Active Semi-Supervised Learning using Submodular Functions

Andrew Guillory, Jeff Bilmes University of Washington

Given unlabeled data

for example, a graph

Learner chooses a labeled set $L \subseteq V$

Nature reveals labels $y_L \in \{0, 1\}^L$

Learner predicts labels $\hat{y} \in \{0,1\}^V$

Learner suffers loss $\|\hat{y} - y\|_1$

Predicted

Actual

$$\|\hat{y} - y\|_1 = 2$$

Basic Questions

- What should we assume about *y*?
- How should we predict \hat{y} using y_L ?
- How should select *L*?
- How can we bound error?

Outline

- Previous work: learning on graphs
- More general setting using submodular functions
- Experiments

Learning on graphs

 $\Phi(y) = 2$

- What should we assume about *y*?
- Standard assumption: small cut value

•
$$\Phi(y) = \sum_{i < j} (y_i - y_j)^2 W_{i_j j}$$

• A "smoothness" assumption

Prediction on graphs

- How should we predict \hat{y} using y_L ?
- Standard approach: min-cut (Blum & Chawla 2001)
- Choose \hat{y} to minimize $\Phi(\hat{y})$ s.t. $\hat{y}_L = y_L$
- Reduces to a standard min-cut computation

Active learning on graphs

- How should select *L*?
- In previous work, we propose the following objective $\Psi(L) = \min_{T \subseteq V \setminus L: T \neq \emptyset} \frac{\Gamma(T)}{|T|}$

where $\Gamma(T)$ is cut value between T and $V \setminus T$

• Small $\Psi(L)$ means an adversary can cut away many points from L without cutting many edges

Error bound for graphs

How can we bound error?

Theorem (Guillory & Bilmes 2009): Assume \hat{y} minimizes $\Phi(\hat{y})$ subject to $\hat{y}_L = y_L$. Then $\|\hat{y} - y\|_1 \le 2 \frac{\Phi(y)}{\Psi(L)}$

- Intuition: $Error \leq \frac{Complexity of true \ labels}{Quality \ of \ labeled \ set}$
- Note: Deterministic, holds for *adversarial* labels

Drawbacks to previous work

- Restricted to graph based, min-cut learning
- Not clear how to *efficiently* maximize $\Psi(L)$
 - Can compute in polynomial time (Guillory & Bilmes 2009)
 - Only heuristic methods known for maximizing
 - Cesa-Bianchi et al 2010 give an approximation for trees
- Not clear if this bound is the right bound

Our Contributions

- A new, more general bound on error parameterized by an arbitrarily chosen submodular function
- An active, semi-supervised learning method for approximately minimizing this bound
- Proof that minimizing this bound exactly is NP-hard
- Theoretical evidence this is the "right" bound

Outline

- Previous work: learning on graphs
- More general setting using submodular functions
- Experiments

Submodular functions

- A function F(S) defined over a ground set V is submodular iff for all $A \subseteq B \subseteq (V \setminus \{v\})$ $F(A + v) - F(A) \ge F(B + v) - F(B)$
- Example:

$$Cost($$
 $) \sim Cost($ $) \sim Cost($ $) \sim Cost($ $) \sim Cost($

- Real World Examples: Influence in a social network (Kempe et al. 03), sensor coverage (Krause, Guestrin 09), document summarization (Lin, Bilmes 11)
- F(S) is symmetric if $F(S) = F(V \setminus S)$

Submodular functions for learning

- $\Gamma(T)$ (cut value) is symmetric and submodular
- This makes $\Gamma(T)$ "nice" for learning on graphs
 - Easy to analyze
 - Can minimize exactly in polynomial time
- For other learning settings, other symmetric submodular functions make sense
 - Hypergraph cut is symmetric, submodular
 - Mutual information is symmetric, submodular
 - An arbitrary submodular function F can be symmetrized $\Gamma(S) = F(S) + F(V \setminus S) - F(V)$

Generalized error bound

Theorem: For any symmetric, submodular $\Gamma(S)$, assume \hat{y} minimizes $\Phi(\hat{y})$ subject to $\hat{y}_L = y_L$. Then $\|\hat{y} - y\|_1 \le 2 \frac{\Phi(y)}{\Psi(L)}$

- Φ and Ψ are defined in terms of Γ , not graph cut $\Phi(y) = \Gamma(V_{y=1}) \quad \Psi(S) = \min_{T \subseteq V \setminus S: T \neq \emptyset} \frac{\Gamma(T)}{|T|}$
- Each choice of Γ gives a different error bound
- Minimizing $\Phi(\hat{y})$ s.t. $\hat{y}_L = y_L$ can be done in polynomial time (submodular function minimization)

Can we efficiently maximize Ψ ?

- Two related problems:
 - 1. Maximize $\Psi(L)$ subject to |L| < k
 - 2. Minimize |L| subject to $\Psi(L) \ge \lambda$
- If $\Psi(L)$ were submodular, we could use well known results for greedy algorithm:
 - $-\left(1 \frac{1}{e}\right)$ approximation to (1) (Nemhauser et al. 1978)
 - $-1 + \ln F(V)$ approximation for (2) (Wolsey 1981)*
- Unfortunately $\Psi(L)$ is **not** submodular

*Assuming integer valued F

Approximation result

- Define a surrogate objective $F_{\lambda}(S)$ s.t.
 - $-F_{\lambda}(S)$ is submodular
 - $-F_{\lambda}(S) \ge 0 \text{ iff } \Psi(S) \ge \lambda$
- In particular we use

$$F_{\lambda}(S) = \min_{T \subseteq V \setminus S: \ T \neq \emptyset} \Gamma(T) - \lambda |T|$$

• Can then use standard methods for $F_{\lambda}(S)$

Theorem: For any integer, symmetric, submodular $\Gamma(S)$, integer λ , greedily maximizing $F_{\lambda}(L)$ gives L with $\Psi(L) \geq \lambda$ and $|L| \leq (1 + \ln \lambda) \min_{L:\Psi(L) \geq \lambda} |L|$

Can we do better?

• Is it possible to maximize $\Psi(L)$ exactly?

Probably not, we show the problem is NP-Complete

- Holds also if we assume $\Gamma(S)$ is the cut function
- Reduction from vertex cover on fixed degree graphs
- Corollary: no PTAS for min-cost version
- Is there a strictly better bound?

Not of the same form, up to the factor 2 in the bound.

- Holds without factor of 2 for slightly different version
- No function larger than $\Psi(L)$ for which the bound holds
- Suggests this is the "right" bound

Outline

- Previous work: learning on graphs
- More general setting using submodular functions
- Experiments

Experiments: Learning on graphs

- With $\Gamma(S)$ set to cut, we compared our method to random selection and the METIS heuristic
- We tried min-cut and label propagation prediction
- We used benchmark data sets from *Semi-Supervised Learning,* Chapelle et al. 2006 (using knn neighbors graphs) and two citation graph data sets

Benchmark Data Sets

- Our method + label prop best in 6/12 cases, but not a consistent, significant trend
- Seems cut may not be suited for knn graphs

Citation Graph Data Sets

- Our method gives consistent, significant benefit
- On these data sets the graph is not constructed by us (not knn), so we expect more irregular structure.

Experiments: Movie Recommendation

- Which movies should a user rate to get accurate recommendations from collaborative filtering?
- We pose this problem as active learning over a hypergraph encoding user preferences, using $\Gamma(S)$ set to hypergraph cut
- Two hypergraph edges for each user:
 - Hypergraph edge connecting all movies a user likes
 - Hypergraph edge connecting all movies a user dislikes
- Partitions with low hypergraph cut value are consistent (on average) with user preferences

Movies Maximizing Ψ(S)

Movies Rated Most Times

Star Wars Ep. I **Forrest Gump** Wild Wild West (1999) The Blair Witch Project Titanic Mission: Impossible 2 Babe The Rocky Horror Picture Show L.A. Confidential Mission to Mars **Austin Powers** Son in Law

American Beauty Star Wars Ep. IV Jurassic Park Fargo

Star Wars Ep. V Star Wars Ep. VI Saving Private Ryan **Terminator 2: Judgment Day** The Matrix Back to the Future The Silence of the Lambs Men in Black Raiders of the Lost Ark The Sixth Sense Braveheart Shakespeare in Love

Using Movielens data

Our Contributions

- A new, more general bound on error parameterized by an arbitrarily chosen submodular function
- An active, semi-supervised learning method for approximately minimizing this bound
- Proof that minimizing this bound exactly is NP-hard
- Theoretical evidence this is the "right" bound
- Experimental results