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Submodular Functions

A function f : 2V → R is submodular if for all A,B ⊆ V ,
f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B).

Coverage of intersection of elements is less then common coverage.

+f (A) + f (B) f (A ∪ B)

= f (Ar ) +f (C ) + f (Br )

≥ f (A ∩ B)

= f (Ar ) + 2f (C ) + f (Br )

Equivalently, diminishing returns: Let A ⊆ B ⊆ V \ {j} then f is
submodular iff

f (v |A) , f (A + v)− f (A) ≥ f (B + v)− f (B) , f (v |B) (1)

I.e., conditioning reduces valuation (like entropy).
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Optimizing The Difference between Two Submodular
Functions

In this paper, we address the following problem. Given two
submodular functions f and g , solve the optimization problem:

min
X⊆V

[f (X )− g(X )] ≡ min
X⊆V

[v(X )] (2)

with v : 2V → R, v = f − g .

A function r is said to be supermodular if −r is submodular.
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Applications

Sensor placement with submodular costs. I.e., let V be a set of
possible sensor locations, f (A) = I (XA; XV \A) measures the quality
of a subset A of placed sensors, and c(A) the submodular cost. We
have minA f (A)− λc(A).

Discriminatively structured graphical models, EAR measure
I (XA; XV \A)− I (XA; XV \A|C ), and synergy in neuroscience.

Feature selection: a problem of maximizing
I (XA; C )− λc(A) = H(XA)− [H(XA|C ) + λc(A)], the difference
between two submodular functions, where H is the entropy and c is
a feature cost function.

Graphical Model Inference. Finding x that maximizes
p(x) ∝ exp(−v(x)) where x ∈ {0, 1}n and v is a pseudo-Boolean
function. When v is non-submodular, it can be represented as a
difference between submodular functions.
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Heuristics for General Set Function Optimization

Lemma (Narisimham & Bilmes, 2005)

Given any set function v, it can be expressed as
v(X ) = f (X )− g(X ),∀X ⊆ V for some submodular functions f and g.

We give a new proof that depends on computing
αv = minX⊂Y⊆V \j v(j |X )− v(j |Y ) which can be intractable for
general v .

However, we show that for those functions where αv can be
bounded efficiently, f and g can be computed efficiently.

Lemma

For a given set function v, if αv or a lower bound can be found in
polynomial time, a corresponding decomposition f and g can also be
found in polynomial time.
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Convex/Concave and Semigradients

A convex function φ has a subgradient at any in-domain point y ,
namely there exists hy such that

φ(x)− φ(y) ≥ 〈hy , x − y〉, ∀x . (3)

A concave ψ has a supergradient at any in-domain point y , namely
there exists gy such that

ψ(x)− ψ(y) ≤ 〈gy , x − y〉, ∀x . (4)

If a function has both a sub- and super-gradient at a point, then the
function must be affine.
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Submodular Subgradients

For submodular function f , the subdifferential can be defined as:

∂f (X ) = {x ∈ RV : ∀Y ⊆ V , x(Y )− x(X ) ≤ f (Y )− f (X )} (5)

Extreme points of the sub-differential are easily computable via the
greedy algorithm:

Theorem (Fujishige 2005, Theorem 6.11)

A point y is an extreme point
of ∂f (Y ), iff there exists a chain ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn with Y = Sj

for some j, such that y(Si \ Si−1) = y(Si )− y(Si−1) = f (Si )− f (Si−1).
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The Submodular Subgradients (Fujishige 2005)

Let σ be a permutation of V and define Sσi = {σ(1), σ(2), . . . , σ(i)}
as σ’s chain containing Y , meaning Sσ|Y | = Y (we say that σ’s chain

contains Y ).

Then we can define a subgradient hf
Y corresponding to f as:

hf
Y ,σ(σ(i)) =

{
f (Sσ1 ) if i = 1

f (Sσi )− f (Sσi−1) otherwise
.

We get a tight modular lower bound of f as follows:

hf
Y ,σ(X ) ,

∑
x∈X

hf
Y ,σ(x) ≤ f (X ),∀X ⊆ V .

Note, hf
Y ,σ(Y ) = f (Y ).
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Submodular/Supermodular Procedure

From Narisimham&Bilmes 2005.

Algorithm 1 The submodular-supermodular (SubSup) procedure

1: X 0 = ∅ ; t ← 0 ;
2: while not converged (i.e., (X t+1 6= X t)) do
3: Randomly choose a permutation σt whose chain contains the set

X t .
4: X t+1 := argminX f (X )− hg

X t ,σt (X )
5: t ← t + 1
6: end while

Lemma

Algorithm 1 is guaranteed to decrease the objective function at every
iteration. Further, the algorithm is guaranteed to converge to a local
minima by checking at most O(n) permutations at every iteration.
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The Submodular Supergradients

Can a submodular function also have a supergradient? We saw that
in continuous case, simultaneous sub/super gradients meant linear.

(Nemhauser, Wolsey, & Fisher 1978) established the following iff
conditions for submodularity (if either hold, f is submodular):

f (Y ) ≤ f (X )−
∑

j∈X\Y

f (j |X\j) +
∑

j∈Y \X

f (j |X ∩ Y ),

f (Y ) ≤ f (X )−
∑

j∈X\Y

f (j |(X∪Y )\j) +
∑

j∈Y \X

f (j |X )

Note that f (A|B) , f (A ∪ B)− f (B) is the gain of adding A in the
context of B.
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Submodular and Supergradients

Using submodularity further, these can be relaxed to produce two
tight modular upper bounds (Jegelka & Bilmes, 2011):

f (Y ) ≤ mf
X ,1(Y ) , f (X )−

∑
j∈X\Y

f (j |X\j) +
∑

j∈Y \X

f (j |∅),

f (Y ) ≤ mf
X ,2(Y ) , f (X )−

∑
j∈X\Y

f (j |V \j) +
∑

j∈Y \X

f (j |X ).

Hence, this yields two tight (at set X ) modular upper bounds
mf

X ,1,m
f
X ,2 for any submodular function f .
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Supermodular-Submodular (SupSub) Procedure

Algorithm 2 The supermodular-submodular (SupSub) procedure

1: X 0 = ∅ ; t ← 0 ;
2: while not converged (i.e., (X t+1 6= X t)) do
3: X t+1 := argminX mf

X t (X )− g(X )
4: t ← t + 1
5: end while

Theorem

The supermodular-submodular procedure (Algorithm 2)
monotonically reduces the objective value at every iteration. Moreover,
assuming a submodular maximization procedure in line 3 that reaches
a local maxima of mf

X t (X )− g(X ), then if Algorithm 2 does not improve
under both modular upper bounds then it reaches a local optima of v .
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Supermodular-Submodular (SupSub) Procedure

Each iteration requires submodular maximization, while this is
NP-complete, it is easy to well approximate.

Very recently, a fast randomized linear-time 1/2-approximation
algorithm for submodular max was developed (FOCS 2012, “A Tight
Linear Time (1/2)-Approximation for Unconstrained Submodular
Maximization”, Buchbinder, Feldman, Naor and Schwartz).

The algorithm is extremely simple, and is essentially a randomized
bi-directional greedy algorithm (very few iterations needed in
practice).
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Modular-Modular Procedure

Algorithm 3 Modular-Modular (ModMod) procedure

1: X 0 = ∅; t ← 0 ;
2: while not converged (i.e., (X t+1 6= X t)) do
3: Choose a permutation σt whose chain contains the set X t .
4: X t+1 := argminX mf

X t (X )− hg
X t ,σt (X )

5: t ← t + 1
6: end while

Theorem

Algorithm 3 monotonically decreases the function value at every iteration.
If the function value does not increase on checking O(n) different
permutations with different elements at adjacent positions and with both
modular upper bounds, then we have reached a local minima of v .
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Modular-Modular Procedure

Each iteration is very fast since only modular min.

If v >= 0, then also applies to combinatorial constraints (trees,
paths, matchings, cuts, etc.) since each iteration becomes standard
combinatorial algorithm.

In SubSup and ModMod the choice of the permutations is
important since there are a combinatorial number of them (an
problem left open from 2005).

In the paper, we provide some heuristics which work well in practice.
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A P 6= NP Hardness Result

Given submodular functions f and g , the problem
minX [f (X )− g(X )] is inapproximable.

Theorem

Unless P = NP, there cannot exist any polynomial time approximation
algorithm for minX v(X ) where v(X ) = [f (X )− g(X )] is a positive set
function and f and g are given submodular functions. In particular, let n
be the size of the problem instance, and α(n) > 0 be any positive
polynomial time computable function of n. If there exists a
polynomial-time algorithm which is guaranteed to find a set
X ′ : f (X ′)− g(X ′) < α(n)OPT, where OPT=minX v(X ),
then P = NP.
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Information Theoretic Hardness

We also have an information theoretic hardness result (i.e., one that
is independent of the P = NP question).

Theorem

For any 0 ≤ ε < 1, there cannot exist any deterministic (or possibly
randomized) algorithm for minX [f (X )− g(X )] (where f and g are given
submodular functions), that always finds a solution which is at most 1

ε

times the optimal, in fewer than eε
2n/8 queries.
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Poly-time lower bounds on the optima

On the more positive side, we do have lower bounds:

Theorem

Given submodular functions f and g, define
f ′(X ) , f (X )−∑

j∈X f (j |V \j), g ′(X ) , g(X )−∑
j∈X g(j |V \j) and

k(X ) =
∑

j∈X v(j |V \j). Then we have the following bounds:

min
X

v(X ) ≥ min
X

f ′(X ) + k(X )− g ′(V )

min
X

v(X ) ≥ f ′(∅)− g ′(V ) +
∑
j∈V

min(k(j), 0)
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Computational bounds

This can be used to prove:

Theorem

The ε-approximate versions of algorithms 1, 2 and 3 have a worst case
complexity of O( log(|M|/|m|)ε T ), where
M = f ′(∅) +

∑
j∈V min(v(j |V \j), 0)− g ′(V ), m = mink v(k) and O(T )

is the complexity of every iteration of the algorithm (which corresponds
to respectively the submodular minimization, maximization, or modular
minimization in algorithms 1, 2 and 3)..
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Theoretical results - summary

The problem minX f (X )− g(X ) for given submodular functions f
and g is in general inapproximable.

An information theoretic lower bound guarantees no sub-exponential
time algorithm for exact minimization.

Can provide poly-time lower bounds on the optimum, which can
yield worst case additive approximation guarantees.

Complexity results that our algorithms are polynomial time.

And, again, the aforementioned local optima results of our new
algorithms.
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Experiments

We consider features selection with objective
f (A) = I (XA; C ) = H(XA)− H(XA|C ) (a difference between
submodular functions) and not under the näıve Bayes model.

We also consider two cost models, λ a tradeoff coefficient. Either
1 modular cost model c(A) = λ|A|
2 or submodular cost model using c(A) = λ

∑
i

√
m(A ∩ Si ) for a

random partition of V and random weights m.

We test two classifiers, a linear kernel SVM and a näıve Bayes (NB)
classifier

Data sets:
1 Mushroom data (Iba, Wogulis, Langley, 1988), 8124 examples with

112 features.
2 Adult data (Kohavi, 1996), 32,561 examples with 123 features.
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Feature Selection Algorithms Evaluated

Feature selection algorithms evaluated.
1 Greedy with factored MI (GrF) - simple greedy selection using

conditional mutual information (CMI) with a NB assumption.
2 Greedy with non-factored MI (GrNF) - greedy selection using CMI

without assumptions.
3 Submodular-Supermodular procedure (SubSup).
4 Supermodular-Submodular procedure (SupSub).
5 Modular-Modular procedure (ModMod)

In SubSup and ModMod, we used the aforementioned smart
permutation heuristic.

ModMod and SubSup use exact minimization at each iteration,
while SupSub use approximate minimization (via the new FOCS
2012 submodular maximization algoritm).
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Mushroom Data - modular cost features
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Figure : Plot showing the accuracy rates vs. the number of features on the
Mushroom data set.
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Adult Data - modular cost features
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Figure : Plot showing the accuracy rates vs. the number of features on the
Adult data set.
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Mushroom Data - submodular cost features
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Figure : Plot showing the accuracy rates vs. the cost of features for the
Mushroom data set
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Adult Data - submodular cost features
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Figure : Plot showing the accuracy rates vs. the cost of features for the Adult
data set
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Experiments - Results Summarized

Permutation heuristic is important for the performance of ModMod
and SubSup.

ModMod and SubSup do not show significant difference, but
ModMod is must faster and scales very well.

SubSup does not show appreciable benefit even though it uses exact
submodular minimization at each iteration (and is slower).

GrF and GrNF in general does not perform as well (with GrF worse
than GrNF).

More benefit to the v = f − g approach under the submodular cost
model than under the modular cost model.
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Summary

Applications of minimizing the difference between two submodular
functions.

New algorithms for minimizing the difference between two
submodular functions.

New theoretical hardness results and complexity bounds.

Empirical experimental validation.
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