1/18

Submodularity beyond submodular energies: Coupling edges in graph cuts

Stefanie Jegelka and Jeff Bilmes

Max Planck Institute for Intelligent Systems

Tübingen, Germany

イロト イポト イヨト イヨト

University of Washington

Seattle, USA

local pairwise random fields

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

<ロト < 団ト < 巨ト < 巨ト ミ の Q (C 3/18

Cooperative Cuts

Random Walker

Curvature reg.

Graph Cut

<ロト <回 > < 注 > < 注 > < 注 > 注 の Q (C 3/18

Cooperative Cuts

Applications

Markov Random Fields and Energies

$$p(\mathbf{x} \mid \mathbf{z}) \propto \exp(-E_{\Psi}(\mathbf{x}; \mathbf{z}))$$

MAP $\mathbf{x}^* = \arg\min_{\mathbf{x}} E_{\Psi}(\mathbf{x}; \mathbf{z})$

Applications

Markov Random Fields and Energies

$$p(\mathbf{x} \mid \mathbf{z}) \propto \exp(-E_{\Psi}(\mathbf{x}; \mathbf{z}))$$

MAP $\mathbf{x}^* = \arg\min_{\mathbf{x}} E_{\Psi}(\mathbf{x}; \mathbf{z})$

$$E(\mathbf{x}; \mathbf{z}) = \sum_{i} \Psi_{i}(x_{i}) + \sum_{(i,j) \in \mathcal{N}} \Psi_{ij}(x_{i}, x_{j})$$

Markov Random Fields and Energies

$$p(\mathbf{x} \mid \mathbf{z}) \propto \exp(-E_{\Psi}(\mathbf{x}; \mathbf{z}))$$
MAP $\mathbf{x}^* = \arg\min_{\mathbf{x}} E_{\Psi}(\mathbf{x}; \mathbf{z})$

$$E(\mathbf{x}; \mathbf{z}) = \sum_{i} \Psi_{i}(x_{i}) + \sum_{(i,j) \in \mathcal{N}} \Psi_{ij}(x_{i}, x_{j})$$
$$E(\mathbf{x}; \mathbf{z}) = \sum_{e \in \Gamma \times \cap \mathcal{E}_{t}} w_{e} + \sum_{e \in \Gamma \times \cap \mathcal{E}_{n}} w_{e}$$

Markov Random Fields and Energies

$$p(\mathbf{x} \mid \mathbf{z}) \propto \exp(-E_{\Psi}(\mathbf{x}; \mathbf{z}))$$
MAP $\mathbf{x}^* = \arg\min_{\mathbf{x}} E_{\Psi}(\mathbf{x}; \mathbf{z})$

$$E(\mathbf{x}; \mathbf{z}) = \sum_{i} \Psi_{i}(x_{i}) + \sum_{(i,j) \in \mathcal{N}} \Psi_{ij}(x_{i}, x_{j})$$
$$E(\mathbf{x}; \mathbf{z}) = \sum_{e \in \Gamma \times \cap \mathcal{E}_{t}} w_{e} + \sum_{e \in \Gamma \times \cap \mathcal{E}_{n}} w_{e}$$

<ロ> <同> <同> < 回> < 回>

э

4/18

5/18

イロン イヨン イヨン イヨン 三日

Applications

Richer Cuts: Cooperative Cuts

6/18

Richer Cuts: Cooperative Cuts

 $E(\mathbf{x}) = \sum w(e)$ e∈Γx $= w(\Gamma \mathbf{x})$

 $E_f(\mathbf{x}) = f(\mathbf{\Gamma}\mathbf{x})$

submodular function on edges

Applications

Richer Cuts: Cooperative Cuts

$$E(\mathbf{x}) = \sum_{e \in \mathsf{F}\mathbf{x}} w(e)$$
$$= w(\mathsf{F}\mathbf{x})$$

$$E_f(\mathbf{x}) = f(\mathbf{\Gamma}\mathbf{x})$$

submodular function on edges

non-submodular & global energy

<ロ> <部> <書> <書> <書> <書> こ> <のへの 6/18 Cooperative Cuts

Optimization

Applications

Coupling via Submodularity

Graph Cuts: LHS = RHS
 "it does not matter which other edges are cut"

• Graph Cuts: LHS = RHS "it does not matter which other edges are cut"

submodularity:

- reward co-occurrence
- structure

9/18

Generality

Special cases of cooperative cuts:

- (robust) Pⁿ potentials
 (Kohli et al. '07,'09)
- label costs (Delong et al. '11)
- discrete versions of norm-based cuts (Sinop & Grady '07)

イロト イポト イヨト イヨト

• . . .

Graph Cuts	Cooperative Cuts	Optimization	Applications
Out:			
Optimization (

(s, t)-cut $\Gamma \subseteq \mathcal{E}$ with min cost $f(\Gamma)$.

Theorem

Minimum Cooperative Cut is NP-hard.

Graph	Cuts	Cooperative Cuts	Optimization	Applications
Op	timization			
	$ \begin{array}{c} \Gamma_0 = \emptyset; \\ repeat \\ compute u \end{array} $	upper bound $\hat{f}_i \geq$	f based on Γ_{i-1} ;	
	until converge	ence ;		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $11 \, / \, 18$

 $\hat{f}_i(\Gamma_{i-1}) = f(\Gamma_{i-1})$

Graph (Cuts Coopera	tive Cuts	Optimization	Applications
Opt	cimization			
	$\Gamma_{0} = \emptyset;$ repeat compute upper b $\Gamma_{i} \in \operatorname{argmin} \{ \hat{f}_{i} (I = i + 1;$ until convergence ;	bound $\hat{f}_i \ge f$ ba $) \mid \Gamma$ a cut $\}$;	ised on Γ _{i-1} ; // Min-cut!	

$$\hat{f}_i(\Gamma_{i-1}) = f(\Gamma_{i-1})$$

Graph C	uts Cooperative Cuts Optimization	Applications
Opt	imization	
	$\begin{split} & \Gamma_0 = \emptyset; \\ & \textbf{repeat} \\ & \text{compute upper bound } \hat{f}_i \geq f \text{based on } \Gamma_{i-1}; \\ & \Gamma_i \in \operatorname{argmin}\{ \ \hat{f}_i(\Gamma) \mid \Gamma \text{ a cut } \} \ ; // \ \texttt{Min-cut!} \\ & i = i+1; \\ & \textbf{until convergence }; \end{split}$	

Worst-case approximation bound:

$$E_f(\mathbf{x}) \leq rac{|\Gamma^*|}{1+(|\Gamma^*|-1)
u} E_f(\mathbf{x}^*) \qquad \qquad ext{for }
u = rac{\min_{e \in \Gamma^*}
ho_e(\mathcal{E} \setminus e)}{\max_{e \in C^*} f(e)}$$

Image Segmentation

Random Walker

Curvature reg.

Graph Cut

Image Segmentation

Selective Discount for Congruous Boundaries

Selective Discount for Congruous Boundaries

- discount for co-occurring similar edges
- no discount for dissimilar edges

Structured Discounts

groups S_i of edges

$$f(\Gamma) = \sum_{i} f_i(\Gamma \cap S_i)$$

Structured Discounts

groups S_i of edges

$$f(\Gamma) = \sum_{i} f_i(\Gamma \cap S_i)$$

Structured Discounts

groups S_i of edges

$$f(\Gamma) = \sum_{i} f_i(\Gamma \cap S_i)$$

э

14/18

イロン イロン イヨン イヨン

Some Results: Shading

Graph Cut 7.39%

CoopCut 2.23%

15/18

Some Results: Shading

		gray	color	high-freq
Graph Cut:	no discount	14.03	3.41	2.56
CoopCut (1 group):	discount	11.58	2.95	1.49
CoopCut (15 groups):	structured discount	3.63	1.69	1.27

Graph Cuts	Cooperative Cuts	Optimization	Applications
Shrinking t	pias		
total error (%)	twig pC twig total pC total	$\sum_{i=1}^{150} \psi_i(x_i) + \sum_{i=1}^{150} \psi_i(x_i) + \sum_{i=1}^{100} \psi_i(x$	$-\lambda \sum_{e \in \Gamma \mathbf{x}} w_e$
	$\frac{1}{1.5}$	^{2.5} Graph Cut	•
		< = > < [] > <] >	< 臣 > 臣 のQ (や 17/18

Shrinking bias

Shrinking bias

<ロ> < 部 > < 書 > < 書 > こ き < 名 > こ う へ () 17/18

Shrinking bias

Summary: Coupling Edges in Graph Cuts

- global, non-submodular family of energies
- NP-hard, but ...
 - graph structure
 - indirect submodularity
 - \rightarrow efficient approximation algorithm
- applications
 - guide segmentations via edge coupling