harmonic number.
This algorithm completes the online algorithm for span-
ning trees.

The construction for set cover is analogous, with g(L)
counting the number of elements covered by sets with la-
bels in L. In fact, the result is a standard set cover prob-
lem. Thanks to our reformulation, the regret bound
involves the total number of labels, |L| ≤ m.

Theorem 3. The regret of Algorithm 3 is bounded as
Rα(T ) = O(α

√
M |L|/T ), where M = maxt ft(E).

The bound follows from Theorem 3.2 in (Kakade et al.,
2009) for η = (α+ 1)

√
|L|/(MT ), and from the equiv-

alence of picking labels and structures, as outlined

above. Theorem 3 immediately implies a regret bound
of O(

√
|L|M log |V |/

√
T ) for spanning trees.

Multiple labels and truncated costs. Our
transformation also applies to multiple labels per edge
and simple thresholded costs. Multiple labels can be
simulated by dividing an edge into “slots”, and by a
construction to count edges fractionally. Details are
described in (Supplement, 2011). In a similar spirit,
truncated costs of the form c(L) = min{w · χL, γ} can
be simulated by parallel edges, so that the algorithm
can pick a full group or single edges via labels.

Other structures. Some structures, such as paths,
are not easily represented as submodular covers.
However, it actually suffices to view the label cost
problems as modular-cost problems of choosing a
minimum cost set of labels L, where E(L) must
contain the desired structure. To solve this problem,
we compute a minimum label cost structure S∗ and
pick all labels used by S∗. Algorithms for minimum
label cost path (Hassin et al., 2007), matching
(Monnot, 2005) or cut (Zhang et al., 2009) find an
approximate S∗ with factor α. We substitute the
respective procedure for the submodular cover in the
approximate projections, and Algorithm 3 still applies.
As a result, Theorem 3 holds with the respective α.

3. Discussion and Open Questions

We showed two generic approaches to online algorithms
for submodular costs and combinatorial structures:
projected subgradient for relaxations and Follow-the-
leader for approximations of the cost function. Despite
being not completely ignorant of the underlying
approximation strategy, they are still generic enough
to cover almost all existing offline approximation
methods for structured concepts with submodular
costs. Algorithm 3 is even more generic: it fits any
algorithm for a label cost problem, and yields vanishing
α-regret even for the better α attainable with label
costs. Details for all results are in (Supplement, 2011).

Our work contributes to extending the results for the
online combinatorial setting from linear costs to nonlin-
ear costs. In particular, it yields the first regret bounds
for structured concepts with submodular costs. This
complements the work in the unconstrained setting
(Hazan & Kale, 2009), and the work on online submod-
ular maximization (Streeter & Golovin, 2008; Streeter
et al., 2009). “Combinatorial bandits” have been ex-
plored for linear cost functions (Cesa-Bianchi & Lugosi,
2009) – an open question remains what is achievable
in the bandit case for nonlinear, nonseparable costs.
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