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Markov Random Fields and Energies

p(x | z) ∝ exp(−EΨ(x; z))

MAP x∗ = arg min
x

EΨ(x; z)

E (x; z) =
∑

i

Ψi (xi ) +
∑

(i ,j)∈N

Ψij(xi , xj)

E (x; z) =
∑

e∈Γx∩Et

we +
∑

e∈Γx∩En

we

s

t

4 / 18



Graph Cuts Cooperative Cuts Optimization Applications

Markov Random Fields and Energies

p(x | z) ∝ exp(−EΨ(x; z))

MAP x∗ = arg min
x

EΨ(x; z)

E (x; z) =
∑

i

Ψi (xi ) +
∑

(i ,j)∈N

Ψij(xi , xj)

E (x; z) =
∑

e∈Γx∩Et

we +
∑

e∈Γx∩En

we

s

t

4 / 18



Graph Cuts Cooperative Cuts Optimization Applications

Markov Random Fields and Energies

p(x | z) ∝ exp(−EΨ(x; z))

MAP x∗ = arg min
x

EΨ(x; z)

E (x; z) =
∑

i

Ψi (xi ) +
∑

(i ,j)∈N

Ψij(xi , xj)

E (x; z) =
∑

e∈Γx∩Et

we +
∑

e∈Γx∩En

we

s

t

4 / 18



Graph Cuts Cooperative Cuts Optimization Applications

Markov Random Fields and Energies

p(x | z) ∝ exp(−EΨ(x; z))

MAP x∗ = arg min
x

EΨ(x; z)

E (x; z) =
∑

i

Ψi (xi ) +
∑

(i ,j)∈N

Ψij(xi , xj)

E (x; z) =
∑

e∈Γx∩Et

we +
∑

e∈Γx∩En

we

1

s

t

1

1 1

1

1

4 / 18



Graph Cuts Cooperative Cuts Optimization Applications

1

s

t

1

1 1

1

1

Couple edges
globally

5 / 18



Graph Cuts Cooperative Cuts Optimization Applications

1

s

t

1

1 1

1

1

Couple edges
globally

5 / 18



Graph Cuts Cooperative Cuts Optimization Applications

1

s

t

1

1 1

1

1

Couple edges
globally

5 / 18



Graph Cuts Cooperative Cuts Optimization Applications

1

s

t

1

1 1

1

1

Couple edges
globally

5 / 18



Graph Cuts Cooperative Cuts Optimization Applications

Richer Cuts: Cooperative Cuts
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Coupling via Submodularity
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f (A ∪ e)− f (A) ≥ f (A ∪ B ∪ e)− f (A ∪ B)
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Graph Cuts: LHS = RHS

“it does not matter which other edges are cut”

submodularity:

reward co-occurrence
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Generality
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Special cases of cooperative cuts:

(robust) Pn potentials
(Kohli et al. ’07,’09)

label costs
(Delong et al. ’11)

discrete versions of norm-based
cuts
(Sinop & Grady ’07)

. . .
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Optimization?

(s, t)-cut Γ ⊆ E with min cost f (Γ).

Theorem

Minimum Cooperative Cut is NP-hard.
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Optimization

Γ0 = ∅;
repeat

compute upper bound f̂i ≥ f based on Γi−1;

Γi ∈ argmin{ f̂i (Γ) | Γ a cut } ; // Min-cut!

i = i + 1;

until convergence ;

f̂i (Γi−1) = f (Γi−1)
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Optimization

Γ0 = ∅;
repeat

compute upper bound f̂i ≥ f based on Γi−1;

Γi ∈ argmin{ f̂i (Γ) | Γ a cut } ; // Min-cut!

i = i + 1;

until convergence ;

Worst-case approximation bound:

Ef (x) ≤ |Γ∗|
1+(|Γ∗|−1)ν Ef (x∗) for ν =

mine∈Γ∗ ρe(E\e)
maxe∈C∗ f (e)
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Image Segmentation

Random Walker Curvature reg. Graph Cut

prefer congruous boundaries
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Selective Discount for Congruous Boundaries
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Structured Discounts

groups Si of edges

f (Γ) =
∑

i
fi (Γ∩Si )
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Some Results: Shading

Graph Cut CoopCut
7.39% 2.23%

7.65% 3.50%
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Some Results: Shading

gray color high-freq

Graph Cut: no discount 14.03 3.41 2.56

CoopCut (1 group): discount 11.58 2.95 1.49

CoopCut (15 groups):
structured

3.63 1.69 1.27
discount

Graph Cut CoopCut

5.08% 0.64%
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Shrinking bias
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Summary: Coupling Edges in Graph Cuts

global, non-submodular family of energies

NP-hard, but . . .

graph structure
indirect submodularity

→ efficient approximation algorithm

applications

guide segmentations via edge coupling
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