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Contributions

A new problem, online submodular set cover, with
applications to ranking and repeated active learning

A low regret algorithm

Extensions to handle multiple objectives per round,
partial information, and context

Encouraging experimental results

Motivation

Online Ranking: At each round, learner produces an
ordered list, suffers loss or receives reward.
Example: search result ranking

Get  search query 
Display ranked results 

We are specifically interested in applications where the loss
is the number of items needed to achieve some objective.
Example: The cost is the the number of pages the user
needs to view to find the information they desire.

Repeated Active Learning is an interesting special case
where the items are questions or tests. Example: diagnosis.

Visited by patient Perform series of tests 

Here a reasonable loss is the number of the tests needed to
make a confident diagnosis.

Background

Set function F (S) defined over a ground set V is called
submodular if for A ⊆ B ⊆ V \ {v}

F (A + v)− F (A) ≥ F (B + v)− F (B)

Many natural objectives measuring information, influence,
and coverage are submodular. F (S) is monotone if for
A ⊆ B , F (A) ≤ F (B) and normalized if F (∅) = 0.

Submodular set cover is the problem of minimizing |S | s.t.
F (S) ≥ 1 where F is submodular, monotone, normalized.

Online Submodular Set Cover

We propose online submodular set cover as a model for
ranking and repeated active learning applications.

At round t we pick a sequence S t = v1, v2, . . . vn.

A submodular, monotone, normalized F t is revealed.

We suffer loss `(F t, S t) equal to the cover time of F t:

`(F t, S t) , min
(
{n} ∪ {i : F t(S t

i ) ≥ 1}i
)

where S t
i ,

⋃
j≤i{v tj }

Goal: minimize total loss
∑T

i=1 `(F
t, S t)

Example: F t(S) proportional to the number of candidate
diseases eliminated by performing tests S on patient t.

Related Work

Related to work by Streeter and Golovin (2008)

Online submodular maximization: goal at round t is to
select a set S t with |S t| ≤ k to maximize F t(S t).

Online min-sum submodular set cover: goal at round t
is to select a sequence of items S t to minimize

ˆ̀(F t, S t) ,
n∑

i=0

max(1− F t(S t
i ), 0).

Min-sum submodular set cover penalizes 1− F t(S t
i )

where submodular set cover uses I (F t(S t
i ) < 1).

Online submodular set cover makes more sense when the
goal is to achieve a hard objective with minimal cost.

Offline Analysis

Our algorithm for the online problem is based on an
algorithm of Azar and Gamzu (2011) for an offline problem,
ranking with submodular valuations. There the goal is to
compute the sequence S∗ minimizing

∑T
i=1 wi`(F

t, S∗)
Azar and Gamzu show the following greedy method
approximates S∗. It uses a relative gain term

δ(F t, S , v) ,

{
min(F

t(S+v)−F t(S)
1−F t(S) , 1) if F (S) < 1

0 otherwise

Offline Adaptive Residual Algorithm

Input: Objectives F 1, F 2, . . . F T

Output: Sequence S1 ⊂ S2 ⊂ . . . Sn
S0 ← ∅
for i ← 1 . . . n do
v ← argmax

v∈V

∑
t δ(F t, Si−1, v)

Si ← Si−1 + v
end for

For our online problem, we needed a stronger version of the
analysis of Azar and Gamzu. This analysis shows the
algorithm works even with additive noise.

Theorem
Let S = (v1, v2, . . . vn) be any sequence for which∑

t

δ(F t, Si−1, vi) + Ri ≥ max
v∈V

∑
t

δ(F t, Si−1, v)

Then
∑

t `(F
t, S t) ≤ 4(ln 1/ε + 2)

∑
t `(F

t, S∗) + n
∑

i Ri

Online Analysis
Our online algorithm lifts the offline algorithm to the online
setting, similar to Streeter and Golovin (2008).

Online Adaptive Residual Algorithm

Input: Integer T
Initialize n online learning algorithms E1, . . .En
for t = 1→ T do
∀i ∈ 1 . . . n predict v ti with Ei
S t ← (v t1, . . . v

t
n)

Receive F t, pay loss l(F t, S t)
For Ei , `

t(v)← (1− δ(F t, S t
i−1, v))

end for

Theorem
Assume Ei has regret E[Ri ] ≤

√
T ln n. The Online Adaptive Residual

Algorithm has α-regret E[Rα] ≤ n2
√
T ln n for α = 4(ln(1/ε) + 2)

The proof makes use of our strengthened analysis of the
offline algorithm and the particular way in which the loss
for the black box prediction algorithms are constructed.

Extensions

Our proposed online algorithm is easy to modify and
analyze for many variations of the problem setting

Truncated Loss: a version with a truncated loss with
parameter k

`k(F t, S t) , min
(
{k} ∪ {|S t

i | : F t(S t
i ) ≥ 1}

)
Multiple Objectives per Round: a variation where
at each round we receive a batch of objectives
F t

1 , F
t
2 , . . . F

t
m and incur loss

∑m
i=1 `(F

t
i , S

t).

Partial Information Setting: a version where we
only observe the sequence of objective function values
F t(S t

1), F t(S t
2), . . . F t(S t

n)

Partial Information Setting with Expert Advice:
a version where we also have access at time step t to
item selections from a set of m experts.

Experiments

We compare our adaptive residual method to the
cumulative greedy method of Streeter and Golovin (2008)
which has approximation guarantees for online submodular
maximization but not for online submodular set cover.

Synthetic Example

A synthetic example from Azar and Gamzu carries over to
our online problem. Here n = 25. This shows that, in
general, the average cover time of the cumulative greedy
method is much worse than the adaptive method.

Movie Recommendation

Here we consider choosing sequences of questions in order
to quickly eliminate candidate movie recommendations The
ground set V is a set of questions (“Do you want to watch
something from the Drama genre?”) and the set of movies
is 11634 movies from Netflix’s Watch Instantly Service.
The adpative residual method again outperforms the
cumulative greedy method. The difference is more dramatic
when convergence is slower.


