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Set functions f : 2¥ — R

o V is a finite “ground” set of objects.
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o A set function f : 2" — R produces a value for any
subset A C V.

o For example, f(A) = 22,

o General set function optimization can be really hard!
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Submodular Set Functions

@ Special class of set functions.

F(AUV) — F(A) > F(BUV)—f(B), if AC B (1)
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e Monotonicity: f(A) < f(B), if AC B.

e Modular function f(X) = > ;. f(i) analogous to linear functions.
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Submodular Function Maximization

compute A* € argmax f(A)
AeC

where f is submodular, and where C is constraint set over
which a modular function can be optimized efficiently.

Sensor Placement Diversified Search (He

et al 2012, Kulesza &
(Krause et al, 2008) Document Summarization Taskar, 2012)

(Lin & Bilmes, 2011)
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Submodular Function Minimization

compute A* € argmin f(A)
AeC

where f is submodular, and where C is constraint set over
which a modular function can be optimized efficiently.

Clustering
(Narasimhan &
Bilmes 2011, Nagano
et al, 2010)

Image segmentation / MAP
inference (Boykov & Jolly 2001,
Jegelka & Bilmes 2011, Delong
et al, 2012)
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Corpus Data Subset
Selection (Lin &
Bilmes, 2011)
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Submodular Function
Minimization
@ Polynomial-time but too slow
O(n® x FuncEvalCost + n®).
o Constrained minimization is
NP-hard.

@ Algorithms differ depending
on the constraints.
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Submodular Function Submodular Function
Minimization Maximization

@ Polynomial-time but too slow @ NP-hard but constant-factor
O(n® x FuncEvalCost + n®). approximable.

@ Constrained minimization is o Large class of algorithms
NP-hard. — Local search, continuous

@ Algorithms differ depending greedy, bi-directional greedy,
on the constraints. simulated annealing etc.

‘Algorithms look very different! ‘

| Which algorithm to use when? |

Contribution: We present the first unifying framework for submodular min-
imization & maximization. Our framework is scalable to large data.
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Submodular Semigradients

Convex/Concave and Semigradients

@ A convex function ¢ has a subgradient
hy and linear lower bound:

o(y) + (hy,x — y) < ¢(x),Vx.

@ A concave function % has a
supergradient g, and linear upper
bound:

U(y) + (gy, x — y) = (x),Vx.
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@ A convex function ¢ has a subgradient
hy and linear lower bound:

o(y) + (hy,x — y) < ¢(x),Vx.

@ A concave function % has a
supergradient g, and linear upper
bound:

U(y) + (gy, x — y) = (x),Vx.

@ Submodular functions have properties analogous to convexity and
concavity.
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Submodular Subgradients (Fujishige 1984, 2005)

@ Like convex functions, submodular functions have sub-gradients.
Defined at any Y C V.
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@ Corresponding subgradient h{, is:
h3(o(i) = f(%i) — f(Xi-1)

@ Modular lower bound: mp, (X) = f(Y) + hy(X) — hy(Y) < f(X).
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Submodular Semigradients

Submodular Supergradients (lyer et al, 2013)

o Define gain of j in context of A: f(j|A) £ f(AUJ) — f(A)
@ Unlike convex functions, surprisingly, we show that submodular
functions also have super-gradients. Defined at any Y C V.

@ Three of these supergradients (which we call grow, shrink, and bar)
are in fact easy to obtain.

Grow:

FUIVAUY) forjeY

ev(i) = {f(j|Y) forj ¢ Y
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Submodular Supergradients (lyer et al, 2013)

o Define gain of j in context of A: f(j|A) £ f(AUJ) — f(A)
@ Unlike convex functions, surprisingly, we show that submodular
functions also have super-gradients. Defined at any Y C V.

@ Three of these supergradients (which we call grow, shrink, and bar)
are in fact easy to obtain.

Shrink:

FUIYAUY) forjeY

éy(j):{f(ﬂ@) forjgy
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@ Unlike convex functions, surprisingly, we show that submodular
functions also have super-gradients. Defined at any Y C V.

@ Three of these supergradients (which we call grow, shrink, and bar)
are in fact easy to obtain.

Bar:

FUIVAUY) forjeY

EYU):{f(ﬂ@) forjg Y

lyer et al, 2013 Fast Semi-differential based Submodular Function Optimization



Submodular Semigradients
(NI

Submodular Supergradients (lyer et al, 2013)

o Define gain of j in context of A: f(j|A) £ f(AUJ) — f(A)
@ Unlike convex functions, surprisingly, we show that submodular
functions also have super-gradients. Defined at any Y C V.

@ Three of these supergradients (which we call grow, shrink, and bar)
are in fact easy to obtain.

Bar:
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Optimization Framework

Algorithm 1 Subgradient ascent [descent] algorithm for submodular max-
imization [minimization].

1: Start with an arbitrary X°.

2: repeat

3:  Pick a semigradient hx: [ gx] at X*.

6: until we have converged (X' =X)ori< T

11/ 20
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Algorithm 1 Subgradient ascent [descent] algorithm for submodular max-
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Optimization Framework

Algorithm 1 Subgradient ascent [descent] algorithm for submodular max-
imization [minimization].
1: Start with an arbitrary X°.
2: repeat
3:  Pick a semigradient hx: [ gx:] at X*.
4 X' argmaxyce mp,, (X) [ XEH! < argminyee méx (X))
5
6

tt+1
. until we have converged (X' = X)ori< T

Lemma: Algorithm 1 monotonically improves the objective function
value for submodular maximization and minimization at every iteration.
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@ MMin-Illa and Illb are first iterations of MMin-I and MMin-II.
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@ MMin-Illa and Illb are first iterations of MMin-I and MMin-II.

e A and B obtainable in O(n) oracle calls.
@ A, and B, are local minimizers obtainable in O(n?) calls.
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Unconstrained Minimization
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@ MMin-Illa and Illb are first iterations of MMin-1 and MMin-II.
e A and B obtainable in O(n) oracle calls.

e A, and B, are local minimizers obtainable in O(n?) calls.
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Submodular Minimization
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Empirical Results: Submodular Minimization

Test function: concave over modular, /wy(X) + Awa(V\X).

g
£100

501

— MMin—I &I
— MMin-II|
OO 2 4
A

Lattice reduction (solid line), and runtime reduction (dotted line).

% Contraction/Relative

Note: results for Bipartite Neighborhoods shown in paper.

lyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 14 /20



Submodular Minimization
(NRE R

Constrained Submodular Minimization

@ Curvature of a monotone submodular function:

ke(X) = 1—mJ_in f('/f’()j)\‘l) (2)
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Constrained Submodular Minimization

@ Curvature of a monotone submodular function:

ke(X) 21— mJ_in f(ﬂ()j)\f) (2)

The solution X returned by MMin-| satisfies:

f(X)< f(X )Sm

S TH %= DU = mr (7)) X9
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@ Curvature of a monotone submodular function:

ke(X) 21— mJ_in f(ﬂ()j)\f) (2)

The solution X returned by MMin-| satisfies:

< | X*| 1
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@ Lower curvature = Better guarantees!
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Constrained Submodular Minimization

@ Curvature of a monotone submodular function:

ke(X) 21— mJ_in f(ﬂ()j)\f) (2)

The solution X returned by MMin-| satisfies:

< | X*| 1
)< T = D= roe) ) S T (%)

@ Lower curvature = Better guarantees!

@ Improve the previous results when k¢ < 1.
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Empirical Results: Constrained Submodular Minimization
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Bipartite Matching

1 IHI IHI 1

CM CCM BS WC

@ We compare MMin-I to two other algorithms.

o =2 N W
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o We compare MMin-| to two other algorithms.
@ Simple modular upper bound (MU) (i.e > (/).

emp. approx. factor
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Bipartite Matching

o =2 N W

1 IHI IHI 1

CM CCM BS WC

o We compare MMin-| to two other algorithms.

© Simple modular upper bound (MU) (i.e > f(j))-

@ More complicated Ellipsoidal Approximation (EA) Algorithm.

emp. approx. factor
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o We compare MMin-| to two other algorithms.

© Simple modular upper bound (MU) (i.e > ;cx f(j))-

@ More complicated Ellipsoidal Approximation (EA) Algorithm.

emp. approx. factor

@ Performance of MMin-I:
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lyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 16 / 20



Submodular Minimization
(NNAT |

Empirical Results: Constrained Submodular Minimization

Bipartite Matching
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o We compare MMin-| to two other algorithms.

© Simple modular upper bound (MU) (i.e > ;cx f(j))-

@ More complicated Ellipsoidal Approximation (EA) Algorithm.

emp. approx. factor

@ Performance of MMin-I:

@ Much better than MU.
@ Comparable to EA.

lyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 16 / 20



Submodular Minimization
(NNAT |

Empirical Results: Constrained Submodular Minimization

Bipartite Matching

o =2 N W

1 IHI IHI 1

CM CCM BS WC

o We compare MMin-| to two other algorithms.

© Simple modular upper bound (MU) (i.e > ;cx f(j))-

@ More complicated Ellipsoidal Approximation (EA) Algorithm.

emp. approx. factor

@ Performance of MMin-I:

@ Much better than MU.
@ Comparable to EA.

@ Submodular spanning tree & shortest path results given in paper.
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Unconstrained Maximization

Our framework subsumes a number of state-of-the-art algorithms. For
example, each of the below corresponds to subgradient ascent:
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Unconstrained Maximization

Our framework subsumes a number of state-of-the-art algorithms. For
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Constrained Maximization and Extensions

@ Greedy subgradient for monotone submodular functions:
o8(i) e argmax FIZo%)). (3)
j¢xg8, and 98 U{j}eC

e Algorithm 1 using the subgradient h®® exactly corresponds to the
greedy algorithm. = |1 — 1/e Approximation (NWF'78)! |

Generality of Algorithm MMax: For every a-approximation algorithm,
there exists a schedule of subgradients obtainable in poly-time, such that
Algorithm 1 (MMax) achieves an approximation factor of at least a.
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Conclusion
L}

Summary

Submodular functions in machine learning.

A generic sub-gradient ascent [super-gradient descent] framework
for submodular maximization [minimization].

The first unifying framework for general submodular optimization.

New theoretical results for unconstrained and constrained
submodular minimization.

@ A novel view as a framework for submodular maximization and
subsuming number of existing algorithms.

Empirical experimental validation.
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Thank You

Thank You!
Questions please.
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