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Given unlabeled data 

for example, a graph 



Learner chooses a labeled set 𝐿 ⊆ 𝑉 
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Basic Questions 

• What should we assume about 𝑦? 

• How should we predict 𝑦  using y𝐿? 

• How should select 𝐿? 

• How can we bound error? 



Outline 

• Previous work: learning on graphs 

• More general setting using submodular functions 

• Experiments 

 

 

 



Learning on graphs 

• What should we assume about 𝑦? 

• Standard assumption: small cut value 

• Φ 𝑦 =  𝑦𝑖 − 𝑦𝑗
2 𝑊𝑖, 𝑗𝑖<𝑗  

• A “smoothness” assumption 

Φ 𝑦 = 2 
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Prediction on graphs 

• How should we predict 𝑦  using y𝐿? 

• Standard approach: min-cut (Blum & Chawla 2001) 

• Choose 𝑦  to minimize Φ(𝑦 ) s.t.  𝑦 𝐿 = 𝑦𝐿 

• Reduces to a standard min-cut computation 
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Active learning on graphs 
• How should select 𝐿? 

• In previous work, we propose the following objective 

Ψ 𝐿 = min
𝑇⊆𝑉∖𝐿∶𝑇≠∅

Γ(𝑇)

|𝑇|
 

    where Γ 𝑇  is cut value between 𝑇 and 𝑉 ∖ 𝑇 

• Small Ψ 𝐿  means an adversary can cut away many 
points from 𝐿 without cutting many edges 

Ψ(L) = 1/8 Ψ(L) = 1 



Error bound for graphs 

 
Theorem (Guillory & Bilmes 2009):  Assume 𝑦  
minimizes Φ(𝑦 ) subject to  𝑦 𝐿 = 𝑦𝐿.  Then 

𝑦 − 𝑦 1 ≤ 2
Φ(𝑦)

Ψ(𝐿)
  

  

How can we bound error? 

• Intuition:  𝐸𝑟𝑟𝑜𝑟 ≤
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙𝑠

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑠𝑒𝑡
 

• Note: Deterministic,  holds for adversarial labels  
 



Drawbacks to previous work 

• Restricted to graph based, min-cut learning 

• Not clear how to efficiently maximize Ψ 𝐿  

– Can compute in polynomial time (Guillory & Bilmes 2009) 

– Only heuristic methods known for maximizing 

– Cesa-Bianchi et al 2010 give an approximation for trees 

• Not clear if this bound is the right bound 



Our Contributions 

• A new, more general bound on error parameterized 
by an arbitrarily chosen submodular function 

• An active, semi-supervised learning method for 
approximately minimizing this bound 

• Proof that minimizing this bound exactly is NP-hard 

• Theoretical evidence this is the “right” bound 
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Submodular functions 
• A function 𝐹(𝑆) defined over a ground set 𝑉 is 

submodular iff for all 𝐴 ⊆ 𝐵 ⊆ 𝑉 ∖ 𝑣  
𝐹 𝐴 + 𝑣 − 𝐹 𝐴 ≥ 𝐹 𝐵 + 𝑣 − 𝐹 𝐵  

• Example: 

 

 

• Real World Examples: Influence in a social network 
(Kempe et al. 03), sensor coverage (Krause, Guestrin 
09), document summarization (Lin, Bilmes 11) 

• 𝐹(𝑆) is symmetric if 𝐹 𝑆 = 𝐹(𝑉 ∖ 𝑆) 

 



Submodular functions for learning 

• Γ 𝑇  (cut value) is symmetric and submodular 

• This makes Γ 𝑇  “nice” for learning on graphs 
– Easy to analyze 

– Can minimize exactly in polynomial time 

• For other learning settings, other symmetric 
submodular functions make sense 
– Hypergraph cut is symmetric, submodular 

– Mutual information is symmetric, submodular 

– An arbitrary submodular function 𝐹 can be symmetrized 
Γ 𝑆 = 𝐹 𝑆 + 𝐹 𝑉 ∖ 𝑆 − 𝐹(𝑉) 



Generalized error bound 

• Φ and Ψ are defined in terms of Γ, not graph cut 

Φ 𝑦 = Γ 𝑉𝑦 = 1         
Ψ S =  min

𝑇⊆𝑉∖𝑆∶𝑇≠∅ 

Γ(𝑇)

|𝑇|
 

• Each choice of Γ gives a different error bound 

• Minimizing Φ(𝑦 ) s.t.  𝑦 𝐿 = 𝑦𝐿 can be done in 
polynomial time (submodular function minimization) 

 
Theorem: For any symmetric, submodular Γ(𝑆), 
assume 𝑦  minimizes Φ(𝑦 ) subject to  𝑦 𝐿 = 𝑦𝐿.  Then 

𝑦 − 𝑦 1 ≤ 2
Φ(𝑦)

Ψ(𝐿)
  

  



Can we efficiently maximize Ψ? 

• Two related problems: 
1.  Maximize Ψ(𝐿) subject to 𝐿 < 𝑘 

2.  Minimize |𝐿| subject to Ψ 𝐿 ≥ 𝜆 

• If Ψ(𝐿) were submodular, we could use well known 
results for greedy algorithm: 

–  1 −
1

𝑒
 approximation to (1) (Nemhauser et al. 1978)  

– 1 + ln 𝐹(𝑉) approximation for (2) (Wolsey 1981)* 

• Unfortunately Ψ(𝐿) is not submodular 
 

*Assuming integer valued 𝐹 



Approximation result 

• Define a surrogate objective 𝐹𝜆(𝑆) s.t. 

– 𝐹𝜆(𝑆) is submodular 

– 𝐹𝜆 S ≥ 0 iff Ψ 𝑆 ≥ 𝜆 

• In particular we use 

𝐹𝜆 𝑆 = min
𝑇⊆𝑉∖𝑆∶ 𝑇≠∅

Γ 𝑇 − 𝜆|𝑇|   

• Can then use standard methods for 𝐹𝜆(𝑆) 

 
Theorem:   For any integer, symmetric, submodular 
Γ(𝑆), integer 𝜆, greedily maximizing 𝐹𝜆(𝐿) gives 𝐿 with 
Ψ 𝐿 ≥ 𝜆 and 𝐿 ≤ 1 + ln 𝜆 min

𝐿∶Ψ 𝐿 ≥𝜆 
|𝐿| 



Can we do better? 

• Is it possible to maximize Ψ(𝐿) exactly? 

Probably not, we show the problem is NP-Complete 
– Holds also if we assume Γ(𝑆) is the cut function 

– Reduction from vertex cover on fixed degree graphs 

– Corollary: no PTAS for min-cost version 

• Is there a strictly better bound? 

Not of the same form, up to the factor 2 in the bound. 
– Holds without factor of 2 for slightly different version 

– No function larger than Ψ(𝐿) for which the bound holds 

– Suggests this is the “right” bound 
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Experiments: Learning on graphs 

• With Γ(𝑆) set to cut, we compared our method to 
random selection and the METIS heuristic 

• We tried min-cut and label propagation prediction 

• We used benchmark data sets from Semi-Supervised 
Learning, Chapelle et al. 2006 (using knn neighbors 
graphs) and two citation graph data sets 



 

 

 

 

 

 

 

• Our method + label prop best in 6/12 cases, but not 
a consistent, significant trend 

• Seems cut may not be suited for knn graphs 

Benchmark Data Sets 



 

 

 

 

 

 

 

• Our method gives consistent, significant benefit 

• On these data sets the graph is not constructed by us 
(not knn), so we expect more irregular structure. 

Citation Graph Data Sets 



Experiments: Movie Recommendation 

• Which movies should a user rate to get accurate 
recommendations from collaborative filtering? 

• We pose this problem as active learning over a  
hypergraph encoding user preferences,  using Γ(𝑆) 
set to hypergraph cut 

• Two hypergraph edges for each user: 

– Hypergraph edge connecting all movies a user likes 

– Hypergraph edge connecting all movies a user dislikes 

• Partitions with low hypergraph cut value are 
consistent (on average) with user preferences 



Movies Maximizing Ψ(S) 

American Beauty 
Star Wars Ep. IV 

Jurassic Park 
Fargo 

Star Wars Ep. I  
Forrest Gump  

Wild Wild West (1999)  
The Blair Witch Project 

Titanic  
Mission: Impossible 2 

Babe  
The Rocky Horror Picture Show 

L.A. Confidential  
Mission to Mars  
Austin Powers  

Son in Law 

Star Wars Ep. V 
Star Wars Ep. VI 

Saving Private Ryan 
Terminator 2: Judgment Day 

The Matrix 
Back to the Future 

The Silence of the Lambs 
Men in Black 

Raiders of the Lost Ark 
The Sixth Sense 

Braveheart 
Shakespeare in Love 

Movies Rated Most Times 

Using Movielens data 



Our Contributions 

• A new, more general bound on error parameterized 
by an arbitrarily chosen submodular function 

• An active, semi-supervised learning method for 
approximately minimizing this bound 

• Proof that minimizing this bound exactly is NP-hard 

• Theoretical evidence this is the “right” bound 

• Experimental results 


