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Overview

I Introduce the notion of curvature, to provide better connections between theory
and practice.

I Study the role of curvature in:
Approximating submodular functions everywhere
Learning Submodular functions
Constrained Minimization of submodular functions.

I Provide improved curvature-dependent worst case approximation guarantees
and matching hardness results

Curvature of a Submodular function

I Define three variants of curvature of a monotone submodular function as:

κf = 1−min
j∈V

f (j | V \ j)
f (j)

, κf (S) = 1−min
j∈S

f (j |S\j)
f (j)

, κ̂f (S) = 1−
∑

j∈S f (j |S\j)∑
j∈S f (j)

I Proposition: κ̂f (S) ≤ κf (S) ≤ κf .
I Captures the linearity of a submodular function.
I A more gradual characterization of the hardness of

various problems.
I Investigated for submodular maximization

(Conforti & Cornuejols, 1984).



cardinality   |S|

F(S)

Main Ideas

I Curve-Normalized form: Given a monotone submodular function, the
curve-normalized version of f is:

f κ(X ) =
f (X )− (1− κf )

∑
j∈X f (j)

κf
(1)

I Idea: Decompose f as f (X ) = fdifficult(X ) + measy(X ) where fdifficult(X ) = κf f κ(X )
and measy(X ) = (1− κf )

∑
j∈X f (j).

I Lemma: If f is monotone submodular, then f κ(X ) is also monotone
non-negative submodular function. Furthermore, f κ(X ) ≤

∑
j∈X f (j).

I Lower bounds: Also show curvature-dependent lower bounds.

Approximating Submodular functions Everywhere

Problem: Given a submodular function f in form of a value oracle,
find an approximation f̂ (within polynomial time and space), such that
f̂ (X ) ≤ f (X ) ≤ α1(n)f̂ (X ),∀X ⊆ V for a polynomial α1(n).

I We provide a blackbox technique to transform bounds into curvature dependent
ones.

I Main technique: Approximate the curve-normalized version f κ as f̂ κ, such that
f̂ κ(X ) ≤ f κ(X ) ≤ α(n)f̂ κ(X ).

Theorem: The function f̂ (X ) , κf f̂ κ(X ) + (1− κf )
∑

j∈X f (j) satisfies

f̂ (X ) ≤ f (X ) ≤ α(n)

1 + (α(n)− 1)(1− κf )
f̂ (X ) ≤ f̂ (X )

1− κf
. (2)

I Ellipsoidal Approximation:
I The Ellipsoidal Approximation algorithm of Goemans et al, provides a function
of the form

√
w f (X ) with an approximation factor of α1(n) = O(

√
n log n)).

I Corollary: There exists a function of the form,
f ea(X ) = κf

√
w f κ(X ) + (1− κf )

∑
j∈X f (j) such that,

f ea(X ) ≤ f (X ) ≤ O

( √
n log n

1 + (
√

n log n − 1)(1− κf )

)
f ea(X ). (3)

I Lower bound: Given a submodular function f with curvature κf , there does not
exist any polynomial-time algorithm that approximates f within a factor of

n1/2−ε

1+(n1/2−ε−1)(1−κf )
, for any ε > 0.

I Modular Upper Bound:
I A simplest approximation (and upper bound) is f̂ m(X ) =

∑
j∈X f (j).

I Lemma: Given a monotone submodular function f , it holds that,

f (X ) ≤ f̂ m(X ) =
∑
j∈X

f (j) ≤ |X |
1 + (|X | − 1)(1− κ̂f (X ))

f (X ) (4)

I This bound is tight for the class of modular approximations.
I Corollary: The class of functions, f (X ) =

∑k
i=1 λi[wi(X )]a, λi ≥ 0, satisfies

f (X ) ≤
∑

j∈X f (j) ≤ |X |1−af (X ).

Learning Submodular Functions

Problem: Given i.i.d training samples {(Xi, f (Xi)}m
i=1 from a distribution D, learn

an approximation f̂ (X ) that is, with probability 1− δ, within a multiplicative factor of
α2(n) from f .

I Balcan & Harvey propose an algorithm which PMAC learns any submodular
function upto a factor of

√
n + 1.

I We improve this bound to a curvature dependent one.

Lemma: Let f be a monotone submodular function for which we know an upper
bound on its curvature κf and the singleton weights f (j) for all j ∈ V . There is
an poly-time algorithm which PMAC-learns f within a factor of

√
n+1

1+(
√

n+1−1)(1−κf )
.

I We also provide an algorithm which does not need the singleton weights.

Lemma: If f is a monotone submodular function with known curvature (or a
known upper bound) κ̂f (X ),∀X ⊆ V , then for every ε, δ > 0 there is an algorithm
which PMAC learns f (X ) within a factor of 1 + |X |

1+(|X |−1)(1−κ̂f (X )).

I Corollary: The class of functions f (X ) =
∑k

i=1 λi[wi(X )]a, λi ≥ 0, can be learnt to
a factor of |X |1−a.

I Lower bound: Given a class of submodular functions with curvature κf , there
does not exist a polynomial-time algorithm that is guaranteed to PMAC-learn f
within a factor of n1/3−ε′

1+(n1/3−ε′−1)(1−κf )
, for any ε′ > 0.

Constrained Submodular Minimization

Problem: Minimize a submodular function f over a family C of feasible sets, i.e.,
minX∈C f (X ). C could be constraints of the form cardinality (knapsack) constraints,
cuts, paths, matchings, trees etc.

I Main framework is to choose a surrogate function f̂ , and optimize it instead of f .
I Ellipsoidal Approximation based (EA):

I Use the curvature based Ellipsoidal Approximation as the surrogate function.
I Lemma: For a submodular function with curvature κf < 1, algorithm EA will
return a solution X̂ that satisfies

f (X̂ ) ≤ O

( √
n log n

(
√

n log n − 1)(1− κf ) + 1)

)
f (X ∗).

I Modular Upper bound based:
I Use the simple modular upper bound as a surrogate.
I Lemma: Let X̂ ∈ C be the solution for minimizing

∑
j∈X f (j) over C. Then

f (X̂ ) ≤ |X ∗|
1 + (|X ∗| − 1)(1− κf (X ∗))

f (X ∗). (5)

I Corollary: The class of functions, f (X ) =
∑k

i=1 λi[wi(X )]a, λi ≥ 0, can be
minimized upto a factor of |X ∗|1−a.

Constraint MUB EA Curvature-Ind. Lower bound
Card. LB k

1+(k−1)(1−κf )
O(

√
n log n

1+(
√

n log n−1)(1−κf )
) θ(n1/2) Ω̃(

√
n

1+(
√

n−1)(1−κf )
)

Spanning Tree n
1+(n−1)(1−κf )

O(
√

m log m
1+(
√

m log m−1)(1−κf )
) θ(n) Ω̃( n

1+(n−1)(1−κf )
)

Matchings n
2+(n−2)(1−κf )

O(
√

m log m
1+(
√

m log m−1)(1−κf )
) θ(n) Ω̃( n

1+(n−1)(1−κf )
)

s-t path n
1+(n−1)(1−κf )

O(
√

m log m
1+(
√

m log m−1)(1−κf )
) θ(n2/3) Ω̃( n2/3

1+(n2/3−1)(1−κf )
)

s-t cut m
1+(m−1)(1−κf )

O(
√

m log m
1+(log m

√
m−1)(1−κf )

) θ(
√

n) Ω̃(
√

n
1+(
√

n−1)(1−κf )
)

Table : Summary of our results for constrained minimization.

I Effect of Curvature: Polynomial change in the bounds!
I Experiments:

I Define a function fR(X ) = κmin{|X ∩ R̄| + β, |X |, α} + (1− κ)|X |.
I Choose α = n1/2+ε and β = n2ε, and C = {X : |X | ≥ α}.
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