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Abstract

Motivation: A wide variety of experimental methods are available to characterize different properties of single cells
in a complex biosample. However, because these measurement techniques are typically destructive, researchers
are often presented with complementary measurements from disjoint subsets of cells, providing a fragmented view
of the cell’s biological processes. This creates a need for computational tools capable of integrating disjoint multi-
omics data. Because different measurements typically do not share any features, the problem requires the integra-
tion to be done in unsupervised fashion. Recently, several methods have been proposed that project the cell meas-
urements into a common latent space and attempt to align the corresponding low-dimensional manifolds.

Results: In this study, we present an approach, Synmatch, which produces a direct matching of the cells between
modalities by exploiting information about neighborhood structure in each modality. Synmatch relies on the intu-
ition that cells which are close in one measurement space should be close in the other as well. This allows us to for-
mulate the matching problem as a constrained supermodular optimization problem over neighborhood structures
that can be solved efficiently. We show that our approach successfully matches cells in small real multi-omics data-
sets and performs favorably when compared with recently published state-of-the-art methods. Further, we demon-
strate that Synmatch is capable of scaling to large datasets of thousands of cells.

Availability and implementation: The Synmatch code and data used in this manuscript are available at https://
github.com/Noble-Lab/synmatch.

Contact: william-noble@uw.edu

1 Introduction

Recent developments in single-cell high-throughput sequencing tech-
nologies have led to the emergence of a myriad of experimental
methods that are capable of characterizing different properties of
single cells in a complex biosample. For example, high-throughput
sequencing methods can measure RNA expression using single-cell
RNA-seq (scRNA-seq), chromatin accessibility using scATAC-seq,
chromatin 3D architecture using scHi-C and methylation profiles
using scMethyl-seq. Ideally, researchers would like to be able to
measure all of these properties in the same single cell in order to bet-
ter understand the molecular underpinnings of the biological proc-
esses behind cell development and disease. However, because these
measurement techniques are typically destructive, frequently only
complementary measurements from disjoint subsets of a given popu-
lation of cells are available, providing a patchwork view of the cell’s
biological processes. In such a situation, integration of the disjoint
single-cell multi-omics data is critical. This has led to the rapid de-
velopment of a variety of computational methods for single-cell
multi-omics integration (Adossa et al., 2021; Argelaguet et al.,
2020; Johansen and Quon, 2019). What makes the problem particu-
larly challenging, however, is the fact that the different measure-
ments, or modalities, typically do not share any features, and
further, identifying correspondences between features in the
domains may not be possible. Accordingly, existing methods which

rely on either common cells or features across the data types cannot
be applied in the fully unsupervised setting where correspondence
information is absent.

This multi-modal integration problem can be generally framed in
two distinct ways: (i) finding a discrete mapping between cells in the
two modalities or (ii) embedding the disjoint measurements into a
continuous shared latent space representing the intrinsic cellular
structures across cellular modalities. The generalized unsupervised
manifold alignment (GUMA) algorithm (Cui et al., 2014), which
uses a local geometry matching term, and MAGAN (Amodio and
Krishnaswamy, 2018), which uses two generative adversarial net-
works, are examples of tools that find matchings of the cells be-
tween the two datasets. Recent methods that embed the two
modalities into a common latent space and then attempt to align the
embedded low-dimensional manifolds are SCOT (Demetci et al.,
2022), Pomona (Cao et al., 2022a) and uniPort (Cao et al., 2022b)
all of which employ Gromov–Wasserstein optimal transport for
alignment, and MMD-MA (Singh et al., 2020), which aims to min-
imize the maximum mean discrepancy between the datasets in the
latent space. Several methods rely on deep neural architectures to
solve the manifold alignment task (Stark et al., 2020; Zhang et al.,
2021; Zuo and Chen, 2020). These methods typically use variation-
al autoencoders as building blocks to project the data into low-
dimensional manifolds and adversarial discriminators (Stark et al.,
2020) to align the manifolds. Recently, GLUE (Cao and Gao, 2021)
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expanded the deep neural framework by incorporating prior know-
ledge about regulatory interactions to connect the feature spaces.
LIGER (Welch et al., 2019) differs from the above methods in that it
employs an integrative non-negative matrix factorization approach
to find the shared and dataset-specific factors across datasets in the
embedded space. Finally, the UnionCom algorithm (Cao et al.,
2020) solves both problems: it first finds a matching between dis-
tance matrices from the two modalities and then uses that matching
to induce an embedding. Table 1 summarizes the recent methods
based on some of their key properties. For a good review, see
Stanojevic et al. (2022).

Here, we present Synmatch, a discrete optimization algorithm
that exploits neighborhood structure and uses supermodular opti-
mization to find a matching of the cells from two different multi-
omics datasets that do not have any features in common. The key
idea behind Synmatch is that the same cell, when measured in two
different modalities, is likely to have similar sets of neighboring cells
in the two spaces. We use this intuition to formulate the matching
problem as a supermodular optimization over the neighborhood
structure of the two modalities and we solve the problem using a
fast greedy heuristic that offers good theoretical guarantees. We
demonstrate that Synmatch offers excellent performance in finding
matchings of cells in several small single-cell multi-omics datasets,
outperforming several state-of-the-art methods. We also propose an
iterative procedure to allow our algorithm to scale up to datasets of
thousands of cells while maintaining its excellent performance. Our
work stands out from recently developed algorithms for modality in-
tegration in that it seeks direct mapping between the cells based in
their shared combinatorial properties in, respectively, their own
spaces rather than to find a common latent space within which affin-
ity may be defined. Although Synmatch was designed to integrate
single-cell multi-omics data, it is applicable to problems in other
areas where matching of observations from different modalities is
needed, as long as the main assumption—observations that are close
(and have combinatorial properties) in one modality should be close
(and thus have similar combinatorial properties) in the other modal-
ity—holds.

2 Materials and methods

2.1 The Synmatch algorithm
Synmatch takes as input two matrices of single-cell profiles measur-
ing different cellular properties, such as gene expression and chro-
matin accessibility, and outputs a matching of the cells across the
datasets. Figure 1 illustrates the key concept behind Synmatch. Two
similar cells that are close in one modality likely share the same bio-
logical (and thus combinatorial) properties. [In this work, ‘combina-
torial properties’ includes things such as neighborhood structure in
graphs, but could, in general, include any graph property such as tri-
adic closure, neighborhood reciprocity and so on (Newman, 2018).]
Hence, it is likely that they are close in the other modality, reflecting
the similarity of their biological properties.

We denote the two sets of measurements as U ¼
½u1;u2; . . . ;um�T 2 Rm�du and V ¼ ½v1; v2; . . . ; vn�T 2 Rn�dv , where
ui 2 Rdu and vj 2 Rdv are column vectors describing, respectively,
cell i and cell j. Our goal is to find a matching between these two
sets of cells, where we describe a matching as a set E0 of edges in a
bipartite graph between U and V: E0 � E ¼ U � V. In the resulting
matching, we require that no node in U or V has incident edge de-
gree greater than 1. Hence, if m 6¼ n then some cells in one of the
two sets will be left unmatched. The Synmatch algorithm proceeds
in two phases.

In the first phase, we compute a diffusion-based similarity be-
tween the cells in U and, separately, among the cells in V (so there is
no direct similarity computed at this stage between any u 2 U and
v 2 V). This measure captures both the local and global relation-
ships among the cells in the each modality. For the moment, we dis-
cuss only U. We use the cosine distance between any two cells ui and
uj in U to assign a weight to the edge eUði; jÞ in the complete graph
GU ¼ ðU;U �UÞ induced by the cells in U. We choose cosine

similarity instead of Euclidean because it has been shown to be a
considerably more robust measure of cell-to-cell similarity
(Korsunsky et al., 2019). Next, we employ a diffusion kernel
(Kondor and Lafferty, 2002) to spread activation across the graph
GU. Briefly, the Laplacian of a graph GU shifted by k is defined as
LU ¼ DU þ kI � AU, where I is the identity matrix, DU is the diag-
onal matrix dii ¼

P
j eUði; jÞ, AU is the adjacency matrix of the graph

and k is a parameter controlling how far the activation spreads
across the graph GU. As shown in Qi et al. (2008), the amount of ac-
tivation at equilibrium can be efficiently computed as SU ¼ L�1

U b,
where b is the elementary unit vector with 1 for the nodes introduc-
ing the flow and 0 for the rest. We note that this diffusion kernel has
been successfully utilized in a variety of computational problems
ranging from protein function prediction (Tsuda and Noble, 2004)
to cancer gene identification (Hristov et al., 2020). We use SUðui; ujÞ
as a measure of the similarity between cells ui and uj. We analogous-
ly compute SV for the cells in V.

In the second phase, we construct a mapping between the cells in
U and V based on SU and SV. We consider all pairs of cells ðui;ujÞ 2
U and all pairs of cells ðvl; vkÞ 2 V. Intuitively, if cells ui and uj are
close to one another in U, then the corresponding cells in V should
also be close to one another. That is, a good matching is one in
which a large SUðui; ujÞ implies a large SVðvl; vkÞ and vice versa, a
property well expressed by the square root of the product, that is,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SUðui;ujÞSVðvl; vkÞ
p

. A large value of this product thereby provides
evidence not only that the cells (ui, vl) should be matched but also
that the cells (uj, vk) should be matched. The second part of our ob-
jective, in fact, expresses a form of complementarity between
matched edges. Any given matched pairs of cells, in the form of an
edge, say ði; lÞ 2 E�, should offer benefit to all other cell pairs ðj; kÞ 2
E0 commensurate with the tendency of the corresponding cells (j, k)
to be close whenever (i, l) is close. This property is expressed precise-
ly using an objective gðE0Þ ¼

P
eði;lÞ2E0 ;eðj;kÞ2E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SUðui;ujÞSVðvl; vkÞ

p
that judges the quality of the set of edges E0 being considered in a
match. We note that gðE0Þ is a set function objective that scores any
E0 � E and in fact is a well-known supermodular objective (Bilmes,
2022). Of course not all subsets E0 � E are valid matchings, so this
leads us to a constrained optimization problem of the form:

Fig. 1. Synergistic matching of neighborhood structure. Synmatch aims to match

cells that share common neighbors in each data modality. In the figure, each labeled

cell is connected to its three nearest neighbors by dotted edges. The two cells A1 and

B1, which have neighbors in common (indicated by thicker circles) in modality 1,

should be matched (green arrows) to the two cells A2 and B2, which also share

neighbors in modality 2. Conversely, A1 and B1 should not be matched (red arrows)

to cells C2 and D2, which do not share neighbors. In the first step of the algorithm,

these common neighbors help diffusion propagate between A1–B1 and A2–B2. This

in turn facilitates the optimization, which operates cooperatively on pairs of edges

and aims to match pairs of cells with shared local structure across the modalities
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max
E0�E:E02C

X
eði;lÞ2E0;eðj;kÞ2E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SUðui; ujÞSVðvl; vkÞ

q
;

where C is the constraint that the edges E0 must form a bipartite
matching. Since the function being optimized is supermodular, and
as long as the diagonal is not zero, we can efficiently maximize it
using a greedy heuristic which iteratively adds to E0 the edge that
improves the objective function the most while maintaining the bi-
partite constraints. While supermodular maximization subject to
matroid constraints is normally hard, this algorithm has a theoretic-
al approximation guarantee (Bai and Bilmes, 2018) depending on
the diagonal component of the implicitly expressed jEj � jEj matrix
and depending on the curvature of the supermodular function.

2.2 Scaling Synmatch to large numbers of cells
Because our approach needs to examine all Oðm2n2Þ possible pairs
of edges, it does not immediately scale to thousands of cells due to
memory constraints. In practice, Synmatch can easily run on a per-
sonal computer if jUj � 300 and jVj � 300 or jUjjVj � 10 000.
For larger datasets, we aggregate the cells in each modality into a
small number c<100 of clusters, which we refer to as a ‘meta-cells’,
using equal size k-means clustering. Then, we compute pairwise
similarity matrix SMU between the meta-cells in modality U.
Specifically, for two meta-cells m1 and m2 in U,
SMUðm1;m2Þ ¼

P
ui2m1 ;uj2m2

SUðui;ujÞ=jm1jjm2j. We analogously
compute SMV. We match the meta-cells using the Synmatch algo-
rithm as described above (using SMU and SMV instead of SU and SV)
and then recursively match individual cells within each pair of
matched meta-cells. If a given pair of matched meta-cells contains
more than a total of 10 000 cells and hence cannot be matched dir-
ectly, then we repeat the procedure of aggregating these cells into
sub-meta-cells that we proceed to match and so on.

2.3 Datasets
We use real single-cell multi-omics datasets in our analysis. All data-
sets are generated by co-assays; hence, we know the correct cell-to-
cell correspondence for benchmarking.

The first dataset comes from the SNARE-seq assay (Chen et al.,
2019) (accession number GSE126074) and consists of a mixture of
human cell lines (BJ, H1, K562 and GM12878). The gene expres-
sion information is stored in a cell � gene counts matrix with dimen-
sionality 1047�18 666 while the chromatin accessibility
information is stored in a Boolean cell � peak matrix of size
1047�136 771. We reduce the dimensionality of the datasets in the
same way as in Singh et al. (2020): we apply Principal Component
Analysis (PCA) to the gene expression data and select the top 10
components, resulting in a 1047�10 matrix. We reduce the sparsity
and noise of chromatin accessibility data by using the cisTopic
(González-Blas et al., 2019) framework, resulting in a 1047�19
matrix.

The second dataset is generated by the scGEM assay (Cheow
et al., 2016) (accession SRP077853) and simultaneously profiles
gene expression and DNA methylation of human somatic cells
undergoing conversion to induced pluripotent stem cells. This data-
set consists of 177 cells and has dimensions 177�34 for the gene
expression data and 177�27 for the chromatin accessibility data.

The third dataset is derived from the recently developed SHARE-
seq assay (Ma et al., 2020) (accession GSE140203). It jointly pro-
files chromatin accessibility and gene expression in 34 774 mouse
skin cells. The unprocessed data matrices have dimensionally
34 774�164 105 and 34 774�20 085, respectively. We reduce
each data matrix using PCA to two matrices of sizes 34 774�10
each.

2.4 Evaluation metrics
To assess the performance of each algorithm, we employ three
evaluation metrics.

The FOSCTTM score is the fraction of samples closer than the
true match (Liu et al., 2019). For a given cell c in one modality, we
identify its correct match m(c) in the other modality. We then calcu-
late the Euclidean distance between all of the cells in the other mo-
dality to m(c) and we compute the fraction of them that are closer to
m(c) than the predicted match p(c). The final score is the average of
this fraction across all data points in both domains. Lower scores
are better, with a score of 0 reflecting a perfect matching.

The neighborhood overlap score quantifies the percentage of all
cells whose correct match lies within a given size neighborhood of
the cell they have been matched to (Stanley et al., 2020).
Specifically, if a cell c is matched to cell p(c), then a neighborhood
of fixed size k ¼ 0;1; 2; . . . ;n around p(c) is examined to ascertain
whether it contains the correct match m(c). For each k, the average
of all cells from each modality for which this condition is true is
reported. The score ranges from 0 to 100%, with a higher percent-
age being indicative of a better recovery of the cell-to-cell relation-
ship between the two datasets.

Unlike the previous two scores, the third score, label transfer ac-
curacy, does not require knowing the correspondence between cells
in the two domains. Instead, label transfer accuracy makes use of
cell type label information. This score aims to assess the ability to
correctly transfer cell labels from one domain to another based on
the predicted matching. As in Cao et al. (2020), we train a k-nearest
neighbor classifier (with k¼5) on one of the modalities and we use
it to predict the cell labels in the other modality. The label transfer
accuracy is the percentage of cells with correctly predicted labels.
This score ranges from 0 to 100%, with a higher percentage being
indicative of better performance.

2.5 Hyperparameter tuning
In our analysis, we compare Synmatch with three state-of-the-art
single-cell alignment methods, none of which uses any

Table 1. Methods for unsupervised multi-model data integration

Method Manifold alignment Cell matching Optimal transport Neural net model Matrix

factorization

Discrete

optimization

Reference

MAGAN � � (Amodio and

Krishnaswamy, 2018)

LIGER � � (Welch et al., 2019)

MMD-MA � (Singh et al., 2020)

UnionCom � � � (Cao et al., 2020)

SCIM � � (Stark et al., 2020)

scMVAE � � (Zuo and Chen, 2020)

SCOT � � (Demetci et al., 2022)

Pomona � � (Cao et al., 2022a)

uniPort � � (Cao et al., 2022b)

scDART � � (Zhang et al., 2021)

GLUE � � (Cao and Gao, 2021)

Synmatch � �
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correspondence information: SCOT (Demetci et al., 2022),
UnionCom (Cao et al., 2020) and MMD-MA (Singh et al., 2020).
We run each competing method over grid of its hyperparameters
(trying to keep the grids about the same size of 120 points) selecting
the hyperparameters that yield the lowest average FOSCTTM score.
SCOT has two hyperparameters: regularization weight � 2
f0:0001; 0:0005; 0:001;0:005; 0:01;0:05;0:1g and number of neigh-
bors k 2 f10;20;30;40;60;80;100; 200;500; 1000g; MMD-MA 3:
weights k1; k2 2 f10�3;10�4;10�5;10�6;10�7g and dimensionally
p 2 f4; 5; 6;16;32g; UnionCom 4: trade-off b 2 f0:1; 1; 10; 20g,
regularization coefficient q 2 f0;5; 10;15;20g, dimensionally p 2
f4;6; 16; 32g and kmax 2 f40; 100g. We note that the performance
of these methods greatly depends on the choice of parameters and
the ones provided by default achieve significantly worse perform-
ance than optimal.

3 Results

3.1 Synmatch improves cell matching on small single-

cell multi-omics datasets
First, we investigate performance of our method when it constructs
a matching between cells in small datasets, when no clustering into
meta-cells is necessary. We run Synmatch on scGEM co-assay data,
which profile gene expression and DNA methylation in 177 human
somatic cells. This dataset was previously used to showcase the per-
formance of the UnionCom algorithm (Cao et al., 2020). For com-
parison, we also run three state-of-the-art methods—SCOT,
UnionCom and MMD-MA—on the same dataset. To judge per-
formance, we employ three metrics: (i) the neighborhood overlap
(Cao et al., 2020), which is defined as the percentage of cells that
can find their corresponding cells from the other dataset in a neigh-
borhood of a given size around the cells that the algorithm matches
them to, (ii) label transfer accuracy (Johansen and Quon, 2019),
which measures how well cell type labels are transferred from one
dataset to another and (iii) the FOSCTTM score, which quantifies
the fraction of samples closer than the true match (Singh et al.,
2020) (see Section 2.4 for details). Hyperparameters for all methods
were selected by minimizing the FOSCTTM score over a predefined
grid (Section 2.5).

Our results show that Synmatch outperforms all three methods
in finding the correct matching between cells across modalities.
Synmatch achieves the best (i.e. lowest) FOSCTTM score of 0.19
compared with 0.20 for SCOT, 0.22 for MMD-MA and 0.23 for
UnionCom. Synmatch also performs well according to the neighbor-
hood overlap score, where it exhibits a higher score than the com-
peting algorithms across neighborhoods of size < 50 (Fig. 2A). For
larger neighborhoods, all four methods perform similarly. Finally,

the label transfer accuracy for all four methods is similar, with a
slight edge for Synmatch: Synmatch correctly transferred 60% of
cell type labels from one modality to another compared with
58%; 59% and 59% for SCOT, UnionCom and MMD-MA,
respectively.

Next, we ran Synmatch on subsets of cells from a SNARE-seq
co-assay dataset (Chen et al., 2019), which measures gene expres-
sion and chromatin accessibility. To assure robustness, we repeated-
ly subsampled 10 dataset of size 200 cells and we report the average
performance for each algorithm. As before, we select hyperpara-
meters by grid search, optimizing the FOSCTTM score. The neigh-
borhood overlap for Synmatch is higher than those of the competing
methods (Fig. 2B). Furthermore, Synmatch excels at correctly trans-
ferring cell type labels, improving over UnionCom on average by
0.33, over MMD-MA by 0.23 and over SCOT by 0.20 (Fig. 2C).

3.2 Synmatch successfully scales to thousands of cells
In practice, many multi-modal single-cell datasets contain thousands
of cells and hence cannot be directly analyzed by Synmatch due to
its memory requirements. Accordingly, we implemented and tested a
recursive variant of Synmatch, which involves clustering the cells
into a small number of meta-cells, matching those meta-cells with
Synmatch and then matching the cells within each pair of matched
meta-cells, again with Synmatch (Section 2.2). To validate the ap-
proach, we ran Synmatch on 10 random samples of 10 000 cells
drawn from a SHARE-seq co-assay (Ma et al., 2020), which profiles
chromatin accessibility and gene expression. For the clustering step,
we employed equal size K-means with k¼250 to group the cells
into c¼40 meta-cells. As before, we compared Synmatch’s perform-
ance with that of SCOT, MMD-MA and UnionCom and we used
the same hyperparameter grid search procedure.

Synmatch performs well in this comparison. Synmatch’s
FOSCTTM score is the best 0.34 (0.36 for SCOT, 0.39 for MMD-
MA and 0.42 for UnionCom). In terms of neighborhood overlap,
Synmatch is often the best-performing method (8 of 10 neighbor-
hood sizes that we considered) and when it is not the top-ranked
method, it is always second-ranked (Fig. 3A). Synmatch also
achieves the highest label transfer accuracy, exceeding the second-
ranked method (SCOT) by 0.06 on average. Notably, Synmatch
does a better job transferring cell type labels than MMD-MA and
UnionCom in all 10 runs.

3.3 Investigating variants of the Synmatch algorithm
There are two critical components in the process of scaling
Synmatch up to larger datasets: grouping the cells into meta-cells
and matching the meta-cells between modalities. Accordingly, we
explore these two steps in detail. We find that both of these steps

Fig. 2. Performance comparison on small datasets. (A) The figure plots the neighborhood overlap as a function of neighborhood size on the scGEM dataset. The four series cor-

respond to Synmatch and three other state-of-the-art methods. (B) The figure plots the neighborhood overlap, averaged over 10 different datasets of size 200, drawn from the

SNARE-seq dataset, as a function of neighborhood size. (C) The figure plots, for each of three competing methods, the difference in label transfer accuracy compared with

Synmatch, with positive values representing an improvement by Synmatch. Each dot corresponds to a different randomly sampled subset of size 200 from the SNARE-seq

assay
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have a significant impact on the performance of Synmatch and var-
iations in either step can lead to very different results.

First, we test Synmatch using several other clustering strategies:
regular K-means, agglomerative hierarchical clustering and spectral
clustering. We also tested SeaCells (Persad et al., 2022), a recently
published method specifically designed for deriving meta-cells from
single-cell data. We find that, on average, each of these clustering
algorithms performs worse than equal-size k-means, when evaluated
based on the FOSCTTM score (Fig. 4A). Further investigation
shows that these clustering methods yield very imbalanced clusters,
with some clusters containing only a handful of cells and others con-
taining hundreds. Thus, if in the second step of our algorithm a
meta-cell m1 with less than 10 cells is matched to a meta-cell m2

with more than 100 cells, then the subsequent matching of the indi-
vidual cells from these two meta-cells will leave the majority of the
cells unmatched. We attempted to resolve this problem by returning
all the unmatched cells into a common pool and re-running
Synmatch on them. This approach, however, leads to both a signifi-
cantly slower performance and worse overall matching.

Second, we explore two different strategies to match the meta-
cells to one another. The first strategy represents each meta-cell by

its centroid and runs Synmatch to match the centroids. The second
strategy computes an average diffusion-based similarity (SMU and
SMV) between the meta-cells in each modality, which Synmatch then
uses (Section 2.2). As an upper bound for comparison, we also in-
clude a third strategy: an oracle provides the true 1–1 cell corres-
pondence to find the best possible match between the meta-cells.
Briefly, for every pair of possible meta-cell matchings, the oracle
computes the number of cells that can possibly find their correct
match if two meta-cells are matched, uses it to assign weight on the
edge between the two meta-cells and finally uses the Edmonds Karp
algorithm to find the maximum bipartite matching between the
meta-cells. The average diffusion-based strategy consistently outper-
forms the centroid-based one across different clustering strategies,
including regular k-means (Fig. 4A, blue bars are always taller than
green bars). We hypothesize that the reason is that the centroids rep-
resent a crude and imperfect center of each meta-cell in each meas-
urement space, whereas the SMU and SMV matrices better capture the
similarity relationships among the meta-cells. The large gap between
the oracle-based and the Synmatch-based matching strategies indi-
cates that our method could achieve significantly better performance
if the meta-cells were linked more accurately.

Fig. 3. Performance comparison on large dataset. (A) The figure plots the neighborhood overlap, averaged over 10 different datasets of size 10 000, drawn from the SHARE-

seq dataset, as a function of neighborhood size. (B) The figure plots, for each of three competing methods, the difference in label transfer accuracy compared with Synmatch,

with positive values represnting an improvement by Synmatch. Each dot corresponds to a different randomly sampled subset of size 10 000 from the SNARE-seq assay

Fig. 4. Performance comparison between different clustering and meta-cell matching strategies. (A) The figure plots the FOSCTTM score, averaged over 10 different datasets

of size 10 000 drawn from the SHARE-seq dataset, for several clustering approaches (groups of bars) with number of clusters c¼40 and three different meta-cell matching

strategies (the color bars). (B) The figure plots the average FOSCTTM score over 10 different datasets of size 10 000 for various numbers of meta-cells (clusters) using equal

size K-means with the two corresponding meta-cell matching strategies
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Third, we explore the number of meta-cells c we cluster the cells
into. Because of memory constraints, we require c � 300 and test
the performance of Synmatch for 10 different values of c (Fig. 4B).
We observe that c¼40 yields the lowest average FOSCTTM score
and that performance plateaus for c>100. We also note that the
diffusion-based linking strategy is consistently better than the cen-
troid one for all c. Interestingly, using small number of meta-cells
(c¼5) leads to the worst score. We suspect that the reasons for that
are 2-fold. Given only a handful of cells, Synmatch cannot leverage
neighborhood structure information since there are only a few
neighbors possible. Further, these meta-cells are very large in size
and if they are incorrectly matched this has a major negative down-
stream impact on the ability to correctly match the individual cells
within them.

Finally, we investigate the impact of the diffusion decay param-
eter k. By default we use k ¼ 0:5, which balances the importance of
the local and global neighborhood structures. We observe that small
changes in the value of this parameter (k 2 ð0:3; 0:8Þ) do not affect
significantly Synmatch’s performance (Fig. 5). However, if k is set to
extreme values such as 10�4 or 104, the performance drops dramat-
ically. This is expected since in both cases the diffusion does not cap-
ture the neighborhood structure—in the former it spreads almost
uniformly across the cells and in the latter it is centered around a sin-
gle cell.

4 Discussion

In this study we present Synmatch, an algorithm that directly maps
cells across single-cell modalities that do not share any features or
have any known cell-to-cell correspondence information. Synmatch
exploits the neighborhood structure around the cells in each modal-
ity, seeking a matching that maps nearby cells in one modality to
nearby cells in the other modality. The problem is framed as a dis-
crete supermodular optimization and is solved efficiently. We dem-
onstrate that Synmatch successfully matches cells in several small
real single-cell multi-omics datasets and shows that it can scale to
large dataset of thousands of cells. Synmatch compares favorably to
state-of-the-art integration methods based on three commonly
employed evaluation metrics.

From a theoretical perspective, our algorithm stands out from
the majority of recently published work for two reasons: (i) it finds
matching of the cells directly without the need to project the two
modalities into a shared latent space and (ii) it uses a discrete

optimization instead of the commonly employed optimal transport
or deep learning auto-encoder-based architecture. As new tools for
integration of single-cell omics data continue to emerge, those that
aggregate cells into ‘super-cells’ or ‘meta-cells’ (Persad et al., 2022)
reflecting underlying biological properties could provide a better
stepping stone for scaling up our approach.

Future work should focus on finding ways to improve the match-
ing of the meta-cells, as our results indicate that this step has a sig-
nificant impact on the overall performance. One element of our
approach is that it does not immediately provide soft cell mappings,
for example, when a cell in one modality is probabilistically
matched to cells in the other modality. It can, however, be extended
to the probabilistic case by using log-supermodular probability dis-
tributions or approaches where we exclude certain cells from a
matching to arrive at score sensitivities that could be interpreted as
probabilities. Our method can easily provide a many-to-one match-
ing by relaxing the bipartite constraint to more general intersection
of matroid constraints.
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