Overview

- Introduce the notion of curvature, to provide better connections between theory and practice.
- Study the role of curvature in:

Approximating submodular functions everywhere
Learning Submodular functions
Constrained Minimization of submodular functions.

- Provide improved curvature-dependent worst case approximation guarantees and matching hardness results

Curvature of a Submodular function

- Define three variants of curvature of a monotone submodular function as:
$\kappa_{f}=1-\min _{j \in V} \frac{f(j \mid V \backslash j)}{f(j)}$,
$\kappa_{f}(S)=1-\min _{j \in S} \frac{f(j \mid S \backslash j)}{f(j)}$,
$\hat{\kappa}_{f}(S)=1-\frac{\sum_{j \in S} f(j \mid S \backslash j)}{\sum_{j \in S} f(j)}$
- Proposition: $\hat{\kappa}_{f}(S) \leq \kappa_{f}(S) \leq \kappa_{f}$.
- Captures the linearity of a submodular function.
- A more gradual characterization of the hardness of various problems.
- Investigated for submodular maximization
 (Conforti \& Cornuejols, 1984).

Main Ideas

- Curve-Normalized form: Given a monotone submodular function, the curve-normalized version of f is:

$$
\begin{equation*}
f^{\kappa}(X)=\frac{f(X)-\left(1-\kappa_{f}\right) \sum_{j \in X} f(j)}{\kappa_{f}} \tag{1}
\end{equation*}
$$

- Idea: Decompose f as $f(X)=f_{\text {difficult }}(X)+m_{\text {easy }}(X)$ where $f_{\text {difficult }}(X)=\kappa_{f} f^{\kappa}(X)$ and $m_{\text {easy }}(X)=\left(1-\kappa_{f}\right) \sum_{j \in X} f(j)$.
- Lemma: If f is monotone submodular, then $f^{\kappa}(X)$ is also monotone
non-negative submodular function. Furthermore, $f^{\kappa}(X) \leq \sum_{j \in X} f(j)$.
- Lower bounds: Also show curvature-dependent lower bounds.

Approximating Submodular functions Everywhere

Problem: Given a submodular function f in form of a value oracle, find an approximation \hat{f} (within polynomial time and space), such that $\hat{f}(X) \leq f(X) \leq \alpha_{1}(n) \hat{f}(X), \forall X \subseteq V$ for a polynomial $\alpha_{1}(n)$.

- We provide a blackbox technique to transform bounds into curvature dependent ones.
- Main technique: Approximate the curve-normalized version f^{κ} as \hat{f}^{κ}, such that $\hat{f}^{\kappa}(X) \leq f^{\kappa}(X) \leq \alpha(n) \hat{f}^{\kappa}(X)$.

Theorem: The function $\hat{f}(X) \triangleq \kappa_{f} \hat{f^{\kappa}}(X)+\left(1-\kappa_{f}\right) \sum_{j \in X} f(j)$ satisfies

$$
\begin{equation*}
\hat{f}(X) \leq f(X) \leq \frac{\alpha(n)}{1+(\alpha(n)-1)\left(1-\kappa_{f}\right)} \hat{f}(X) \leq \frac{\hat{f}(X)}{1-\kappa_{f}} \tag{2}
\end{equation*}
$$

- Ellipsoidal Approximation:

- The Ellipsoidal Approximation algorithm of Goemans et al, provides a function of the form $\sqrt{w^{f}(X)}$ with an approximation factor of $\left.\alpha_{1}(n)=O(\sqrt{n} \log n)\right)$.
- Corollary: There exists a function of the form,
$f^{e a}(X)=\kappa_{f} \sqrt{w^{f \kappa}(X)}+\left(1-\kappa_{f}\right) \sum_{j \in X} f(j)$ such that,

$$
\begin{equation*}
f^{e a}(X) \leq f(X) \leq O\left(\frac{\sqrt{n} \log n}{1+(\sqrt{n} \log n-1)\left(1-\kappa_{f}\right)}\right) f^{e a}(X) \tag{3}
\end{equation*}
$$

- Lower bound: Given a submodular function f with curvature κ_{f}, there does not exist any polynomial-time algorithm that approximates f within a factor of $\frac{n^{1 / 2-\epsilon}}{1+\left(n^{1 / 2-\epsilon-1)\left(1-k_{f}\right)}\right.}$, for any $\epsilon>0$.

- Modular Upper Bound:

- A simplest approximation (and upper bound) is $\hat{f}^{m}(X)=\sum_{j \in X} f(j)$.
- Lemma: Given a monotone submodular function f, it holds that,

$$
\begin{equation*}
f(X) \leq \hat{f}^{m}(X)=\sum_{j \in X} f(j) \leq \frac{|X|}{1+(|X|-1)\left(1-\hat{\kappa}_{f}(X)\right)} f(X) \tag{4}
\end{equation*}
$$

- This bound is tight for the class of modular approximations.
- Corollary: The class of functions, $f(X)=\sum_{i=1}^{k} \lambda_{i}\left[w_{i}(X)\right]^{a}, \lambda_{i} \geq 0$, satisfies $f(X) \leq \sum_{j \in X} f(j) \leq|X|^{1-a} f(X)$.

Learning Submodular Functions

Problem: Given i.i.d training samples $\left\{\left(X_{i}, f\left(X_{i}\right)\right\}_{i=1}^{m}\right.$ from a distribution \mathcal{D}, learn an approximation $\hat{f}(X)$ that is, with probability $1-\delta$, within a multiplicative factor of $\alpha_{2}(n)$ from f.

- Balcan \& Harvey propose an algorithm which PMAC learns any submodular function upto a factor of $\sqrt{n+1}$.
- We improve this bound to a curvature dependent one.

Lemma: Let f be a monotone submodular function for which we know an upper bound on its curvature κ_{f} and the singleton weights $f(j)$ for all $j \in V$. There is an poly-time algorithm which PMAC-learns f within a factor of $\frac{\sqrt{n+1}}{1+(\sqrt{n+1}-1)\left(1-\kappa_{f}\right)}$.

- We also provide an algorithm which does not need the singleton weights.

Lemma: If f is a monotone submodular function with known curvature (or a known upper bound) $\hat{\kappa}_{f}(X), \forall X \subseteq V$, then for every $\epsilon, \delta>0$ there is an algorithm which PMAC learns $f(X)$ within a factor of $1+\frac{|X|}{1+(|X|-1)\left(1-\hat{\kappa}_{f}(X)\right)}$.

- Corollary: The class of functions $f(X)=\sum_{i=1}^{k} \lambda_{i}\left[w_{i}(X)\right]^{a}, \lambda_{i} \geq 0$, can be learnt to a factor of $|X|^{1-a}$.
- Lower bound: Given a class of submodular functions with curvature κ_{f}, there does not exist a polynomial-time algorithm that is guaranteed to PMAC-learn f within a factor of $\frac{n^{1 / 3-\epsilon^{\prime}}}{1+\left(n^{\left.1 / 3-\epsilon^{\prime}-1\right)\left(1-\kappa_{f}\right)}\right.}$, for any $\epsilon^{\prime}>0$.

Constrained Submodular Minimization

Problem: Minimize a submodular function f over a family \mathcal{C} of feasible sets, i.e., $\min _{X \in \mathcal{C}} f(X) . \mathcal{C}$ could be constraints of the form cardinality (knapsack) constraints, cuts, paths, matchings, trees etc.

- Main framework is to choose a surrogate function \hat{f}, and optimize it instead of f.

- Ellipsoidal Approximation based (EA):

- Use the curvature based Ellipsoidal Approximation as the surrogate function.
- Lemma: For a submodular function with curvature $\kappa_{f}<1$, algorithm EA will return a solution \widehat{X} that satisfies

$$
f(\widehat{X}) \leq O\left(\frac{\sqrt{n} \log n}{\left.(\sqrt{n} \log n-1)\left(1-\kappa_{f}\right)+1\right)}\right) f\left(X^{*}\right)
$$

- Modular Upper bound based:

- Use the simple modular upper bound as a surrogate.
- Lemma: Let $\widehat{X} \in \mathcal{C}$ be the solution for minimizing $\sum_{j \in X} f(j)$ over \mathcal{C}. Then

$$
\begin{equation*}
f(\hat{X}) \leq \frac{\left|X^{*}\right|}{1+\left(\left|X^{*}\right|-1\right)\left(1-\kappa_{f}\left(X^{*}\right)\right)} f\left(X^{*}\right) \tag{5}
\end{equation*}
$$

- Corollary: The class of functions, $f(X)=\sum_{i=1}^{k} \lambda_{i}\left[w_{i}(X)\right]^{a}, \lambda_{i} \geq 0$, can be minimized upto a factor of $\left|X^{*}\right|^{1-a}$.

Constraint	MUB	EA	Curvature-Ind	Lower bound
Card. LB	$(k-1)($	$\frac{\sqrt{n} \log n}{\sqrt{n} \log n-1)(1}$	$\theta\left(n^{\prime}\right.$	$\tilde{\Omega}\left(\frac{\sqrt{n}}{1+(\sqrt{n}-1)\left(1-\kappa_{f}\right)}\right.$
Spanning Tree	$\frac{n}{1+(n-1)(}$	$O\left(\frac{\sqrt{m} \log m}{1+(\sqrt{m} \log m-1)(1)}\right.$	$\theta(n)$	$\frac{n}{1)\left(1-k_{t}\right)}$
Matching		$O\left(\frac{\sqrt{m} \log m}{1+(\sqrt{m} \log m-1)\left(1-k_{f}\right)}\right)$	$\theta(n)$	$\tilde{\Omega}\left(\frac{n}{1-1)(1-n)}\right)$
s-t	$\frac{1}{1+(n-1)}$	$O\left(\frac{\sqrt{ } \log m}{1+(\sqrt{\text { m }} \log m-1)\left(1-k_{f}\right)}\right)$	(n)	${ }^{\text {n }}$ - ${ }^{\text {2/3)}}$
s-t cut	$\frac{m}{1+(m-1)(1-}$	$O\left(\frac{\sqrt{m} \log m}{1+(\log m \sqrt{ } m-1)\left(1-k_{f}\right)}\right.$	$\theta(\sqrt{n})$	$\tilde{\Omega}\left(\frac{\sqrt{n}}{1+(\sqrt{n}-1)(1)}\right.$

Table : Summary of our results for constrained minimization.

- Effect of Curvature: Polynomial change in the bounds!

- Experiments:

- Define a function $f_{R}(X)=\kappa \min \{|X \cap \bar{R}|+\beta,|X|, \alpha\}+(1-\kappa)|X|$.
- Choose $\alpha=n^{1 / 2+\epsilon}$ and $\beta=n^{2 \epsilon}$, and $\mathcal{C}=\{X:|X| \geq \alpha\}$.

Acknowledgements

Based upon work supported by National Science Foundation Grant No. IIS-1162606, and by a Google, a Microsoft, and an Intel research award. This was also funded in part by Office of Naval Research under grant no. N00014-11-1-0688, NSF CISE Expeditions award CCF-1139158, DARPA XData Award FA8750-12-2-0331, and gifts from Amazon Web Services, Google, SAP, Blue Goji, Cisco, Clearstory Data, Cloudera, Ericsson, Facebook, General Electric, Hortonworks, Intel, Microsoft, NetApp, Oracle, Samsung, Splunk, VMware and Yahoo!

