Rishabh Iyer ¹ Stefanie Jegelka ² Jeff Bilmes ¹

¹University of Washington, Seattle

²University of California, Berkeley

Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion

Outline

- Submodular Functions in Machine Learning
- 2 Convexity, Concavity & Submodular Semigradient Descent
- Submodular Minimization
- Submodular Maximization
- Conclusion

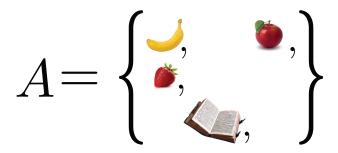
Set functions $f: 2^V \to \mathbb{R}$

• V is a finite "ground" set of objects.

Background

Conclusion

Set functions $f: 2^V \to \mathbb{R}$

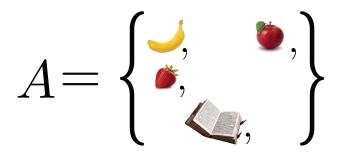


• A set function $f: 2^V \to \mathbb{R}$ produces a value for any subset $A \subseteq V$.

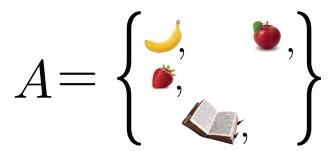
Background

Conclusion

Set functions $f: 2^V \to \mathbb{R}$



- A set function $f: 2^V \to \mathbb{R}$ produces a value for any subset $A \subseteq V$.
- For example, f(A) = 22,



- A set function $f: 2^V \to \mathbb{R}$ produces a value for any subset $A \subset V$.
- For example, f(A) = 22,
- General set function optimization can be really hard!

Background

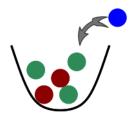
Conclusion

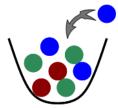
Special class of set functions.

$$f(A \cup v) - f(A) \ge f(B \cup v) - f(B), \text{ if } A \subseteq B \tag{1}$$

Special class of set functions.

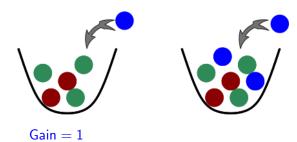
$$f(A \cup v) - f(A) \ge f(B \cup v) - f(B)$$
, if $A \subseteq B$ (1)





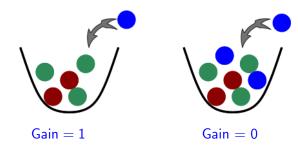
• Special class of set functions.

$$f(A \cup v) - f(A) \ge f(B \cup v) - f(B), \text{ if } A \subseteq B \tag{1}$$



Special class of set functions.

$$f(A \cup v) - f(A) \ge f(B \cup v) - f(B), \text{ if } A \subseteq B$$
 (1)

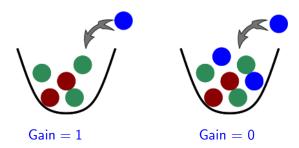


Background

page

Special class of set functions.

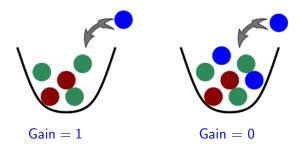
$$f(A \cup v) - f(A) \ge f(B \cup v) - f(B), \text{ if } A \subseteq B$$
 (1)



• Monotonicity: $f(A) \leq f(B)$, if $A \subseteq B$.

Special class of set functions.

$$f(A \cup v) - f(A) \ge f(B \cup v) - f(B), \text{ if } A \subseteq B$$
 (1)



- Monotonicity: $f(A) \leq f(B)$, if $A \subseteq B$.
- Modular function $f(X) = \sum_{i \in X} f(i)$ analogous to linear functions.

Submodular Function Maximization

compute
$$A^* \in \operatorname{argmax} f(A)$$

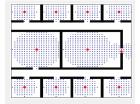
 $A \in \mathcal{C}$

where f is submodular, and where \mathcal{C} is constraint set over which a modular function can be optimized efficiently.

Submodular Function Maximization

compute
$$A^* \in \operatorname*{argmax} f(A)$$
 $A \in \mathcal{C}$

where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently.

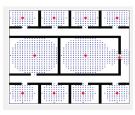


Sensor Placement (Krause et al, 2008)

Submodular Function Maximization

compute
$$A^* \in \operatorname*{argmax}_{A \in \mathcal{C}} f(A)$$

where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently.



Sensor Placement (Krause et al, 2008)

Document Summarization (Lin & Bilmes, 2011)

Background

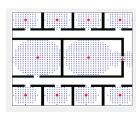
Conclusion

Submodular Function Maximization

compute
$$A^* \in \operatorname*{argmax} f(A)$$

 $A \in \mathcal{C}$

where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently.



Sensor Placement (Krause et al, 2008)

Document Summarization (Lin & Bilmes, 2011)

Diversified Search (He et al 2012, Kulesza & Taskar, 2012)

Submodular Function Minimization

compute
$$A^* \in \underset{A \in \mathcal{C}}{\operatorname{argmin}} f(A)$$

where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently.

Submodular Function Minimization

compute
$$A^* \in \underset{A \in \mathcal{C}}{\operatorname{argmin}} f(A)$$

where f is submodular, and where \mathcal{C} is constraint set over which a modular function can be optimized efficiently.

Image segmentation / MAP inference (Boykov & Jolly 2001, Jegelka & Bilmes 2011, Delong et al, 2012)

Submodular Function Minimization

compute
$$A^* \in \underset{A \in \mathcal{C}}{\operatorname{argmin}} f(A)$$

where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently.

Clustering (Narasimhan & Bilmes 2011, Nagano et al, 2010)

Background

page

Submodular Function Minimization

compute
$$A^* \in \underset{A \in \mathcal{C}}{\operatorname{argmin}} f(A)$$

where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently.

Image segmentation / MAP inference (Boykov & Jolly 2001, Jegelka & Bilmes 2011, Delong et al, 2012)

Clustering (Narasimhan & Bilmes 2011, Nagano et al, 2010)

Corpus Data Subset Selection (Lin & Bilmes, 2011)

Background

page

Submodular Function Minimization

- Polynomial-time but too slow $O(n^5 \times \text{FuncEvalCost} + n^6)$.
- Constrained minimization is NP-hard.
- Algorithms differ depending on the constraints.

Submodular Function Minimization

- Polynomial-time but too slow $O(n^5 \times \text{FuncEvalCost} + n^6)$.
- Constrained minimization is NP-hard.
- Algorithms differ depending on the constraints.

Submodular Function Maximization

- NP-hard but constant-factor approximable.
- Large class of algorithms

 Local search, continuous greedy, bi-directional greedy, simulated annealing etc.

Submodular Function Minimization

- Polynomial-time but too slow $O(n^5 \times \text{FuncEvalCost} + n^6)$.
- Constrained minimization is NP-hard.
- Algorithms differ depending on the constraints.

Submodular Function Maximization

- NP-hard but constant-factor approximable.
- Large class of algorithms

 Local search, continuous greedy, bi-directional greedy, simulated annealing etc.

Algorithms look very different!

Submodular Function Minimization

- Polynomial-time but too slow $O(n^5 \times \text{FuncEvalCost} + n^6)$.
- Constrained minimization is NP-hard.
- Algorithms differ depending on the constraints.

Submodular Function Maximization

- NP-hard but constant-factor approximable.
- Large class of algorithms

 Local search, continuous
 greedy, bi-directional greedy,
 simulated annealing etc.

Algorithms look very different!

Which algorithm to use when?

Submodular Function

Minimization • Polynomial-time but too slow

- $O(n^5 \times \text{FuncEvalCost} + n^6).$
- Constrained minimization is NP-hard.
- Algorithms differ depending on the constraints.

Submodular Function Maximization

- NP-hard but constant-factor approximable.
- Large class of algorithms

 Local search, continuous
 greedy, bi-directional greedy,
 simulated annealing etc.

Algorithms look very different!

Which algorithm to use when?

Contribution: We present the first unifying framework for submodular minimization & maximization. Our framework is scalable to large data.

Background

Conclusion

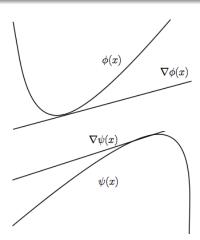
Convex/Concave and Semigradients

• A convex function ϕ has a subgradient h_{ν} and linear lower bound:

$$\phi(y) + \langle h_v, x - y \rangle \le \phi(x), \forall x.$$

ullet A concave function ψ has a supergradient g_v and linear upper bound:

$$\psi(y) + \langle g_y, x - y \rangle \ge \psi(x), \forall x.$$



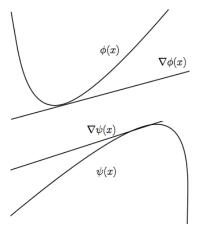
Convex/Concave and Semigradients

• A convex function ϕ has a subgradient h_{ν} and linear lower bound:

$$\phi(y) + \langle h_y, x - y \rangle \le \phi(x), \forall x.$$

ullet A concave function ψ has a supergradient g_v and linear upper bound:

$$\psi(y) + \langle g_y, x - y \rangle \ge \psi(x), \forall x.$$



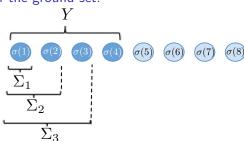
 Submodular functions have properties analogous to convexity and concavity.

Submodular Subgradients (Fujishige 1984, 2005)

• Like convex functions, submodular functions have sub-gradients. Defined at any $Y \subseteq V$.

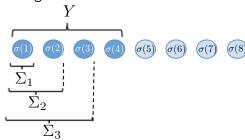
Submodular Subgradients (Fujishige 1984, 2005)

- Like convex functions, submodular functions have sub-gradients. Defined at any $Y \subseteq V$.
- Permutation σ of the ground set.



Submodular Subgradients (Fujishige 1984, 2005)

- Like convex functions, submodular functions have sub-gradients. Defined at any $Y \subseteq V$.
- Permutation σ of the ground set.

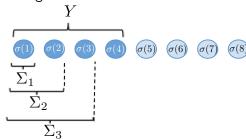


• Corresponding subgradient h_{V}^{σ} is:

$$h_{\mathcal{Y}}^{\sigma}(\sigma(i)) = f(\Sigma_i) - f(\Sigma_{i-1})$$

Submodular Subgradients (Fujishige 1984, 2005)

- Like convex functions, submodular functions have sub-gradients. Defined at any $Y \subseteq V$.
- Permutation σ of the ground set.



• Corresponding subgradient h^{σ}_{V} is:

$$h_{\mathcal{Y}}^{\sigma}(\sigma(i)) = f(\Sigma_i) - f(\Sigma_{i-1})$$

• Modular lower bound: $m_{h_Y}(X) = f(Y) + h_Y(X) - h_Y(Y) \le f(X)$.

Submodular Supergradients (Iyer et al, 2013)

• Define gain of j in context of A: $f(j|A) \triangleq f(A \cup j) - f(A)$

Background

Conclusion

Submodular Supergradients (lyer et al, 2013)

- Define gain of j in context of A: $f(j|A) \triangleq f(A \cup j) f(A)$
- Unlike convex functions, surprisingly, we show that submodular functions also have super-gradients. Defined at any $Y \subseteq V$.

Submodular Minimization

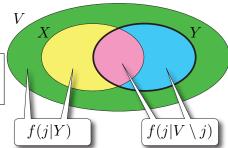
- Define gain of j in context of A: $f(j|A) \triangleq f(A \cup j) f(A)$
- Unlike convex functions, surprisingly, we show that submodular functions also have super-gradients. Defined at any $Y \subseteq V$.
- Three of these supergradients (which we call grow, shrink, and bar) are in fact easy to obtain.

Submodular Supergradients (Iyer et al, 2013)

- Define gain of j in context of A: $f(j|A) \triangleq f(A \cup j) f(A)$
- Unlike convex functions, surprisingly, we show that submodular functions also have super-gradients. Defined at any $Y \subseteq V$.
- Three of these supergradients (which we call grow, shrink, and bar) are in fact easy to obtain.

Grow:

$$\hat{g}_{Y}(j) = \begin{cases} f(j|Y) & \text{for } j \notin Y \\ f(j|V\setminus\{j\}) & \text{for } j \in Y \end{cases}$$

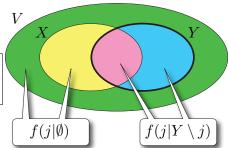


Submodular Supergradients (Iyer et al, 2013)

- Define gain of j in context of A: $f(j|A) \triangleq f(A \cup j) f(A)$
- Unlike convex functions, surprisingly, we show that submodular functions also have super-gradients. Defined at any $Y \subseteq V$.
- Three of these supergradients (which we call grow, shrink, and bar) are in fact easy to obtain.

Shrink:

$$\check{g}_{Y}(j) = \begin{cases} f(j|\emptyset) & \text{for } j \notin Y \\ f(j|Y\setminus\{j\}) & \text{for } j \in Y \end{cases}$$

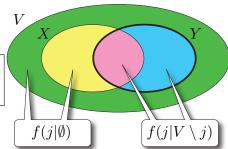


Submodular Supergradients (Iyer et al. 2013)

- Define gain of j in context of A: $f(j|A) \triangleq f(A \cup j) f(A)$
- Unlike convex functions, surprisingly, we show that submodular functions also have super-gradients. Defined at any $Y \subseteq V$.
- Three of these supergradients (which we call grow, shrink, and bar) are in fact easy to obtain.

Bar:

$$ar{g}_{Y}(j) = egin{cases} f(j|\emptyset) & ext{for } j \notin Y \\ f(j|V\setminus\{j\}) & ext{for } j \in Y \end{cases}$$

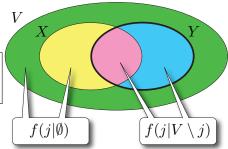


Submodular Supergradients (Iyer et al, 2013)

- Define gain of j in context of A: $f(j|A) \triangleq f(A \cup j) f(A)$
- Unlike convex functions, surprisingly, we show that submodular functions also have super-gradients. Defined at any $Y \subseteq V$.
- Three of these supergradients (which we call grow, shrink, and bar) are in fact easy to obtain.

Bar:

$$ar{g}_{Y}(j) = egin{cases} f(j|\emptyset) & ext{for } j
otin Y \ f(j|V \setminus \{j\}) & ext{for } j \in Y \end{cases}$$



• Modular upper bound: $m^{g_Y}(X) = f(Y) + g_Y(X) - g_Y(Y) \le f(X)$.

Optimization Framework

Algorithm 1 Subgradient ascent [descent] algorithm for submodular maximization [minimization].

1: Start with an arbitrary X^0 .

Optimization Framework

Algorithm 1 Subgradient ascent [descent] algorithm for submodular maximization [minimization].

- 1: Start with an arbitrary X^0 .
- 2: repeat

6: **until** we have converged $(X^{i-1} = X^i)$ or $i \leq T$

Optimization Framework

Algorithm 1 Subgradient ascent [descent] algorithm for submodular maximization [minimization].

- 1: Start with an arbitrary X^0 .
- repeat
- Pick a semigradient $h_{X^t} \left[g_{X^t} \right]$ at X^t .

6: **until** we have converged $(X^{i-1} = X^i)$ or i < T

Optimization Framework

Algorithm 1 Subgradient ascent [descent] algorithm for submodular maximization [minimization].

- 1: Start with an arbitrary X^0 .
- 2: repeat

- 3: Pick a semigradient $h_{X^t} [g_{X^t}]$ at X^t .
- 4: $X^{t+1} \leftarrow \operatorname{argmax}_{X \in \mathcal{C}} m_{h_{X^t}}(X) [X^{t+1} \leftarrow \operatorname{argmin}_{X \in \mathcal{C}} m^{g_{X^t}}(X)]$
- 5: $t \leftarrow t + 1$
- 6: **until** we have converged $(X^{i-1} = X^i)$ or $i \leq T$

Optimization Framework

Algorithm 1 Subgradient ascent [descent] algorithm for submodular maximization [minimization].

- 1: Start with an arbitrary X^0 .
- 2: repeat

Background

- Pick a semigradient $h_{X^t} [g_{X^t}]$ at X^t . 3:
- $X^{t+1} \leftarrow \operatorname{argmax}_{X \in \mathcal{C}} m_{h_{X^t}}(X) \left[X^{t+1} \leftarrow \operatorname{argmin}_{X \in \mathcal{C}} m^{g_{X^t}}(X) \right]$
- 5: $t \leftarrow t + 1$
- 6: **until** we have converged $(X^{i-1} = X^i)$ or $i \leq T$

Lemma: Algorithm 1 monotonically improves the objective function value for submodular maximization and minimization at every iteration.

Unconstrained Minimization

	MMin-IIIa	MMin-IIIb	MMin-I	MMin-II
g	Ē	Ē	ĝ	ğ
<i>g X</i> ⁰	Ø	V	Ø	V
Xc	Α	В	A_{+}	B_{+}

• MMin-IIIa and IIIb are first iterations of MMin-I and MMin-II.

Conclusion

Unconstrained Minimization

	MMin-IIIa	MMin-IIIb	MMin-I	MMin-II
g	Ē	Ē	ĝ	ğ
X^0	Ø	V	Ø	V
Xc	Α	В	A_{+}	B_{+}

- MMin-IIIa and IIIb are first iterations of MMin-I and MMin-II.
- A and B obtainable in O(n) oracle calls.

Conclusion

Unconstrained Minimization

	MMin-IIIa	MMin-IIIb	MMin-I	MMin-II
g	Ē	Ē	ĝ	ğ
X^0	Ø	V	Ø	V
Xc	Α	В	A_{+}	B_{+}

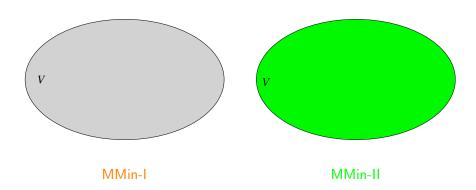
- MMin-IIIa and IIIb are first iterations of MMin-I and MMin-II.
- A and B obtainable in O(n) oracle calls.
- A_+ and B_+ are local minimizers obtainable in $O(n^2)$ calls.

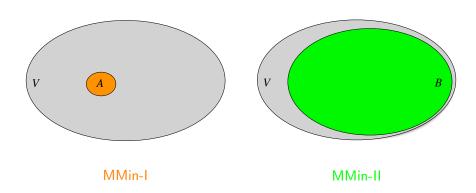
Unconstrained Minimization

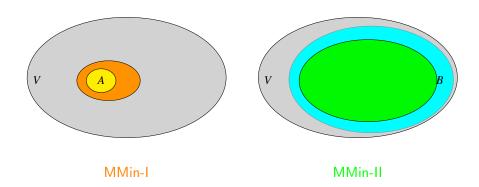
	MMin-IIIa	MMin-IIIb	MMin-I	MMin-II
g	Ē	Ē	ĝ	ğ
X^0	Ø	V	Ø	V
Xc	Α	В	A_{+}	B_{+}

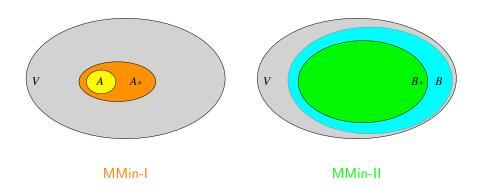
- MMin-IIIa and IIIb are first iterations of MMin-I and MMin-II.
- A and B obtainable in O(n) oracle calls.
- A_+ and B_+ are local minimizers obtainable in $O(n^2)$ calls.

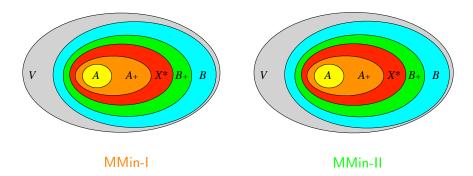
$$A \subseteq A_+ \subseteq X^* \subseteq B_+ \subseteq B$$







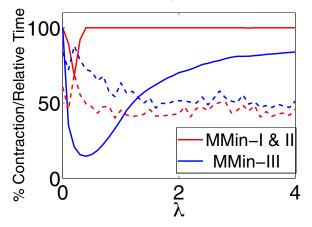




Submodular Maximization

Empirical Results: Submodular Minimization

Test function: concave over modular, $\sqrt{w_1(X)} + \lambda w_2(V \setminus X)$.



Lattice reduction (solid line), and runtime reduction (dotted line).

Note: results for Bipartite Neighborhoods shown in paper.

Curvature of a monotone submodular function:

$$\kappa_f(X) \triangleq 1 - \min_j \frac{f(j|X\setminus j)}{f(j)}.$$
 (2)

Curvature of a monotone submodular function:

$$\kappa_f(X) \triangleq 1 - \min_j \frac{f(j|X\setminus j)}{f(j)}.$$
 (2)

Theorem

The solution \hat{X} returned by MMin-I satisfies:

$$f(\widehat{X}) \leq \frac{|X^*|}{1 + (|X^*| - 1)(1 - \kappa_f(X^*))} f(X^*) \leq \frac{1}{1 - \kappa_f(X^*)} f(X^*)$$

Curvature of a monotone submodular function:

$$\kappa_f(X) \triangleq 1 - \min_j \frac{f(j|X\setminus j)}{f(j)}.$$
 (2)

Theorem

The solution \hat{X} returned by MMin-I satisfies:

$$f(\widehat{X}) \leq \frac{|X^*|}{1 + (|X^*| - 1)(1 - \kappa_f(X^*))} f(X^*) \leq \frac{1}{1 - \kappa_f(X^*)} f(X^*)$$

Lower curvature ⇒ Better guarantees!

Curvature of a monotone submodular function:

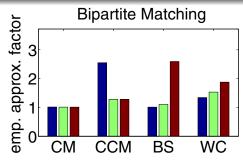
$$\kappa_f(X) \triangleq 1 - \min_j \frac{f(j|X\setminus j)}{f(j)}.$$
 (2)

Theorem

The solution \hat{X} returned by MMin-I satisfies:

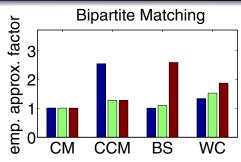
$$f(\widehat{X}) \leq \frac{|X^*|}{1 + (|X^*| - 1)(1 - \kappa_f(X^*))} f(X^*) \leq \frac{1}{1 - \kappa_f(X^*)} f(X^*)$$

- Lower curvature ⇒ Better guarantees!
- Improve the previous results when $\kappa_f < 1$.

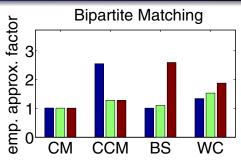


• We compare MMin-I to two other algorithms.

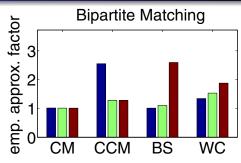
Empirical Results: Constrained Submodular Minimization



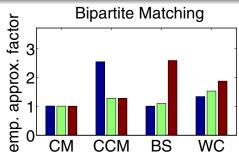
- We compare MMin-I to two other algorithms.
 - **1** Simple modular upper bound (MU) (i.e $\sum_{i \in X} f(j)$).



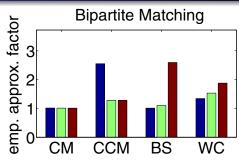
- We compare MMin-I to two other algorithms.
 - **1** Simple modular upper bound (MU) (i.e $\sum_{i \in X} f(j)$).
 - More complicated Ellipsoidal Approximation (EA) Algorithm.



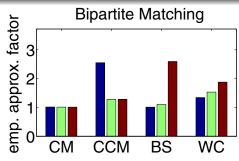
- We compare MMin-I to two other algorithms.
 - **1** Simple modular upper bound (MU) (i.e $\sum_{i \in X} f(j)$).
 - More complicated Ellipsoidal Approximation (EA) Algorithm.
- Performance of MMin-I:



- We compare MMin-I to two other algorithms.
 - **1** Simple modular upper bound (MU) (i.e $\sum_{i \in X} f(j)$).
 - More complicated Ellipsoidal Approximation (EA) Algorithm.
- Performance of MMin-I:
 - Much better than MU.



- We compare MMin-I to two other algorithms.
 - **1** Simple modular upper bound (MU) (i.e $\sum_{i \in X} f(j)$).
 - More complicated Ellipsoidal Approximation (EA) Algorithm.
- Performance of MMin-I:
 - Much better than MU.
 - Comparable to EA.



- We compare MMin-I to two other algorithms.
 - **1** Simple modular upper bound (MU) (i.e $\sum_{i \in X} f(j)$).
 - More complicated Ellipsoidal Approximation (EA) Algorithm.
- Performance of MMin-I:
 - Much better than MU.
 - Comparable to EA.
- Submodular spanning tree & shortest path results given in paper.

Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion

Unconstrained Maximization

Our framework subsumes a number of state-of-the-art algorithms. For example, each of the below corresponds to subgradient ascent:

Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion

Unconstrained Maximization

Our framework subsumes a number of state-of-the-art algorithms. For example, each of the below corresponds to subgradient ascent:

• Random Subgradient (RA/ RP): Random subgradients (permutations) at every iteration.

Unconstrained Maximization

Our framework subsumes a number of state-of-the-art algorithms. For example, each of the below corresponds to subgradient ascent:

 Random Subgradient (RA/ RP): Random subgradients (permutations) at every iteration.

1/4 Approximation in Expectation!

Background

Conclusion

Our framework subsumes a number of state-of-the-art algorithms. For example, each of the below corresponds to subgradient ascent:

 Random Subgradient (RA/ RP): Random subgradients (permutations) at every iteration.

1/4 Approximation in Expectation!

 Randomized / Deterministic local search (RLS/DLS): Local search based techniques naturally define subgradients.

Unconstrained Maximization

Our framework subsumes a number of state-of-the-art algorithms. For example, each of the below corresponds to subgradient ascent:

 Random Subgradient (RA/ RP): Random subgradients (permutations) at every iteration.

1/4 Approximation in Expectation!

 Randomized / Deterministic local search (RLS/DLS): Local search based techniques naturally define subgradients.

1/3 Approximation (FMV'07)!

Our framework subsumes a number of state-of-the-art algorithms. For

example, each of the below corresponds to subgradient ascent:

 Random Subgradient (RA/ RP): Random subgradients (permutations) at every iteration.

1/4 Approximation in Expectation!

 Randomized / Deterministic local search (RLS/DLS): Local search based techniques naturally define subgradients.

1/3 Approximation (FMV'07)!

• **Bi-directional Greedy (BG):** Bi-directional Greedy Subgradient (Buchbinder et al, 2012).

Unconstrained Maximization

Our framework subsumes a number of state-of-the-art algorithms. For example, each of the below corresponds to subgradient ascent:

 Random Subgradient (RA/ RP): Random subgradients (permutations) at every iteration.

1/4 Approximation in Expectation!

 Randomized / Deterministic local search (RLS/DLS): Local search based techniques naturally define subgradients.

1/3 Approximation (FMV'07)!

• **Bi-directional Greedy (BG):** Bi-directional Greedy Subgradient (Buchbinder et al, 2012).

1/3 Approximation (BFNS'12)!

Unconstrained Maximization

Our framework subsumes a number of state-of-the-art algorithms. For example, each of the below corresponds to subgradient ascent:

 Random Subgradient (RA/ RP): Random subgradients (permutations) at every iteration.

1/4 Approximation in Expectation!

 Randomized / Deterministic local search (RLS/DLS): Local search based techniques naturally define subgradients.

1/3 Approximation (FMV'07)!

• **Bi-directional Greedy (BG):** Bi-directional Greedy Subgradient (Buchbinder et al, 2012).

1/3 Approximation (BFNS'12)!

Randomized Greedy (RG): Randomized variant of BG.

Unconstrained Maximization

Our framework subsumes a number of state-of-the-art algorithms. For example, each of the below corresponds to subgradient ascent:

• Random Subgradient (RA/ RP): Random subgradients (permutations) at every iteration.

1/4 Approximation in Expectation!

 Randomized / Deterministic local search (RLS/DLS): Local search based techniques naturally define subgradients.

1/3 Approximation (FMV'07)!

• Bi-directional Greedy (BG): Bi-directional Greedy Subgradient (Buchbinder et al, 2012).

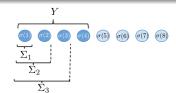
1/3 Approximation (BFNS'12)!

Randomized Greedy (RG): Randomized variant of BG.

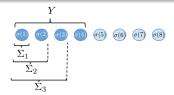
1/2 Approximation in Expectation! (BFNS'12)!

Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion

Constrained Maximization and Extensions



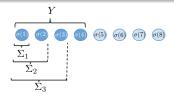
Constrained Maximization and Extensions



• Greedy subgradient for monotone submodular functions:

$$\sigma^{g}(i) \in \underset{j \notin \Sigma_{i-1}^{\sigma^{g}} \text{ and } \Sigma_{i-1}^{\sigma^{g}} \cup \{j\} \in \mathcal{C}}{\operatorname{argmax}} f(j|\Sigma_{i-1}^{\sigma^{g}}). \tag{3}$$

Constrained Maximization and Extensions

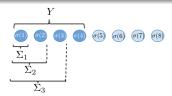


Greedy subgradient for monotone submodular functions:

$$\sigma^{g}(i) \in \underset{j \notin \Sigma_{i-1}^{\sigma^{g}} \text{ and } \Sigma_{i-1}^{\sigma^{g}} \cup \{j\} \in \mathcal{C}}{\operatorname{argmax}} f(j|\Sigma_{i-1}^{\sigma^{g}}). \tag{3}$$

• Algorithm 1 using the subgradient h^{σ^g} exactly corresponds to the greedy algorithm.

Constrained Maximization and Extensions

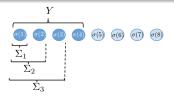


Greedy subgradient for monotone submodular functions:

$$\sigma^{g}(i) \in \underset{j \notin \Sigma_{i-1}^{\sigma^{g}} \text{ and } \Sigma_{i-1}^{\sigma^{g}} \cup \{j\} \in \mathcal{C}}{\operatorname{argmax}} f(j|\Sigma_{i-1}^{\sigma^{g}}). \tag{3}$$

• Algorithm 1 using the subgradient h^{σ^g} exactly corresponds to the greedy algorithm. $\Rightarrow 1 - 1/e$ Approximation (NWF'78)!

Constrained Maximization and Extensions



Greedy subgradient for monotone submodular functions:

$$\sigma^{g}(i) \in \underset{j \notin \Sigma_{i-1}^{\sigma^{g}} \text{ and } \Sigma_{i-1}^{\sigma^{g}} \cup \{j\} \in \mathcal{C}}{\operatorname{argmax}} f(j|\Sigma_{i-1}^{\sigma^{g}}). \tag{3}$$

• Algorithm 1 using the subgradient h^{σ^g} exactly corresponds to the greedy algorithm. $\Rightarrow |1 - 1/e|$ Approximation (NWF'78)!

Generality of Algorithm MMax: For every α -approximation algorithm, there exists a schedule of subgradients obtainable in poly-time, such that Algorithm 1 (MMax) achieves an approximation factor of at least α .

Summary

Background

- Submodular functions in machine learning.
- A generic sub-gradient ascent [super-gradient descent] framework for submodular maximization [minimization].
- The first unifying framework for general submodular optimization.
- New theoretical results for unconstrained and constrained submodular minimization.
- A novel view as a framework for submodular maximization and subsuming number of existing algorithms.
- Empirical experimental validation.

Conclusion

Thank You

Thank You! Questions please.