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Abstract

It is becoming increasingly evident that many ma-
chine learning problems may be reduced to some
form of submodular optimization. Previous work
addresses generic discrete approaches and spe-
cific relaxations. In this work, we take a generic
view from a relaxation perspective. We show a re-
laxation formulation and simple rounding strategy
that, based on the monotone closure of relaxed
constraints, reveals analogies between minimiza-
tion and maximization problems, and includes
known results as special cases and extends to a
wider range of settings. Our resulting approxima-
tion factors match the corresponding integrality
gaps. The results in this paper complement, in
a sense explained in the paper, related discrete
gradient based methods [30], and are particularly
useful given the ever increasing need for efficient
submodular optimization methods in very large-
scale machine learning. For submodular maxi-
mization, a number of relaxation approaches have
been proposed. A critical challenge for the prac-
tical applicability of these techniques, however,
is the complexity of evaluating the multilinear
extension. We show that this extension can be
efficiently evaluated for a number of useful sub-
modular functions, thus making these otherwise
impractical algorithms viable for many real-world
machine learning problems.

1 INTRODUCTION

Submodularity is a natural model for many real-world
problems including many in the field of machine learn-
ing. Submodular functions naturally model aspects like
cooperation, complexity, and attractive potentials in mini-
mization problems, and also notions of diversity, coverage,
and information in maximization problems. A function
f:2YV — Ron subsets of a ground set V = {1,2,...,n}
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is submodular [43, 18] if for all subsets S,T° C V, we
have f(S) + f(T) > f(SUT)+ f(SNT). The gain
of an element j € V with respect to S C V is defined as
f(1S) = f(SUj) — f(S). Submodularity is equivalent to
diminishing gains: f(§1S) > f(4|T),VS CT,j ¢ T.

A large number of machine learning problems may be
phrased as submodular minimization or maximization prob-
lems. In this paper, we address the following two very
general forms of submodular optimization:

Problem 1: mi X Problem 2: X
roblem )r?érclf( )s roblem r)?g)ccf( )

Here, C denotes a family of feasible sets, described e.g.,
by cardinality constraints, or by combinatorial constraints
insisting that the solution be a tree, path, cut, matching, or a
cover in a graph.

Applications. Unconstrained submodular minimization
occurs in machine learning and computer vision in the
form of combinatorial regularization terms for sparse
reconstruction and denoising, clustering [47], and MAP
inference, e.g. for image segmentation [36]. Other
applications are well modeled as constrained submodular
minimization. For example, a rich class of models for image
segmentation has been encoded as minimizing a submodular
function subject to cut constraints [32]. Similarly, [12]
efficiently solves MAP inference in a sparse higher-order
graphical model through submodular vertex cover, and [56]
proposes to interactively segment images by minimizing
a submodular function subject to connectivity constraints,
i.e., the selected set of vertices must contain an s-t path.
Moreover, bounded-complexity corpus construction [42]
can be modeled as cardinality constrained submodular
minimization. In operations research, a number of power
assignment and transportation problems have been modeled
as submodular minimization over spanning trees [59] or
paths [2]. Similarly, constrained submodular maximization
is a fitting model for problems such as optimal sensing [38],
marketing [35], document summarization [41], and speech
data subset selection [40].



Previous Work. Since most instances of Problems 1 and
2 are NP-hard, one must strive for approximations that have
bounded error. Broadly speaking', the algorithms can be
classified into discrete (combinatorial) and continuous relax-
ation based. The discrete approaches were initially proposed
for certain specific constraints [21, 31, 55, 48, 15, 6, 5], but
later made general and unified [30, 22, 29]. In the case of
submodular minimization, the discrete approaches have
been based on approximating the submodular function
by tractable approximations [30, 22], while in the case
of submodular maximization, they have been based on
greedy and local search techniques [30, 48, 15, 6, 5]. Most
of these algorithms are fast and scalable. The continuous
relaxation techniques, on the other hand, have so far either
been analyzed for very specific constraints, or when general,
are too slow to use in practice. For example, in the case
of minimization, they were studied only for the specific
constraints of covers [25] and cuts [31], and in the case of
maximization, the techniques though general have yet to
show significant practical impact due to their prohibitive
computational costs [9, 7]. Hence discrete algorithms are
typically used in applications (e.g., [40]).

Constraints | Operation Algorithm Approach
or Function (& speed) Combinatorial Relaxation
Min (fast) [21, 31] [25, 31]
. Min (slow) [55] Unnecessary
Specific Max (fast) | [43, 15, 6,5] | This paper
Max (slow) Unnecessary [6, 7]
Min (fast) [30] This paper
Min (slow) [22] Unnecessary
General Max (fast) [30] Open
Max (slow) Unnecessary [9]

Table 1: Past work & our contributions (see text for explanation).

In the present paper, we develop a continuous relaxation
methodology for Problems 1 and 2 that applies not only
for multiple types of constraints but that even establishes
connections between minimization and maximization prob-
lems. We summarize our contributions, in comparison to
previous work, in Table 1, which lists one problem as being
still open, and other problems as being unnecessary (given
a “fast” approach, the corresponding “slow” approach is un-
necessary). Our techniques are not only connective, but also
fast and scalable. In the case of constrained minimization,
we provide a formulation applicable for a large class of con-
straints. In the case of submodular maximization, we show
how for a large class of submodular functions of practical
interest, the generic slow algorithms can be made fast and
scalable. We note, however, that it is still an open problem
to provide a fast and scalable algorithmic framework (with
theoretical guarantees) based on continuous relaxations for
general submodular maximization.

The connections between minimization and maximization

! Emphasized words in this paragraph correspond to headings
in Table 1, which also serves as a paragraph summary.

is based on the up- or down-monotonicity of the constraint
set: up-monotone constraints are relevant for submodular
minimization problems, and down-monotone constraints are
relevant for submodular maximization problems. Our relax-
ation viewpoint, moreover, complements and improves on
the bounds found in [30]. For example, where [30] may have
an approximation bound of &, our results imply a bound of
n —k+ 1, where n = |V, so considering both [30] and our
new work presented here, we obtain combined bounds of the
form min(k, n —k+ 1) (more specifics are given in Table 2).
This also holds for maximization — in certain cases discrete
algorithms obtain suboptimal results, while relaxation tech-
niques obtain improved, and sometimes optimal guarantees.

The idea of our relaxation strategy is as follows: the sub-
modular function f(.S), which is defined on the vertices of
the n-dimensional hypercube (i.e., characteristic vectors), is
extended to a function defined on [0, 1]™. The two functions
valuate identically if the vector 2 € [0, 1]™ is the characteris-
tic vector of a set. We then solve a continuous optimization
problem subject to linear constraints, and finally round the
obtained fractional solution to a discrete one. For mini-
mization, the convex Lovdsz extension defined in Eqn. (1)
is a suitable extension of f. Appropriately rounding the
resulting optimal continuous solutions leads to a number
of approximation guarantees. For maximization, ideally
we could utilize a concave extension. Since the tightest
concave extension of a submodular function is hard to char-
acterize [57], we instead use the multilinear extension (see
Eqgn. (2)) that behaves like a concave function in certain
directions [9, 7]. Our resulting algorithms often achieve
better bounds than discrete greedy approaches.

Paper Roadmap. For constrained minimization (Sec. 3),
we provide a generic approximation factor (Theorem 1), for
the general class of constraints defined in Eq. 14. We show
that many important constraints, including matroid, cardinal-
ity, covers, cuts, paths, matchings, etc. can be expressed as
Eq. 14. As a corollary to our main result (Theorem 1), we ob-
tain known results (like covers [25] and cuts [31]), and also
novel ones (for spanning trees, cardinality constraints, paths,
matchings etc.). We also show lower bounds on integrality
gaps for constrained submodular minimization, which to
our knowledge is novel. In the context of maximization
(Sec. 4), we provide closed form multi-linear extensions
for several submodular functions useful in applications.
We also discuss the implications of these algorithmically.
Note that this is particularly important, given that many
optimal algorithms for several submodular maximization
problems are based on the multilinear extension. Lastly, we
extend our techniques to minimize the difference between
submodular functions, and provide efficient optimization
and rounding techniques for these problems (Sec. 5).



2 CONTINUOUS RELAXATIONS

Convex relaxation. The Lovasz extension [43] reveals an
important connection between submodularity and convexity,
and is defined as follows. For each y € [0, 1], we obtain a
permutation o, by ordering its elements in non-increasing
order (o(1) is the largest element), and thereby a chain
of sets ¢ C ... C X¥, with XY = {0 (1),---,0,(j)}
for j € {1,2,...,n}. The Lovész extension f of f is a
weighted sum of the ordered entries of y:

Vy)=zy[0y(j)] FED-FEF)) M

The Lovész extension is unique (despite possibly non-
unique orderings if y has duplicate entries), and convex
if and only if f is submodular. An alternative, related
view on the Lovdsz extension is via the submodular poly-
hedron Py {fz € R" © 2(5) = X ,cs52(i) <
f(X)}. The Lovész extension can be expressed as f(y) =
maxgep, (y, z) fory € [0,1]".

Since it agrees with f on the vertices of the hypercube,
ie., f(X) = f(1x), forall X C V (where 1x is the
characteristic vector of X, i.e., 1x(j) = I(j € X)), f
is a natural convex extension of a submodular function.
The Lovdsz extension is a non-smooth (piece-wise linear)
convex function for which a subgradient h{;y at y can be
computed efficiently via Edmonds’ greedy algorithm [13]:

hl (0y(5) = F(ZF) = F(Y0),

The Lovész extension has also found applications in
defining norms for structured sparsity [3] and divergences
for rank aggregation [28].

Vje{1,2,-- ,n}

It is instructive to consider an alternative representation
of the Lovdsz extension. Let) = Yy C Y7 C Yy, C

- C Y} denote the unique chain corresponding to the
point y, such that y = Z?:l Ajly,. Note that in general
k < n with equality only if y is totally ordered. Then the
Loviész extension can also be expressed as [18]: f(y) =

k
2= A f(Y5).
Multilinear and Concave relaxations. For maximiza-

tion problems, the relaxation of choice has frequently been
the multilinear extension [15]

= X [= [[a-=), )

XCVv ieX  ig¢X

where f is any set function. Since Eqn. (2) has an exponen-
tial number of terms, its evaluation is in general computa-
tionally expensive, or requires approximation. The multi-
linear extension has particularly nice properties when the

set function f is submodular In part1cular,

< 0iff fis submodular ThlS implies

monotone and

that for a non-decreasing set function, fis increasing along
any positive direction, and for a submodular function, f is
concave along any non-negative direction. These properties
are key in providing efficient optimization algorithms and
rounding schemes.

The multilinear extension may be seen as f (z) =
ZXQV pz(X)f(X), where p, = [[;cx Higx(l — ;)
is the product distribution over z. Alternatively, instead of
taking a particular distribution, define a (different) continu-
ous extension as the supremum over all valid distributions,

fa) =max{ 3" p0FX), e} G

XCV

where A, {p € |0, 1]2V Yxpx = LVj €
V.Y x.jex Px = x;}. The resulting function f(z) is con-
cave and a valid continuous extension, and hence a con-
cave extension of f [57]. Unfortunately, this extension is
NP-hard to evaluate, making the multilinear extension the
preferred candidate.

One may define at least two types of gradients for the multi-
linear extension. The first, “standard” gradient is

ij(x) = Bf/ax]

:f(x\/ej) f(x\/e] e;). 4)
) =

ax(x(i), y(1)). A

where e; = 1¢jy, and {z V y}(i
second gradient is

Vi) =

The two gradients are related component-wise as V; f (x) =
(1 —z;)V$f(z), and both can be computed in O(n) evalu-
ations of f .

flxve;) — f). (5)

In terms of complexity, the multilinear extension (and its gra-
dient) still has an exponential number of terms in the sum.
One possibility is to approximate this sum via sampling.
However, the number of samples needed for (theoretically)
sufficient accuracy is polynomial but in many cases still
prohibitively large for practical applications [7] (We dis-
cuss this further in Section 4). Below, we show that some
practically useful submodular functions have alternative,
low-complexity formulations of the multilinear extension
that circumvent sampling entirely.

Optimization. Relaxation approaches for submodular op-
timization follow a two-stage procedure:

1. Find the optimal (or approximate) solution & to the
problem mingep, f(x) (or max,cp, f(2)).

2. Round the continuous solution Z to obtain the discrete
indicator vector of set X.

Here, P¢ denotes the polytope corresponding to the family C
of feasible sets — i.e., their convex hull or its approximation,
which is a “continuous relaxation” of the constraints C. The



final approximation factor is then f(X)/f(X*), where X*
is the exact optimizer of f over C.

An important quantity is the integrality gap that measures —
over the class S of all submodular (or monotone submod-
ular) functions — the largest possible discrepancy between
the optimal discrete solution and the optimal continuous
solution. For minimization problems, the integrality gap is
defined as:

IS 2 gy Minxec FX)

> 1 (6)
fes mingep, f(x)

For maximization problems, we would take the supremum
over the inverse ratio. In both cases, Ig is defined only
for non-negative functions. We may also consider the
integrality gap Ig, computed over the class £ of all
modular functions. The integrality gap largely depends
on the specific formulation of the relaxation. Intuitively, it
provides a lower bound on our approximation factor: we
usually cannot expect to improve the solution by rounding,
because any rounded discrete solution is also a feasible
solution to the relaxed problem. One rather only hopes,
when rounding, to not worsen the cost relative to that of the
continuous optimum. Indeed, integrality gaps can often be
used to show tightness of approximation factors obtained
from relaxations and rounding [10].

One way to see the relationship between the integrality
gap and the approximation factor obtained by rounding is
as follows. Let ROPT denote the optimal relaxed value,
while DOPT denotes the optimal discrete solution. The in-
tegrality gap measures the gap between DOPT and ROPT,
i.e Z = DOPT/ROPT. Let RSOL denote the rounded so-
lution obtained from the relaxed optimum. The way one
obtains bounds in a rounding scheme is by bounding the
gap between RSOL and ROPT, which naturally is an up-
per bound on the approximation factor (which is the gap
between DOPT and RSOL. However, notice that the gap be-
tween RSOL and ROPT is lower bounded by the integrality
gap. Hence the integrality gap captures the tightness of the
rounding scheme, and bounds on the integrality gap show
bounds on the hardness.

3 SUBMODULAR MINIMIZATION

For submodular minimization, the optimization problem
in Step 1 is a convex optimization problem, and can be
solved efficiently if one can efficiently project onto the poly-
tope Pc. Our second ingredient is rounding. To round, a
surprisingly simple thresholding turns out to be quite effec-
tive for a large number of constrained and unconstrained
submodular minimization problems: choose an appropri-
ate 0 € (0, 1) and pick all elements with “weights” above
0,ie., Xg = {i : #(i) > 6}. We call this procedure the
0-rounding procedure. In the following sections, we first
review relaxation techniques for unconstrained minimiza-

tion (which are known), and afterwards phrase a generic
framework for constrained minimization. Interestingly, both
constrained and unconstrained versions essentially admit
the same rounding strategy and algorithms.

3.1 UNCONSTRAINED MINIMIZATION

Continuous relaxation techniques for unconstrained submod-
ular minimization have been well studied [23, 52, 3, 18]. In
this case, P¢ = [0, 1], and importantly, the approximation
factor and integrality gap are both 1.

Lemma 1. []8] For any submodular function f, it holds
that minxcy f(X) = min,epo,1jn f(z). Given a con-
tinuous minimizer ™ € argminggg j» f (x), the discrete
minimizers are exactly the maximal chain of sets ) C Xy, C
... Xp, obtained by 6-rounding z*, for 0; € (0, 1).

Since the Lovdsz extension is a non-smooth convex func-
tion, it can be minimized up to an additive accuracy of € in
O(1/€?) iterations of the subgradient method. This accu-
racy directly transfers to the discrete solution if we choose
the best set obtained with any § € (0,1) [3]. For special
cases, such as submodular functions derived from concave
functions, smoothing techniques yield a convergence rate of
O(1/t) [53].

It can often be faster to instead solve the unconstrained
regularized problem mingcpn f () + 1{|z[|3. A motivation
for this approach is that the problem, min,¢g 1j» f(=),
can be seen as a specific form of barrier function
mingern f(z) + dj0,1» (z) [52]. The level sets of the
optimal solution to the regularized problem are the solutions
of the entire regularization path of minxcy f(X) + 6| X]|
[3], and therefore a simple rounding at 0 gives the optimal
solution. The dual problem minyez, [|z|3 is amenable to
the Frank-Wolfe algorithm (or conditional gradient) [16]—
with a convergence rate of O(1/+/%), or an improved fully
corrective version known as the minimum norm point
algorithm [19]. The complexity of the improved method
is still open. Moreover, regularizers other than the /2 norm
are possible [52]. For decomposable functions, reflection
methods can also be very effective [34].

3.2 CONSTRAINED MINIMIZATION

We next address submodular minimization under constraints,
where rounding affects the accuracy of the discrete solution.
By appropriately formulating the problem, we show that
f-rounding applies to a large class of problems. We assume
that the family C of feasible solutions can be expressed by
a polynomial number of linear inequalities, or at least that
linear optimization over C can be done efficiently, as is the
case for matroid polytopes [13].

A straightforward relaxation of C is the convex hull Py =
conv(ly, X € C) of C. Often however, it is not possible to



obtain a decent description of the inequalities determining
‘Pec, even in cases when minimizing a linear function over
C is easy (two examples are the s-t cut and s-t path poly-
topes [51]). In those cases, we relax C to its up-monotone
closure C = {XUY | X € CandY C V}. WithC,
a set is feasible if it is in C or is a superset of a set in C.
The convex hull of C is the up-monotone extension of P¢
within the hypercube, i.e. Ps = Pe = (Pe + R%)NI0,1]™,
which is often easier to characterize than P¢. The following
proposition formalizes this equivalence.

Proposition 1. For any family C of feasible sets, the re-
laxed hull P ofC is the convex hull ofC Pe = Py =

conv(lx, X € C). For any up-monotone constraint C, the
relaxation is tight: Pc = Pe.

Although this Proposition seems intuitive, we prove it here
for completeness.

Proof. Let Ps = conv-hull(1x, X € C). We need to show
that P = Pe.

First, we observe that the characteristic vector 1x for every
set X e C lies in Pc This follows because, by definition,
for every set X € C, there exists a set Z C V such that
X\Z € C. Since 17 € Pc and 1x\z € R}, we conclude

that 1x = 1z + 1x\z € Pe, and therefore, Ps C Pe.

We next show Ps 2 Pe by investigating the polytope Pe.
Since it is an intersection of P¢ + R’ (which is an in-
tegral polyhedron) and [0, 1]”, it follows from [51] (The-
orem 5.19), that 75(; is also integral. Let 17 be any ex-
treme point of Pe. We will show that Z € C, and this
implies P 2 7§c- Since 15 € 7§c, there exists a vector
x € Pc and y > 0 such that z = 17 — y. This implies
that z = 2% \ilx,, X; € C. Since y > 0, it must hold
that X; C Z forall 1 <7 < K. As Z contains at least one
feasible set X;, Z € C, proving the result.

The second statement of the result follows from the first,
because an up-monotone constraint satisfies C = C. O

Optimization. The relaxed minimization problem
min, . f(x) is non-smooth and convex with linear
constraints, and therefore amenable to, e.g., projected
subgradient methods. We first assume that the submodular
function f is monotone nondecreasing (which often holds
in applications), and later relax this assumption for a large
class of constraints.

For projected (sub)gradient methods, it is vital that the pro-
jection on Pe can be done efficiently. Indeed, this holds with
the above assumptions that we can efficiently solve a linear
optimization over Pe. In this case, e. g. Frank-Wolfe meth-
ods [16] apply. The projection onto matroid polyhedra can
also be cast as a form of unconstrained submodular function
minimization and is hence polynomial time solvable [18].

To apply splitting methods such as the alternating directions
method of multipliers (ADMM) [4], we write the problem
as ming y..—y f(2) + I(y € Pec). One iteration of ADMM
requires (1) computing the proximal operator of f, (2) pro-
jecting onto Pc, and (3) doing a simple dual update step.
Computing the proximal operator of the Lovasz extension
is equivalent to unconstrained submodular minimization, or
to solving the minimum norm point problem. In special
cases, faster algorithms apply [45, 53, 34]. An approximate
proximal operator for generalized graph cuts [33] can be
obtained via parametric max-flows in O(n?) [45, 8].

Algorithm 1 The constrained §-rounding scheme

Input: Continuous vector &, Constraints C
Qutput: Discrete set X

1: Obtain the chain of sets ) ¢ X; C X, C X}, corre-
sponding to Z.

2. forj=1,2,--- ;kdo
3 if3X C X;: X € then
4: Return X
5.  endif
6: end for
Rounding.  Once we have obtained a minimizer & of

J over Pc, we apply simple 6-rounding. Whereas in the
unconstrained case, Xy is feasible for any 6 € (0,1), w
must now ensure Xg € C. _Hence, we pick the largest
threshold € such that X.g S C i.e., the smallest X.g that is
feasible. This is always possible since Cis up-monotone and
contains V. The threshold 6 can be found using O(logn)
checks among the sorted entries of the continuous solution
Z or n checks in the unsorted vector £. The following
lemma states how the threshold 6 determines a worst-case
approximation:

Lemma 2. For a monotone submodular f and any & €
[0,1]V and 0 € (0,1) such that Xo = {i | #; > 0} € C,

7o) < 5 (@) )

If. moreover, f(z) < Bmin, . f(x), then it holds that
F(Xg) < §minxec f(X).

Proof. The proof follows from the positive homogeneity of
f and the monotonicity of f and f

0f(Xo) =0f(1x,) (8)
= f(01x,) 9)
< f(#) (10)
< B min f(z) (11)
zEPc
< Bmin f(X) (12)
XeC
< fmin f(X) (13)



The second equality follows from the positive homogeneity
of f and the third one follows from the monotonicity of f.
Inequality (11) follows from the approximation bound of %
with respect to min 5 f(x), and (12) uses the observation
that the optimizer of the continuous problem is smaller than
the discrete one. Finally (13) follows from (12) since it is
optimizing over a smaller set. O

The set Xy is in C and therefore guaranteed to be a superset
of a solution Yy € C. As a final step, we prune down Xy
to Yg - X@ Since the objective function is nondecreas-
ing, f(Ys) < f(Xp), Lemma 2 holds for Yj as well. If,
in the worst case, § = 0, then the approximation bound
in Lemma 2 is unbounded. Fortunately, in most cases of
interest we obtain polynomially bounded approximation
factors.

In the following, we will see that our 73(; provides the basis
for relaxation schemes under a variety of constraints, and
that these, together with f#-rounding, yield bounded-factor
approximations. We assume that there exists a family W =

{W1,Ws, ...} of sets W; C V such that the polytope Pe
can be described as
Pe={zel01)"| 3 2 > bw forall w e W},

iceW
(14)

Analogously, this means that C = {X | |[X N W] >
by, forall W € W}. In our analysis, we do not require
W to be of polynomial size, but a linear optimization over
‘Pc or a projection onto it should be possible at least with a
bounded approximation factor. This is the case for s-t paths
and cuts, covering problems, and spanning trees. This
means we are addressing the following class of optimization
problems:

min f(z)

subjectto z € [0, 1] (15)

sz > by, VW €W
%%

The following main result states approximation bounds and
integrality gaps for the class of problems described by Equa-
tion (14).

Theorem 1. The 0-rounding scheme for constraints C
whose relaxed polytope Pe can be described by Equa-
tion (14) achieves a worst case approximation bound of
maxwew |W/| — bw + 1. If we assume that the sets in VW
are disjoint, the integrality gap for these constraints matches
the approximation: I3 = maxwew |W| — by + 1.

The proof of this result is in Appendix A. Note that the inte-
grality gap matches the approximation factor, thus showing
the tightness of the rounding strategy for a large class of
constraints. In particular, for the class of constraints we con-
sider below, we can provide instances where the integrality
gap matches the approximation factors.

A result similar to Theorem 1 was shown in [37] for a dif-
ferent, greedy algorithmic technique. While their result also
holds for a large class of constraints, for the constraints in
Equation (14) they obtain a factor of maxyy cyy |W|, which
is worse than Theorem 1 if by > 1. This is the case, for in-
stance, for matroid span constraints, cardinality constraints,
trees and multiset covers.

Pruning. The final piece of the puzzle is the pruning step,
where we reduce the set X, 9 € C to a final solution Yg - X 0
that is feasible: Y, € C. This is important when the true
constraints C are not up-monotone, as is the case for cuts
or paths. Since we have assumed that the function f is
monotone, pruning can only reduce the objective value. The
pruning step means finding any subset of Xy that is in C,
which is often not hard. We propose the following heuris-
tic for this: if C admits (approximate) linear optimization,
as is the case for all the constraints considered here, then
we may improve over a given rounded subset by assigning
additive weights: w(i) = oo if i ¢ Xy, and otherwise use
either uniform (w (i) = 1) or non-uniform (w(i) = 1—2(i))
weights. We then solve Yy € argminy .. Zzey w(). Uni-
form weights lead to the solution with minimum cardinality,
and non-uniform weights will give a bias towards elements
with higher certainty in the continuous solution. Truncation
via optimization works well for paths, cuts, matchings or
matroid constraints.

Non-monotone submodular functions. A simple trick
extends the methods above directly to non-monotone sub-
modular functions over up-monotone constraints. The
monotone extension of f is defined as f™(X) =
miny;ygx f(Y)

Lemma 3. If f is submodular, then f™ is monotone sub-
modular and computable in polynomial time. If C is up-
monotone, then

/e

) = min " (X

XeC

). (16)

The solution for f can, moreover, be recovered: given
an approximate minimizer X of f™ over C, the set Z €
argmin,, .y~ ¢ f(X) is an approximate minimizer of f with

the same approximation bounds for f over C as X has for

.

Proof. 1tis well known that, for any submodular f, the func-
tion f™ is monotone submodular [18]. To show the equiv-
alence (16), let X™* be the exact minimizer of f™ over C.
The definition of f™ implies that there exists a set X DO
X™* such that f™(X™*) = f(X) and moreover, since C
is up-monotone, X € C. Hence minxec f(X) < f(X) =
minxec f™(X). Conversely, let X* be the minimizer of f
under C. Then f™(X*) = minx>x~ f(X) < f(X*), and
therefore miny ¢ f™(Y) < f™(X™*) = minxec f(X).

To show the second part, let X" be an approximate
optimizer of f™ with an approximation factor «, i.e.,



f™(X™) < af™(X™*). From the first part, it fol-
lows that both f and f™ have the same optimal value
in C. The definition of f™ implies that there exists a set
Y™ D X™ such that f(Y™) = f™(X™). Hence Y™ €
argminy ~ ym f(Y) satisfies that f(Y™) = f™(X™) <
af™(X™) = aminxec f(X). O

While f™ can be obtained directly from f via submodular
function minimization, it can be quite costly for general
submodular functions. Fortunately however, many useful
subclasses of submodular functions admit much faster al-
gorithms. For example, those functions expressible as gen-
eralized graph cuts [33] can be minimized via max flows.
By using f™ instead of f, any algorithm for constrained
minimization of monotone submodular functions straightfor-
wardly generalizes to the non-monotone case. The pruning
step above does not apply since it could lead to a higher ob-
jective value, so we instead utilize that C is up-monotone and
finish off with a final unconstrained minimization problem.
This result holds for the relaxation and rounding discussed
above, as well as the algorithms in [30, 22]. Examples of
up-monotone constraints are matroid spans (Sec. 3.2.1) and
covers (Sec. 3.2.2).

Down-monotone constraints. For down-monotone con-
straints, the up-monotone closure C will be the entire power
set 2V, Here, a different construction is needed. Define a
monotone extension f4(X) = miny.ycy\x f(Y). Also,
define ¢’ = {X : V\X € C}. Itis easy to see that C’ is
up-monotone. Notice that if we assume f to be normalized
and nonnegative, then the empty set will always be a great
solution for down-monotone constraints, and this extension
may not make sense. However in general the submodular
function may not necessarily be normalized, and all we
need for this is that the function f¢ is normalized and non-
negative. In other words, this implies that the function f
itself be non-negative and minxcy f(X) = 0.

Lemma 4. Given a submodular function f, the function
f¢ is monotone non-decreasing submodular, and can be
evaluated in polynomial time. It holds that

min f(X) = min f/(X). (17

Moreover, minimizing f® over C' is quivalent to minimizing
f over C in terms of the approximation factor.

Proof. The proof of this result is very similar to the previ-
ous Lemma. To show submodularity, note that the function
¢(Z) = miny.ycz f(Y) as a function of Z is submodu-
lar [18]. Then, f¢(X) = g(V\X) is also submodular. We
also observe that f¢ is monotone.

If the constraints C are down-monotone, then C’ is up-
monotone. Let X %* be the exact minimizer of f¢ over C’.
This implies that V'\ X%* € C. By the definition of f¢, it im-
plies that 3X C V\ X%* such that f¢(X%*) = f(X). More-

over, since C is down monotone, X € C (since V\ X dx ¢ ).
Hence minyec f(X) < f(X) = minyecer f4(X).

Conversely, let X* be the minimizer of f under C.
Then f4(V\X*) = minxcx- f(X) < f(X*). Hence
minyece fHX) < f™(X*) = minyxec f(X). The ap-
proximation factor follows similarly. O

To demonstrate the utility of Theorem 1, we apply it to
a variety of problems. Many of the constraints below are
based on a graph G = (V, ), and in that case the ground
set is the set £ of graph edges. When the context is clear,
we overload notation and refer to n = |V| and m = |&|.
Results are summarized in Table 2.

3.2.1 MATROID CONSTRAINTS

An important class of constraints are matroid span or base
constraints (both are equivalent since f is monotone), with
cardinality constraints (uniform matroids) and spanning
trees (graphic or cycle matroids) as special cases. A matroid
M = (Zp,7rm) is defined by its down-monotone family
of independent sets Z x4 or its rank function r : 2" — R.
A setY is a spanning set if its rank is that of V: rp(Y) =
ray (V). Ttis abase if |Y| = rp(Y) = rp (V). Hence, the
family of all spanning sets is the up-monotone closure of
the family of all bases (e.g., supersets of spanning trees of a
graph in the case of a graphic matroid). See [51] for more
details on matroids. Let Sy denote the spanning sets of
matroid M, and set k = r (V). It is then easy to see that
with C = S, the polytope P¢ is the matroid span poly-
tope, which can be described as Pe = {z € [0,1]", z(S) >
rm (V) —rpm(VA\S), VS C V}[51]. This is clearly in the
form of Eqn. 14. Although this polytope is described via
an exponential number of inequalities, a linear program can
still be solved efficiently over it [13]. Furthermore, project-
ing onto this polytope is also easy, since it corresponds to
submodular function minimization [18].

Corollary 1. Let Yy be the rounded and pruned solution
obtained from minimizing the Lovdsz extension over the
span polytope. Then f(Yy) < (n— k + 1)f(X*). The

integrality gap is alson — k + 1.

Proof. This result follows directly as a Corollary from The-
orem |, by observing that the approximation factor in this
case is maxgcy |S|—rm(V)+ram(V\S)—1. Then notice
that rpg (S) = |S| — rm (V) + ra(V\S), where M* is
the dual matroid of M [51]. Correspondingly the approxi-
mation factor can be expressed as maxgcy ray=(S) — 1=
ram (V) —1=mn—k+ 1. To show the integrality gap, we
use Lemma 13. Consider the simple uniform matroid, with
W = {V}. A straightforward application of Lemma 13
then reveals the integrality gap. O

These results were shown in [21, 25, 55]



Matroid Constraints Set Covers Paths, Cuts and Matchings
Cardinality Trees Vertex Covers | Edge Covers Cuts Paths Matchings
CR. n—k+1 m—n-+1 2 deg(G) <n | Pmaz <n | Cmae <m | deg(G) <n
SG k n VO] <n [EC| <n Craz <m | Pnaz <n [M] <n
EA vn vm vn vm vm vm vm
Integrality Gaps | Q(n—k+1) | Qm —n+1) 2 Q(n) Q(n) Q(m) Q(n)
Hardness” Q(v/n) Q(n) 2—¢ Q(n) Q(y/m) Q(n?/3) Q(n)

Table 2: Comparison of the results of our framework (CR) with the semigradient framework of [30] (SG), the Ellipsoidal
Approximation (EA) algorithm of [22], hardness [21, 25, 55], and the integrality gaps of the corresponding constrained
submodular minimization problems. Note the complementarity between CR and SG. See text for further details.

In general, the rounding step will only provide an Xy that
is a spanning set, but not a base. We can prune it to a base
by greedily finding a maximum weight base among the
elements of X,. The worst-case approximation factor of
n — k + 1 complements other known results for this prob-
lem [30, 22]. The semi-gradient framework of [30] guaran-
tees a bound of k, while more complex (and less practical)
sampling based methods [55] and approximations [22] yield
factors of O(/n). The factor k of [30] is the best for small
k, while our continuous relaxation works well when £ is
large. Moreover, for a monotone function under matroid
span constraints, the pruning step will always find a set in
the base, and hence a matroid span constraint is, for all
intents and purposes, identical to a base constraint.

These results also extend to non-monotone cost functions,
with approximation bounds of n—k+1 (Cor. 1) and & (using
[30]) for matroid span constraints. We can also handle
matroid independence constraints. Note that

f1(X),

min

(X)=_ min
X €Indep(M)

= (18)
X €Span(M*)

where f/(X) = f(V\X) is a submodular function and
Span(M) and Indep(M) refer to the Span and Indepen-
dence sets of a Matroid M, and M* is the dual matroid of
M [51]. Recall that the rank function of the dual Matroid
satisfies 7y« (V) = n — raq (V). Hence, the approxima-
tion factors for the matroid independence constraints are
k + 1 for our relaxation based framework and n — k for the
discrete framework of [30]. Again, we see how our results
complement those of [30]. Moreover, the algorithm of [22]
achieves an approximation factor of O(+/n), in both cases.

Cardinality Constraints. This is a special class of ma-
troid, called the uniform matroid. Since it suffices to an-
alyze monotone submodular functions, the constraint of
interest is C = {X : |X| = k}. In this case, the corre-
sponding polytope takes a very simple form: P = {x €
[0,1]™ : >~ x; = k}. The projection onto this polyhedron
can be easily performed using bisection [1]. Furthermore,
the rounding step in this context is very intuitive. It corre-
sponds to choosing the elements with the & largest entries
in the continuous solution Z.

Spanning Trees. Here, the ground set V' = £ is the edge
set in a graph and C is the set of all spanning trees. The cor-

responding polytope P¢ is then the spanning tree polytope.
The bound of Corollary 1 becomes |E]|—|V|+1 = m—n+1.
The discrete algorithms of [30, 21] achieve a complementary
bound of |V| = n. For dense graphs, the discrete algorithms
admit better worst case guarantees, while for sparse graphs
(e.g., embeddable into r-regular graphs for small r), our
guarantees are better.

3.2.2 SET COVERS

A fundamental family of constraints are set covers. Given
a universe U, and a family of sets {S;};cv, the task is
to find a subset X C V that covers the universe, i.e.,
UiE + S5 = U, and has minimum cost as measured by
a submodular function f : 25 — R. The set cover
polytope is up-monotone, constitutes the set of frac-
tional covers, and is easily represented by Eqn. (14) as
Pe = {z € [0,1)V]] > imes, (1) > 1,Yu € U}. The
following holds for minimum submodular set cover:
Corollary 2. The approximation factor of our algorithm,
and the integrality gap for the minimum submodular set
cover problem is -y = maxyey |{i : u € S;}.

Proof. The proof of this corollary follows from the ex-
pression of the set cover polytope and Theorem 1. To
show the integrality gap, notice that the sets W here are
W, = {i : u € S;}. Consider an instance of the set cover
problem when these sets are disjoint. A direct application
of Lemma 13 then provides the integrality gap (since the
sets in WV are disjoint). O

The approximation factor in Corollary 2 (without the
integrality gap) was first shown in [25]. The quantity -y cor-
responds to the maximum frequency of the elements in /.

A generalization of set cover is the multi-set cover prob-
lem [50], where every element w is to be covered multiple
(cy) times. The multi-cover constraints can be formalized
as Pe = {z € [0,1]151| Y imes, (i) > cu, Yu €U}
Corollary 3. The approximation factor and integrality gap
of the multi-set cover problem is max, ey |{i : v € S;}| —
Cy + 1.

This result also implies the bound for set cover (with ¢, =
1). Since the rounding procedure above yields a solution



that is already a set cover (or a multi set cover), a subsequent
pruning step is not necessary.

Vertex Cover. A vertex cover is a special case of a set
cover, where U is the set of edges in a graph, V is the set
of vertices, and 5, is the set of all edges incident to v €
V. Corollary 2 immediately provides a 2-approximation
algorithm for the minimum submodular vertex cover. The 2-
approximation for the special case of vertex was also shown
in [21, 25].

The corrsponding integrality gap is two as well. To show
this gap, consider a graph such that each vertex is incident to
exactly one edge. The sets VV are the sets of vertices for each
edge and, in this case, are disjoint. As a result, Theorem 1
implies that the integrality gap is exactly 2. We may even
take a complete graph and use the modular function f(X) =
| X |. This shows that the integrality gap is 2 even when the
function is modular (linear). In fact, no polynomial-time
algorithm can guarantee an approximation factor better than
2 — ¢, forany e > 0 [21].

Edge Cover. In the Edge Cover problem, U is the set of
vertices in a graph, V' is the set of edges and .S, contains the
two vertices comprising edge v. We aim to find a subset of
edges such that every vertex is covered by some edge in the
subset. It is not hard to see that the approximation factor we
obtain is the maximum degree of the graph deg(G), which
is upper bounded by |V| (for simple graphs), but is often
much smaller. The algorithm in [30] has an approximation
factor of the size of the edge cover |EC|, which is also
upper bounded by O(]V|). These factors match the lower
bound shown in [21].

3.2.3 CUTS, PATHS AND MATCHINGS

Even though Eqn. (14) is in the form of covering constraints,
it can help solve problems with apparently very different
types of constraints. The covering generalization works if
we relax C to its up-monotone closure: C demands that a
feasible set must contain (or “cover”) a set in C. To go from
C back to C, we prune in the end.

Cuts and Paths. Here, we aim to find an edge set X C £
that forms an s-t path (or an s-t cut), and that minimizes the
submodular function f. Both the s-t path and s-t cut poly-
topes are hard to characterize. However, their up-monotone
extension P¢ can be easily described. Furthermore, both
these polytopes are intimately related to each other as a
blocking pair of polyhedra (see [51]). The extended poly-
tope for s-t paths can be described as a cut-cover [51] (i.e.,
any path must hit every cut at least once): Pe = {z €
[0, 1]1€1 | 3=, .o z(e) > 1, for every s-tcut C C E}. The
closure of the s-t path constraint (or the cut-cover) is also
called s-t connectors [51]. Conversely, the extended s-t cut
polytope can be described as a path-cover [51, 31]: Pe =
{z €[0,1]1€1| 3, pz(e) > 1, for every s-t path P C E}.
Corollary 4. The relaxation algorithm yields an approxi-

mation factor of Ppaz < |V| and Cpyar < |E| for minimum
submodular s-t path and s-t cut, respectively (Pp,q. and
Cinaz refer to the maximum size simple s-t path and s-t cut).
These match the integrality gaps for both problems.

Proof. The approximation factors directly follow from
Theorem 1. In order to show the integrality gaps, we need
to construct a set WV of s-t paths and cuts that are disjoint.
It is easy to construct such graphs. For example, in the
case of s-t cuts, consider a graph with m/ P parallel paths
between s and ¢, each of length P. The integrality gap in
this setting is exactly P, which matches the approximation
factor. Similarly, for the s-t path case, consider a graph of
m/C cuts in series. In other words, construct a chain of
m/C vertices. Connect each adjacent vertex with C' edges.
We have m /C disjoint cuts each of size C'. The integrality
gap and approximation factor both are C'in this setting. [J

While the description of the constraints as covers reveals ap-
proximation bounds, it does not lead to tractable algorithms
for minimizing the Lovéasz extension. However, the ex-
tended cut and the extended path polytopes can be described
exactly by a linear number of inequalities. For example,
the convex relaxation corresponding to the extended cut
polytope can be described as a convex optimization problem
subject to m+-1 linear inequality constraints [49, 31]. In par-
ticular, the relaxed optimization problem can be expressed
as:

min f(x)
subject to € [0,1]/¢l, 7 € [0, 1]V

w(v) —w(u) + z(e) > 0,Ve = (u,v) € £
m(s) —7(t) > 1 (19)

In the above, the variables 7 are additional variables that
intuitively represent which vertices are reachable from s.
Similarly, the extended path polytope is equivalent to the
set of s-t flows with < 1 [51, §13.2a]. This polytope can
be described via n + 1 linear inequalities.

min f(x)

subject to € [0, 1]/¢!

Z Lo — Z e =0,Yv € Vv # s,

ecot(v) e€d~ (v)

D we= ), we=1,
e€dt(s) e€d—(s)

Soowe— Y me=-1 (20)
e€dt(t) e€d—(t)

where 6 (v) represents the set of edges entering the vertex
v and §~ (v) represents the set of edges leaving the vertex
v.



The pruning step for paths and covers becomes a shortest
path or minimum cut problem, respectively. As in the
other cases, the approximations obtained from relaxations
complement the bounds of P,,,, for paths and C,,,, for
cuts shown in [30].

Perfect Matchings. Given a graph G = (V, £), the goal
is to find a set of edges X C &, such that X is a perfect
matching in G and minimizes the submodular function f.
For a bipartite graph, the polytope Pe can be characterized
as Pe = {z € [0,1]1€] ]| Dces(wy 2(e) = Lforallv € V},
where d(v) denotes the set of edges incident to v. Similar
to the case of Edge Cover, Theorem 1 implies an approx-
imation factor of deg(G) < |V|, which matches the lower
bound shown in [21, 29].

4 SUBMODULAR MAXIMIZATION

To relax submodular maximization, we use the multilinear
extension and the concave extension. We first show that
this extension can be efficiently computed for a large sub-
class of submodular functions. As above, C denotes the
family of feasible sets, and P¢ the polytope correspond-
ing to C. For maximization, it makes sense to consider
C to be down-monotone (particularly when the function
is monotone). Such a down-monotone C could represent,
for example, matroid independence constraints, or upper
bounds on the cardinality C = {X : |X| < k}. Analo-
gous to the case of minimization, an approximation algo-
rithm for down-monotone constraints can be extended to
up-monotone constraints, by using f'(X) = f(V\X).

The relaxation algorithms use the multilinear extension
(Eqgn. (2)) which in general requires repeated sampling and
can be very expensive to compute. Below, we show how this
can be computed efficiently and exactly for many practical
and useful submodular functions.

Weighted Matroid Rank Functions. A common class of
submodular functions are sums of weighted matroid rank
functions, defined as:

FX) =) max{w;(A)|AC X,AeT}, (D)

for linear weights w; (j). These functions form a rich class
of coverage functions for summarization tasks [40]. Interest-
ingly, the concave extension of this class of functions is effi-
ciently computable [7, 57]. Moreover, for a number of ma-
troids, the multilinear extension can also be efficiently com-
puted. In particular, consider the weighted uniform matroid
rank function, f(X) = >, max{w;(A)|A C X, |A| < k}.
The multilinear extension takes a nice form:

Lemma 5. The multilinear extension corresponding to
the weighted uniform matroid rank function, f(X) =
max{w(A)|A C X, |A| < k}, for a weight vector w can
be expressed as (without loss of generality, assume that the

vector w is ordered as wy > wy - -+ > Wy),

min(z,k)
f(m):Zwixi Z P(xy,--- 221,01 —1) (22)
=% 1=1
where
P(xy,-- ,2,l) = Z Hms H (1 —zy).

ZCSt|Z|=ls€eZ  teSi\Z

and S* = {1,2,--- i}

Proof. Recall that the multilinear extension of f is

f@y=> &) [z I] =20, @3
Xcv sEX  teV\X
where f(X) = max{w(A4)|[A C X,|4] < k}. We
can rewrite this sum in terms of the weights. Any ¢ €
V' is only counted if it is among the k elements in X
that have largest weight. Formally, let £i = {X

i occurs as the [ largest element in X }. Then

min(z,k)
Jay=2 we > 3 [l I a-e) 4
i€V =1 XerLiseX teV\X

This sum has a nice form. We can break the sets X € Ef
into Y U Z, where Y is a subset of {1,2,--- ;i — 1} and
Z is a subset of V\{1,2,--- ;i — 1}. With this, we may
rewrite

Z Hxs H (1 —x)

XeriseX tev\X
= Z H:L’S H (]-*xt)]:[xu H (17551))7

ycsitl, s€Y  teSi-N\Y u€Z  weS|\Z
Yi=i-1,
ZCV\S*~t

where we wrote S, = V\SL Note that

> zcst Huez Tullyesn z(1 — o) = 1 and hence,

Z st H (1—m¢) = Z Ha:s H (1 — z¢).

XeLis€X  teV\X ZCS, s€Z  teSi\zZ
|Z|=1-1

O

Interestingly, P(x1,- - ,z;,() admits a nice recursive re-
lationship, and can be computed efficiently, and therefore
also the multilinear extension of the weighted matroid rank
function.

Lemma 6. P(xq,---
ship,

, &;, 1) admits the following relation-

P(xlv"' 71'2'71) :xip(xla”' 71'7:—1;171)

+(1—1‘i)P($1,"' ,Jii,l—l).



Moreover, for every i € V and l € [1,n], the matrix of
values of P(x1,--- ,x;,1), and hence the multilinear exten-
sion of f can be computed in O(n?) time. Moreover, the
gradient V° f () can be computed in O(n?) time.

Proof. The proof of this follows directly from the fact that
we divide the possible sets into those containing ¢ and those
not containing ¢. Given this recursion, it is easy to see that
the entire matrix of values of P(z1,-- ,x;,l) can be ob-
tained for all values of 7 and [ in O(n?) iterations. Moreover,
given this matrix, we can obtain the expression of f also in
O(n?). O

The above results immediately provide an expression of the
multilinear extension of the Facility Location function.

Corollary 5. The multilinear extension corresponding of
the Facility Location function f(X) =3, .\, maXjex 5qj,
for a similarity matrix s;j, can be expressed as

-1
ZZSUIZ‘l H (1—xzjm), (25)
m=1

eV i=1

where jl,j2 -, j denote the elements closest to i €
V., sorted in decreasing order by their similarity s;;. The
fuction f(x) can be computed in O(n?logn) time, and
likewise the alternate gradient.

Proof. The expression for the multilinear extension follows
immediately from Lemma 5 and 6. The extension can be
computed by, for each i € V, sorting the elements by s;;,
computing the products in one linear pass for each [, and
then the sum over / in another pass. Repeating this for each
i € V results in a running time of O(n(n + nlogn)).

We next consider the gradient V¢ f (). For simplicity, we
focus on the max function, i.e f(X) = max;cx s;. As-
sume w.l.o.g. that s; > s9 > --- > s,,. The gradient of this
function is

j—1
x) =8, H(l — )

=1
"l:his follows since V?f(sc) = f(xtxj =1) — f(z), where
f(x|z; = 1) is the expression of f(x) with z; set to be 1.

The multilinear extension for the max-function is f(z) =
S siai [11Z1 (1 — 1), and hence,

1—1 j—1
Zslm’H 1—x) + s H(l—xl).
1=1 =1

n

Z Szsz 1—a).

i=j+1

flzlz; =1) =
i=1

Plugging both into the expression of the gradient, we get
the above.

Then for every j, we precompute M (z, j) = {:—11 (1—ay)
and store it (this can be done in O(n), and O(nlogn) for

sorting). Then

Vi f(x) =s;M

Z sixiM (x,1) (26)

i=j+1

Hence the entire alternate gradient can be computed in
O(nlogn) time for the max function, and correspondingly
in O(n?logn) for facility location. O

Lemma 5 provides an expression for the partial alternate gra-
dient (since it is useful for maximizing monotone functions).
For the complete gradient V f (), there is a similar expres-
sion. The complete gradient is required for non-monotone
submodular maximization, when the facility location func-
tion is used together with a non-monotone submodular func-
tion.

We can rewrite the gradients for some other matroids too,
using similar techniques as above. For example, consider
partition matroids. Let By, Bs,--- , B, be m blocks of
a partition of the ground set such that B; N B; = 0, Vi, j
and U; B; = V. Also letdy, - - - , d,, be numbers such that
d; < |B;|,Vi. A set X is independent in a partition matroid
if and only if | X N B;| < d;, Vi. The weighted rank function
corresponding to the partition matroid is,

= max{z
= Z max{w(Y;

The last equallty holds since the B;’s are disjoint. Hence,
the weighted matroid rank function for a partition matroid is
a sum of rank functions corresponding to uniform matroids
defined over the subsets B;. Hence Lemma 23 directly
provides an expression for the multilinear extension.

).Y; C XN B, |Y;| < di}

), Y; C X NB,, Y| <di}.

Set Cover function. This function is widely used in appli-
cations, capturing notions of coverage [40]. Given a collec-
tion of sets {Sy, - - - , Sy, } and the universe = U;S;, define
f(X) = w(U;exS;), where w; denotes the weight of item
7 € U. This setup can alternatively be expressed via a neigh-
borhood function I" : 2V — 2 such that I'(X) = U;e xS;.
Then f(X) = w(l'(X)). Let I~ Y(j) ={i e V : j €
T'(z)}. Then the multilinear extension has a simple form:
Lemma 7. The multilinear extension corresponding to the
set cover function f(X) = w(['(X)) is

= > w1 = Rz, 5)), 27)

Jjeu
where R(x, j) =
sion can be computed in O(n>

Zf(x) is
Py =Y
J¢T (k)

[Tier-1(j)(1 — 2:). The multilinear exten-
) time. Moreover; the gradient

w;R(z, j), (28)



and the entire vector V' f(z) can be computed in O(n?)
time.

Proof. Again, we express this sum in terms of the weights
w. In particular,

:ij Z HmSH(l—xt)

JjeEU X:jel(X)seX  t¢X
JjeEU X:XNI—1(j)#0 s€eX  t¢X
:ijH, Z HIQH (1 —x)]
jeu X:XCV\I'-1(j) s€X  t¢X
=> will= J[ -
jeu tel—1(5)

where the last inequality follows from the fact that

>, = ] a-en=

X:XCV\I—1(j) s€X teV\X
| | Ts

Z H (1—z¢)

uel~1(j) X:XCVAI—1(j)s€eX  te{V\I"1(HNX
= J] a-=)
ter=1(j)

The second part also directly follows from the first, as

Vif(z) = f(alzr =1) — f(2)
= Y wl-R@)+ Y w - )
kel =1(j) Jikgl=1(5)
= > wR(z,))
Jkgl=1(j)
= > wR(z,j)
J¢T (k)

In order to compute the vector V* f (z), first we precompute
R(x,4) for all j. This can be done in O(n?) time. Then us-

ing the values of R(z, ), we can compute V{ f(x), Vk also in
O(n?). O

The gradient V f(z) can be computed analogously.

Probabilistic Coverage Functions. A probabilistic gen-
eralization of covering functions of the form f(X) =
> icu will = IT;ex (1 — pij)] has been used for summa-
rization problems [14]. If p;; is binary (either i covers j or
not), we obtain a standard set cover function. The multi-
linear extension of probabilistic coverage functions is also
efficiently computable

~QU):Zwi[l— H(l

= JjEV

—pijl'j)]. (29)

This form follows from Proposition 2 (below), since this is
a pseudo-Boolean function.

Graph Cut functions. Graph cuts are a widely used class
of functions. Their multilinear extension also a admits
closed form representation. Graph cut functions are of the
form

(30)
i€X,j¢X

Its multilinear extension is also easily expressed:

Lemma 8. The multilinear extension of the graph cut func-
tion and its gradient have closed form expressions

= Z sijri(1 — x5), ZSZJ

1,jEV JEV

QxJ

For asymmetric cut functions f(X) =
expressions are

= Z SijLj, V,f(x

i,jEV

ZieV,jeX Sij» the

)= si

jev

€2y

In both cases above, the multilinear extension and the cor-
responding gradient can be computed in O(n?) time.

Proof. We rewrite the multilinear extension in terms of the
s;; to obtain th equadratic polynomial

f(z) = Z Sij Z H T H(l —x) (32)
i€V X:ueX,j¢X s€EX  t¢X
= > sijzs(l— ) (33)

i,jeEV

We can similarly derive the expression for the asymmetric
graph cut function and the gradients for both expressions.
O

These quadratic functions have been widely used in com-
puter vision. A related function is a similarity-penalizing
function: f(X) = —>_, ;cx si;. This function has been
used for encouraging diversity [41, 40].

Lemma 9. The multilinear extension and the gradient for
the function f(X) = — 3, ;cx sij are

Z 8ijTiT5, Vi f ZS”% (34)
i, jeEV jeVv
Proof. The lemma follows analogously to the case of graph
cuts:
F@)y==> sy > Jl=J[0-2z) 35
i,jeV = XueX,jeXseX  t¢X
= — Z Sij LTy, (36)
i,jEV

and similarly for the gradient. O



Fac. Location ° | Set Cover | Graph Cuts | Diversity I/ IT | Concave over card. | Soft-Max *
Multilinear Closed form | O(n”logn) O(n?) O(n?) O(n?) O(n?) O(n?)
Multilinear Sampling O(n"logn) O(nf) o(n” o(n") O(nf) O(nf)
Gradient Closed form O(n?logn) O(n?) O O(n?) O(n?) o(n®)
Gradient Sampling O(n" logn) O(n") O O(n®) O(n") 0(n)

Table 3: Complexity of evaluating the multilinear extensions and their gradients for both the optimized closed forms given

in this paper and for sampling at high accuracy.

This function is often used with other coverage type func-
tions (for example, graph cut or set cover) [40, 41], and since
the multilinear extension is commutative, the above forms
provide closed form expressions for a number of objective
functions that promote diversity and coverage.

Sparse Pseudo-Boolean functions. For graphical mod-
els, in particular in computer vision, set functions are often
written as polynomials [24]. Any set function can be writ-
ten as a polynomial, py(z) = > ;v ar [[;c1 i, Where
x € {0,1}"™ is the characteristic vector of a set. In other
words, f(S) = Y ;cgor. Submodular functions are a
subclass of these polynomials. This representation directly
gives the multilinear extension as the same polynomial,
f(x) =X ey ar [1er i and is efficiently computable
if the polynomial is sparse, i.e., has few nonzero coefficients
ar. This is the case for graph cut like functions above and
for the functions considered in [54, 24]. This analogy is
implicitly known, but we formalize it for completeness.

Proposition 2. The polynomial representation is the multi-
linear extension: f(x) = ps(x).

Proof. Recall that the multilinear extension is equivalent

to the expectation for a product distribution of Bernoulli
random variables, P(S) = [[;cq i [];¢5 2;. We see that

f@)=>_pS) > ar (37)

SCV TCS

=Y ar Y p(S) (38)
TCV SoT
=Y ar > pMpS\T|T) (39
TCV 82T

=Y ar[Ja( > pA) (40)
TCV €T ACV\T

=Y ar [[zi=pslx) 1)
TCV ieT

In the last step, we used that p(A | T') = p(A) and that
Yacy P(A) =1forall V! C V. -

Spectral functions. Diversity can also be encouraged via
spectral regularizers [11]. Given a positive definite matrix
S € R™"*" define Sx to be the | X| x | X| sub-matrix of

3This extends to top-k facility location too.
“This is for soft-max extension [20].

the rows and columns indexed by X. Any scalar function
1) whose derivative is operator-antitone defines a submod-
ular function, f(X) = Z‘XI (Mi(Sx)), by applying it
to the eigenvalues of Sy [17]. The resulting class of sub-
modular functions includes the log determinants occurring
in DPP inference [20], and, more generally, a smoothed
log-determinant function f(X) = logdet(Sx + 0Ix) =
ZIXl log(A\;(Sx) + §). It is monotone for § > 1, and
has an efficiently computable soft-max extension that is
s~imilar to the multilinear extension [20]. This extension is
fH(@) = log(3_xcy exp(f(X)) [Liex i Hj¢x(1 — )
and shares several desirable theoretical properties with the
multilinear extension’. A related function that encourages
diversity is f(X) = — XX (A\i(Sx) = 1)2[11]. Note
that — S 1X] A2(Sx) = —trace(S{Sx) = — Y, e x 55
The multilinear extension of this function also takes a nice
form.

Lemma 10. The f(X) =
le‘ (X\i(Sx) — 1)% can also be directly expressed as

FX) ==Y sh+2> su—|X]. (42

ijex ieX

spectral  function

The multilinear extension and its gradient are

- Z ST + Z(%uwz -1),

i,jeV ieV
2
— E 55%; + 2845
jeVv

Both expressions can be computed in O(n?) time.

Proof. The proof of this lemma follows from Lemma 9 and
from the fact that the multi-linear extension of a modular
function is its linear extension —i.e given a function f(X) =
> _icx Si» its multilinear extension is f(z) = > ..y siz; =

(s, x).

We note that given the above, it is possible to approxi-
mate the multilinear extension of the log determinant func-
tion by first representing it in its spectral form f(X) =

logdet(Sx) = Z‘Xl log(A;(Sx)), then taking a truncated

The results in [20] are shown only for § = 0, ie log-
determinant functions. However, it is easy to see that the soft
max extension can be computed for any value of § > 0 efficiently



Taylor series approximation of the log function to two terms,
which allows it to be represented in polynomial form where
Lemma 9 applies, allowing an O(n?)-cost approximation,
something that might be more useful than certain sampling
approximations to the multilinear extension.

Concave over modular functions. Finally, we consider
functions of the form f(A) = g(|A|) where g is a concave
function. Such functions are submodular, and have simple
extensions.

Lemma 11. The multilinear extension of the concave over
cardinality function f(A) = g(|A]) is

f@) =Y g()P(a1, - 2, d), (43)
=1

Z HxSH(l—a:t).

ZCV,|Z|=is€Z  t¢Z

: aInai):

The term P(x1,- -+ ,x,,1) can be computed in linear time
(excluding the computation of constants), and correspond-

ingly f(x) in O(n?).

Proof. The proof of this Lemma follows directly from defi-
nition of the multilinear extension, and from Lemmas 5 and
6. O

One may generalize this to sums f(X) = >, g;(m;(X)) of
concave over modular functions, where the g; are concave
and the m; are modular. This class of functions has a natural
concave extension: f(z) = 3, gi((z,m;)).

Given expressions for the functions above, we can also
handle weighted combinations f(X) = >, A; fi(X), since
its multilinear extension is f(z) = 3, Aifi(z). In the
following sections, we briefly describe relaxation algorithms
and rounding schemes for maximization.

4.1 MONOTONE MAXIMIZATION

We first investigate monotone submodular maximization
subject to matroid independence constraints Z. The tech-
nique for maximizing the multilinear extension is the contin-
uous greedy algorithm [58], which is a slight modification
of the Frank-Wolfe algorithm [16], with a fixed step size.
The algorithm proceeds as follows.

e Find h! = argmax;, cp, (b, V*f(z")).
o o't = 2! 4+ §ht, with the step size § = 1/n?.
Here V“ is the alternate gradient. This continuous greedy

procedure terminates in O(n?) iterations, after which we
are guaranteed to obtain a point x such that f(z) >

(1 —1/e)f(z*) [7, 57]. Moreover, using the pipage round-
ing technique (in particular, the deterministic variant [58])
ensures that we can round the continuous solution to a set
in O(n?) function calls.

A naive computation of the generic multilinear extension in
Eqn. (2) or its gradient takes exponential time. To compute
these in polynomial time, we can use sampling. For obtain-
ing an accuracy better than 1/n2, we need O(n°) samples
for the multilinear extension or for each coordinate of its gra-
dient [58, 57]. This implies a complexity of O(n%) function
evaluations for the gradient and O(n®) function evaluations
for the extension itself, thus implying the algorithm’s com-
plexity as O(n®Tvs), where T  is the time of evaluating
the gain of f. For facility location, this means a running
time of O(n” log n), and for set cover functions O(n?).

The specialized expressions in Section 4 however lead
to algorithms that run several orders of magnitude faster.
With O(n?) iterations, the time becomes O(n’Ty ),

where V[ is the time to compute the gradient of f.
Table 3 compares the function evaluation times for some
practically very useful submodular functions. Moreover,
we can use mixtures of these submodular functions, each
with efficiently computable multilinear extensions, and
compute the resulting multilinear extension also efficiently.
While this is still slower than the accelerated greedy
algorithm [44], it gains power for more complex constraints,
such as matroid independence constraints, where the
discrete greedy algorithm only achieves an approximation
factor of 1/2, whereas the continuous greedy obtains at
least a 1 — 1/e factor. Similarly, the continuous greedy
algorithm achieves a 1 — 1/e approximation guarantee
for multiple knapsack constraints [39], while the discrete
greedy techniques do not have such guarantees. Hence,
the formulations above make it possible to use the optimal
theoretical results with a more manageable running time.

4.2 NON-MONOTONE MAXIMIZATION

In the non-monotone setting, we must find a local optimum
of the multilinear extension. We could use, for example,
a Frank-Wolfe style algorithm [16] and run it until it con-
verges to a local optimum. It is easy to see that at conver-
gence, x satisfies (Vf(z),y — z) < 0,Vy € Pc and is
a local optimum. Practically, this would mean checking
if argmax, cp_ (Y, Vf(z)) = z. For simple or no con-
straints, we could also use a method like L-BFGS. Running
this procedure twice, we are guaranteed to obtain a 0.25
approximate solution [9]. This procedure works for any
down-monotone constraint C. Moreover, this procedure
with a slightly different extension has been successfully ap-
plied in practice to MAP inference with determinantal point
processes [20].

A generic rounding strategy for submodular maximization
problems was given by [9], and works for a large class of



constraints (including matroid, knapsack constraints, and
a combination thereof). Without constraints, this amounts
to sampling a set by a distribution based on the continuous
solution = — it will satisfy Ex., f(X) = f(z). In practice,
however, this may not work well. Since the multilinear
extension is linear in any coordinate (holding the other ones
fixed), a simpler co-ordinate ascent scheme of choosing the
better amongst 0 or 1 for any fractional co-ordinate will
guarantee a deterministic procedure of obtaining an integral
solution no worse than the continuous one.

The above algorithms and rounding techniques offer a gen-
eral and optimal framework, even for many complex con-
straints. Moreover, many of the best algorithms for non-
monotone submodular maximization are based on the mul-
tilinear extension. For example, the best known algorithm
for cardinality constrained non-monotone submodular max-
imization [6] uses a continuous double greedy algorithm
on the multilinear extension. However, the practical utility
of those algorithms is heavily impaired by computational
complexity. In fact, non-monotone functions even require
O(n") samples [9]. For DPPs, [20] used an extension that
is practical and close to the multilinear extension. Since
they do not use the multilinear extension, the above round-
ing schemes do not imply the same approximation bounds
as for the multilinear extension, leaving the worst-case ap-
proximation quality unknown. The expressions we show
above use the multilinear extension and maintain its benefits,
demonstrating that for many functions of practical interest,
sampling, and hence extremely high complexity, is not nec-
essary. This observation is a step from theory into practice,
and allows for the improved approximations to be used in
practice.

4.3 INTEGRALITY GAPS

Surprisingly, the multilinear extension has an integrality gap
of 1 for a number of constraints including the matroid and
cardinality constraints, since it is easy to round it exactly
(using say, the pipage rounding or contention resolution
schemes [7, 9]). The concave extension however, can have
integrality gaps arbitrarily close to e/(e — 1) even for simple
matroids [57]. Hence, even though it is possible to exactly
optimize it in certain cases (for example, for weighted ma-
troid rank functions), the rounding only guaranteesa1—1/e
approximation factor.

S DIFFERENCE OF SUBMODULAR (DS)
FUNCTIONS

Finally, we investigate minimizing the differences between
submodular functions. Given submodular functions f
and g, we consider the following minimization problem:
minxec (f(X) — g(X)). In fact, any set function can be
represented as a difference between two non-negative mono-
tone submodular functions [46, 26]. In the unconstrained

setting, C = 2V, A natural continuous relaxation (not nec-
essarily convex) is h(z) = f(x) — g(x). The continuous
problem is a DC programming problem, and can be ad-
dressed (often very efficiently) using the convex-concave
procedure [60]. Moreover, thanks to the special structure of
the Lovasz extension, there exists a simple rounding scheme
for the unconstrained version.

Lemma 12. Given submodular functions f and g, and a
continuous vector x, there exists a 0 € (0,1) such that

f(Xo) — g(Xo) > f(x) — (x), where Xy = {x > 0}.
Moreover, the integrality gap of h(x) (in the unconstrained
setting) is equal to 1.

Proof. Recall that given a point z € [0, 1]", we can find a
chainof sets ) = Zy C Z; C Zo C -+ - C Zj, corresponding
to z, such that z = 25:1 A1 Z;- Then the Lovasz extension
can be written as f(z) = Z§:1 A;f(Z;). This chain is
independent of the function f and hence, given functions f
and g, we have that

k
hz) =Y Ah(Z) (44)

j=1
It is then easy to see that one of h(Z;) forj =1,2,--- |k
must have a value less than or equal to h(z), thus completing
the proof. O

The above lemma shows that in at most O(n), we can round
the continuous solution without any loss. Unfortunately,
these results do not seem to extend straightforwardly to
combinatorial constraints. Although the relaxed difference
of convex optimization problem can itself be solved via the
convex-concave procedure if the polytope P¢ correspond-
ing to the constraints can be characterized efficiently, the 8-
rounding procedure no longer retains any guarantees. How-
ever, a procedure like threshold rounding might still provide
a feasible solution if the constraints are up-monotone, and
taking the best amongst the feasible rounded sets might still
work well in practice.

6 DISCUSSION

In this work, we have offered a unifying view on continu-
ous relaxation methods for submodular optimization. For
minimization problems with various constraints, we pro-
vide a generic rounding strategy with new approximation
bounds and matching integrality gaps. For maximization,
we summarize efficiently computable expressions for many
practically interesting submodular functions. This is a useful
step towards transferring optimal theoretical results to real-
world applications. An interesting question remains whether
there exist improved sampling schemes for cases where the
multilinear extension is complex. Recently, [27] investi-
gated forms of submodular minimization and maximization



with submodular constraints. The proposed algorithms there
were all discrete. It is an interesting question whether the
relaxations discussed here extend to their setting as well.
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A Proof of Theorem 1

Proof. To show the first part of the theorem, we invoke
Lemma 2. The constraints of Equation (14) demand that
for every set W € W, at least byy < |W| elements need to
be chosen, or “covered”. Consequently, to round a vector
x € Pe, it is sufficient to choose § = minw ew Loy, w)

as the rounding threshold, where x[; 4} denotes the kth
largest entry of x in a set A. The worst case scenario is
that the by — 1 entries of x with indices in the set W are
all 1, and the remaining mass of 1 is equally distributed
over the remaining elements in W. In this case, the value
of zpp,, wy is 1/(|W] — bw + 1). Since the constraint
requires ) ;. 2; > by, it must hold that xp,, w) >
1/(|W| — bw + 1). The approximation factor then follows
with Lemma 2.

To analyze the integrality gap, we first show the following
Lemma.

Lemma 13. If Pe is described by Equation 14, then the
integrality gap can be as large as T3 > maxwew |W/| —
bw + 1. Moreover, if C and 0 are such that 0-rounding
provides a valid set in C, the integrality gap is never larger
than that: I&g < g.

To show the lower bound on the gap, we construct a sim-
ple example. Assume W' = argmaxy,cyy |[W| —bw + 1
satisfies W N W' = (,YIW € W, W # W'. This is true
since the W consists of disjoint sets. Let B’ be a subset
of W’ such that |B’| = |[W'| — by + 1. In other words,
every feasible solution must intersect B’ Now we define
f(X) = min{|X N B’|,1}. The Lovész extension of this
function is f(z) = max;exnp’ £;. An optimal continuous
solution for f and WV has entries 2 = 1 for j ¢ B’ and
rf = 1/(|W'| —bw + 1) for j € B’. In this case, the
integrality gap is f(X*)/f(z*) = 1/(W'| —by» +1)"! =
W’| — by + 1.

The upper bound on the gap follows from the approximation
factor:
X*
Ig = max ————— it )u
f mingep, f(x)
X
< max .ﬂie)u
o mingep, f(x)

where the second inequality follows from the fact that
f(X*) < Xy and the last one from Lemma 2. O
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