
Active Semi-Supervised Learning using Submodular Functions

Andrew Guillory
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

guillory@cs.washington.edu

Jeff Bilmes
Department of Electrical Engineering

University of Washington
Seattle, WA 98195

bilmes@ee.washington.edu

Abstract

We consider active, semi-supervised learn-
ing in an offline transductive setting. We
show that a previously proposed error bound
for active learning on undirected weighted
graphs can be generalized by replacing graph
cut with an arbitrary symmetric submodu-
lar function. Arbitrary non-symmetric sub-
modular functions can be used via sym-
metrization. Different choices of submodu-
lar functions give different versions of the er-
ror bound that are appropriate for different
kinds of problems. Moreover, the bound is
deterministic and holds for adversarially cho-
sen labels. We show exactly minimizing this
error bound is NP-complete. However, we
also introduce for any submodular function
an associated active semi-supervised learning
method that approximately minimizes the
corresponding error bound. We show that
the error bound is tight in the sense that
there is no other bound of the same form
which is better. Our theoretical results are
supported by experiments on real data.

1 BACKGROUND

Assume we are given an undirected weighted graph in
the form of a weight matrix W of size n by n. Let
V = [n] be the set of all nodes. The nodes of the
graph have unknown binary labels given by a vector
y ∈ {0, 1}n. Our goal is to predict the values of y
from yL, the labels for a small labeled subset L ⊆ V .
Without making any assumptions about y or W , this
is impossible. A standard assumption is that

Φ(y) ,
∑
i<j

Wi,j |yi − yj | (1)

is small (i.e. the cut given by the labels has small cut
value). This intuitively corresponds to the assumption

that, on average, nearby points have similar labels. If
we predict y′ ∈ {0, 1}n the error of our prediction is
||y′ − y||2. A reasonable goal for a learning algorithm
is to guarantee low error when Φ(y) is small.

In the standard graph based semi-supervised learn-
ing problem, L is either (in practice) given or is (for
analysis) selected uniformly at random from the set
of all nodes. Much theoretical and practical work
has considered this setting (Bengio et al., 2006; Blum
and Chawla, 2001; Blum et al., 2004) and learning on
graphs has emerged as a popular alternative to learn-
ing with feature vectors. Feature vectors can also
be transformed into a graph through various meth-
ods. Typical bounds for learning from a randomly
selected label set show error (roughly) decreases like
O(Φ(y)/|L|) or O(

√
Φ(y)/|L|) depending on assump-

tions (Blum et al., 2004). A separate line of work
has considered mistake bounds for an online setting
in which the labels for the nodes of a graph are pre-
dicted sequentially in an adversarially selected order
(Herbster and Lever, 2009; Cesa-Bianchi et al., 2009).

We consider active learning methods which get to pick
L. We specifically study batch (i.e. offline) active semi-
supervised learning algorithms which pick L, receive
yL, then make a prediction y′ and suffer loss ||y−y′||2.
This is in contrast to methods which pick the labeled
set L adaptively (Afshani et al., 2007) or make predic-
tions online. It is possible in this setting to give simple
but non-trivial deterministic bounds which relate error
to Φ(y) and L and which hold for adversarially cho-
sen labels. These bounds are theoretically interesting
since they are distinct from probabilistic bounds com-
monly used for transductive learning. This setting is
also of practical interest since it models real world set-
tings in which exploiting graph structure is important,
labels may be adversarial, and it is too expensive to
acquire labels one-by-one owing to startup overhead.
Compared to sequential active learning, batch active
learning potentially reduces the cost of acquiring L
through parallelization and economies of scale.

Ψ(S) = 1/8

Ψ(S) = 1

Figure 1: An example of a bad (top) and good (bot-
tom) labeled set according to the Ψ function.

Define the cut function Γ(S) for a set of nodes S to be

Γ(S) ,
∑

i∈S,j /∈S

Wi,j (2)

This is the weighted sum of edges crossing S and V \
S. In previous work (Guillory and Bilmes, 2009), we
proposed the following criteria for selecting L

Ψ(L) , min
T⊆(V \L):T 6=∅

Γ(T)

|T |
(3)

This is a variation of the strength of a network (Cun-
ningham, 1985). When Ψ(L) is small, an adversary
can cut away a relatively large number of nodes from L
without cutting very many edges. When Ψ(L) is large
an adversary must cut relatively many edges in order
to separate a large number of nodes from L. Figure 1
shows an example of this. Intuitively, the minimiza-
tion over T can be thought of as an adversary selecting
which nodes disagree with our predictions. In previous
work (Guillory and Bilmes, 2009), we show that Ψ(L)
is in fact related to prediction error.

Theorem 1 (Guillory and Bilmes (2009)). For any
labeled graph and L ⊂ V , if we predict

y′ = argmin
ŷ∈{0,1}n:ŷL=yL

Φ(ŷ)

then

||y − y′||2 ≤ 2
Φ(y)

Ψ(L)

In other words, if we use the minimum cut method of
Blum and Chawla (2001) to predict labels which are
consistent with yL and minimize Φ(y′), then error will
be small if Φ(y) is small. Note that this error bound is
deterministic (i.e. holds with probability 1) and in fact

holds even when an adversary chooses yV \L after see-
ing our predictions y′. It is possible to get a nontrivial
bound in this setting because we only bound error as
it relates to the graph smoothness measure Φ(y) and
the graph structure itself–if the adversary chooses la-
bels which disagree with y′ and therefore do not match
the graph structure then Φ(y) will be large. This error
bound suggests that an active learning method should
choose the labeled set to maximize Ψ(S).

A limitation of Theorem 1 is that it is tied to a par-
ticular notion of label complexity, graph cut. The-
orem 1 can therefore only be applied to graph based
semi-supervised learning and in particular learning on
graphs when Φ(y) is small. We show that Theorem
1 can be extended by replacing graph cut with an ar-
bitrary symmetric submodular function. This lets us
bound error in more general semi-supervised learning
problems with other notions of label complexity such
as hypergraph cut and mutual information.

Our previous work shows that Ψ(S) can be computed
in polynomial time (Guillory and Bilmes, 2009) but
leaves open the problem of maximizing Ψ(S). Cesa-
Bianchi et al. (2010b) give an algorithm for active
learning on tree graphs which is optimal up to con-
stant factors. They show that for tree graphs this
method also maximizes Ψ(S) to within a constant fac-
tor. When used on general graphs via spanning trees,
this method gives good empirical performance (Cesa-
Bianchi et al., 2010a) but does not have any (known)
theoretical guarantees. We give a method for approxi-
mately optimizing Ψ(S) for general graphs. Moreover,
our algorithm is for both the graph cut based setting of
previous work and our proposed more general setting.
We also show the problem is NP-hard and that our
bound is tight in the sense there is no better bound of
the same form.

2 GENERALIZED ERROR BOUND

We begin by generalizing Theorem 1 by replacing the
cut function Γ with an arbitrary symmetric, submod-
ular objective. Recall that a function F is submodular
iff for all A ⊆ B ⊆ (V \ s) we have

F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B). (4)

In other words, F exhibits diminishing returns. An
equivalent definition is the following: for all A,B ⊆ V

F (A ∪B) + F (A ∩B) ≤ F (A) + F (B).

F is called modular if this inequality holds with equal-
ity, monotone if for all A ⊆ B ⊆ V F (A) ≤ F (B),
and normalized if F (∅) = 0. F is called symmetric
if F (S) = F (V \ S) for all S. The cut function Γ is
submodular, normalized, and symmetric.

The cut function is a natural label complexity func-
tion for graph learning applications for which the cut
value of the true labels is small. For other applica-
tions, other symmetric submodular functions may be
better suited. For example, say we are predicting la-
bels for the nodes of a hypergraph (a graph in which
edges can connect more than 2 nodes). In this case it
is natural to bound error relative to the weight of cut
hypergraph edges. This is a symmetric and submod-
ular function. Another example, say that the ground
set V is a set of random variables. Symmetric mu-
tual information Γ(S) , I(S;V \ S) is a submodu-
lar function. With this Γ, the assumption that the
true cut value is small is replaced by the assumption
that positively labeled random variables provide lit-
tle information about negatively labeled random vari-
ables. An arbitrary submodular function F can be
made into a symmetric, normalized function by taking
Γ(S) , F (S) + F (V \ S)− F (V). With this construc-
tion F can be any submodular function, for example,
measuring the rank or coverage of a set S.

We overload notation from previous work in order to
make the connection to previous results clear. Assume
that Γ(S) is any symmetric, submodular, normalized,
non-negative function. Define Ψ(S) exactly as before
(3) in terms of this function. Define

Φ(y) , Γ(Vy=1) = Γ(Vy=0)

where Vy=1 is defined to be the subset of V corre-
sponding to items labeled 1 by y. Vy=0 = V \ Vy=1 is
similarly defined to be the set of items labeled 0 by y.
This Φ is the same as (1) when Γ is the cut function
and is the number of hypergraph edges cut by y when
Γ is the hypergraph cut function.

We now state our general error bound for arbitrary
symmetric submodular Γ. Different choices of Γ cor-
respond to different assumptions about the true labels
y (i.e. different priors, biases), resulting in different
bounds which may be useful for different applications.

Theorem 2. Let Γ be any symmetric, submodular,
non-negative function. For any y′ consistent with yL,

||y − y′||2 ≤ 1

Ψ(L)
(Φ(y) + Φ(y′))

Proof. Let I be the subset of V for which y′ is incor-
rect. Since y′ is consistent with yL, I ∩ L = ∅. Thus

|I| = |I|
Γ(I)

Γ(I) ≤ 1

Ψ(L)
Γ(I)

We now argue that Γ(I) ≤ Γ(Vy=1) + Γ(Vy′=1), con-
cluding the proof. First note that

I = (Vy=1 ∩ Vy′=0) ∪ (Vy=0 ∩ Vy′=1)

In other words, I is the union of points labeled positive
by y but negative by y′ and points labeled negative by
y but positive by y′. Using the submodularity, non-
negativity, symmetry and basic set theory we get

Γ(I) ≤ Γ(Vy=1 ∩ Vy′=0) + Γ(Vy=0 ∩ Vy′=1)

= Γ(Vy=1 ∩ Vy′=0) + Γ(V \ (Vy=1 ∪ Vy′=0))

= Γ(Vy=1 ∩ Vy′=0) + Γ(Vy=1 ∪ Vy′=0)

≤ Γ(Vy=1) + Γ(Vy′=0)

= Γ(Vy=1) + Γ(Vy′=1)

We also get this immediate corollary.

Corollary 1. Let Γ be any symmetric, submodular,
non-negative function. If y′ is chosen to be

y′ = argmin
ŷ∈{0,1}n:ŷL=yL

Φ(ŷ)

then

||y − y′||2 ≤ 2
Φ(y)

Ψ(L)

In this more general setting, the minimization in
Corollary 1 can be performed in polynomial time via
submodular function minimization (Fujishige, 2005).
In particular the prediction problem corresponds to

min
y′∈{0,1}n:y′L=yL

Φ(y′) = min
Ly=1⊆S⊆(V \Ly=0)

Γ(S)

Here Ly=1 is the subset of L labeled 1. This general-
izes the mincut method of Blum and Chawla (2001).
Note that each different Γ implies a different semi-
supervised learning strategy for predicting y from yL
(by minimizing Γ(S)) and a different active learning
strategy for selecting L (by maximizing Ψ(S), which
is defined in terms of Γ).

3 APPROXIMATION RESULTS

We now consider the problem of finding a minimal size
S such that Ψ(S) ≥ λ for some target λ.

S∗ = argmin
S:Ψ(S)≥λ

|S| (5)

We also consider constrained maximization

S∗ = argmax
S:|S|≤k

Ψ(S) (6)

These two problems correspond to picking the smallest
labeled set achieving a target error bound and picking
the labeled set of size k achieving the best error bound.

Algorithm 1 Compute Ψ(S)

T ′ ← V \ S
repeat
T ← T ′

λ← Γ(T)
|T |

T ′ ← argmin
T̂⊆(V \S)

(
Γ(T̂)− λ|T̂ |

)
until Γ(T ′)− λ|T ′| = 0

return Γ(T)
|T |

Although Ψ(S) can be computed in polynomial time
it is not immediately obvious how to solve (6) or (5).
We first summarize how to compute Ψ(S). Breaking
the ratio into a sum

min
T⊆(V \S)

(
Γ(T)− λ|T |

)
(7)

gives an expression which can be computed in polyno-
mial time for any fixed S and λ by solving a submodu-
lar minimization problem. When Γ is the cut function,
this is a mincut problem (Cunningham, 1985). For a
fixed S, there are only n − 1 many critical values of
λ for which the minimizing set T ⊆ (V \ S) changes
(Fujishige, 2005). We also have the following result
taken from Fujishige (2005)

Theorem 3 (Fujishige (2005)). Assume g(T) ≥ 0,
h(T) ≥ 0, g(∅) = 0, h(∅) = 0, and h(T) 6= 0 for some

T . λ∗ = minT :h(T) 6=0
g(T)
h(T) iff

∀λ ≤ λ∗, min
T

(
g(T)− λh(T)

)
= 0

and

∀λ > λ∗, min
T

(
g(T)− λh(T)

)
< 0

This theorem motivates a method for computing Ψ(S):
if we can find the largest critical value λ∗ which makes

min
T⊆(V \S)

(
Γ(T)− λ|T |

)
= 0. (8)

and a non-empty T such that Γ(T) − λ∗|T | = 0 we
are done. Algorithm 1 shows an iterative algorithm
which searches for λ∗ and T (Cunningham, 1985).
This method starts with λ set to an overestimate of
Ψ(S) (for example Γ(V \ S)/|V \ S|) and then itera-
tively computes a decreased upper estimate stopping
when (8) holds. Cunningham (1985) prove this con-
verges after O(n) iterations.

To maximize Ψ(S), we consider (7) as a function of S

Fλ(S) , min
T⊆(V \S)

(
Γ(T)− λ|T |

)

We first observe that sets which satisfy the constraint
Ψ(S) ≥ λ are exactly the sets which satisfy Fλ(S) = 0.
This result is largely implicit in previous work (e.g.
Theorem 3), but it is useful to restate it in terms of
functions of S as this is crucial to our approach.

Lemma 1. For any S ⊂ V , Fλ(S) = 0 iff Ψ(S) ≥ λ

Proof. We first show if Fλ(S) = 0 then Ψ(S) ≥ λ.
Assume for the sake of contradiction that Fλ(S) = 0
and Ψ(S) < λ. Therefore there is some T ′ ⊆ (V \ S) :

T ′ 6= ∅ with Γ(T ′)
|T ′| < λ. Rearranging terms we have

Γ(T ′)− λ|T ′| < 0 which contradicts Fλ(S) = 0.

We now show if Ψ(S) ≥ λ then Fλ(S) = 0. Assume for
the sake of contradiction that Ψ(S) ≥ λ and Fλ(S) <
0. Therefore there is some T ′ ⊆ (V \ S) with T ′ 6= ∅
and Γ(T ′) − λ|T ′| < 0. Again rearranging terms we

get Γ(T ′)
|T ′| < λ which contradicts Ψ(S) ≥ λ.

Note that we can evaluate Fλ(S) in polynomial time
through submodular function minimization. We can
also show that for any fixed λ, Fλ is monotone and
submodular. This is desirable because there are ef-
ficient algorithms for approximately solving problems
like (5) and (6) for monotone submodular functions.
Specifically, for monotone submodular functions, sim-
ple greedy maximization is approximately optimal
(Wolsey, 1982). Therefore if we can reduce maximizing
Ψ(S) to maximizing a monotone submodular function,
we can approximately maximize Ψ(S). Ψ(S) itself is
not submodular (Guillory and Bilmes, 2009) hence the
need for the surrogate objective, Fλ(S).

The fact that Fλ is submodular is a special case of the
result that the convolution of a submodular function
with a modular function is submodular (Narayanan,
1997). See also Proposition 2 of Cunningham (1985).

Lemma 2. For any λ, Fλ(S) is submodular and
monotone non-decreasing

Proof. Monotonicity is obvious: adding elements to
S decreases the domain over which the minimization
occurs, so Fλ increases. A function F is submodular
iff F (V \ S) is submodular, so it suffices to show that

F ′λ(S) = Fλ(V \ S) = min
T⊆S

(
Γ(T)− λ|T |

)
is submodular. Narayanan (1997) defines the lower
convolution of G and H to be

G ∗H(S) = min
T⊆S

(
G(T) +H(S \ T)

)
Narayanan (1997) show that if G is submodular and H
is modular then G ∗H is submodular. We see that F ′λ
is the lower convolution of G(T) , Γ(T)−λ|T |, which
is submodular, with H(T) , 0, which is modular.

Algorithm 2 Minimize |S| s.t. Ψ(S) ≥ λ
Define Fλ(S) , minT⊆(V \S) Γ(T)− λ|T |
// Greedily maximize Fλ(S)
S ← ∅
while Fλ(S) < 0 do
s← argmax

ŝ∈V
Fλ(S ∪ {ŝ})− F (S)

S ← S ∪ {s}
end while

These two lemmas combine to give an approximation
algorithm for (5) (see Algorithm 2).

Theorem 4. Assume λ is an integer and Γ is inte-
ger valued. Applying the greedy algorithm to Fλ until
Fλ(S) ≥ 0 gives a set S with Ψ(S) ≥ λ and

|S| ≤ (1 + lnλn) min
S:Ψ(S)≥λ

|S|

Proof. From Lemma 1, (5) is equivalent to

S∗ = argmin
S:Fλ(S)≥0

|S|

From Lemma 2, Fλ is submodular so this is a sub-
modular set cover problem. Wolsey (1982) shows that
if F is integer, monotone, submodular, and normal-
ized then the greedy algorithm gives a 1 + lnF (V)
approximation for submodular set cover. Fλ(S) is sub-
modular, monotone, and integer valued. Fλ(S) can be
normalized by adding λn, giving the result.

For non-integral but rational λ we can rescale Γ and λ
in order to make λ an integer. For general Γ or λ the
result of Wolsey (1982) would add an extra normaliza-
tion term inside the log that is equal to the inverse of
the smallest non-zero gain of Fλ.

In the worst case, the algorithm evaluates Fλ(S) n2

times, making the run time of the algorithm n2 that of
the submodular function minimization method used.
Submodular function minimization can be solved in
polynomial time, but currently the fastest known
methods in theory require O(n6) time (Iwata and Or-
lin, 2009). The minimum norm algorithm of Fujishige
et al. (2006) is generally regarded as the fastest known
algorithm in practice, but its worst case running time
is unknown. If Γ is the graph cut function we can use
mincut in place of submodular function minimization,
greatly improving performance. Standard techniques
(Minoux, 1978) can also be used to greatly reduce the
number of function evaluations needed.

We can also use Theorem 4 to give a bicriterion guar-
antee for the maximization problem (6).

Lemma 3. Assuming Γ is integer valued, there is a
pseudo-polynomial time algorithm finding a set S with

Ψ(S) ≥ max
S:|S|<k

Ψ(S)

and

|S| ≤ (1 + 2 lnnΨ(S))k

Proof sketch. The algorithm simply performs binary
search over all possible values of Ψ(S) in order to find
the largest value of λ such that we can satisfy Ψ(S) ≥ λ
without |S| greater than (1 + 2 lnnλ)k. Each of these
values is a rational number, so we can rescale Γ and
λ by at most n so that λ is an integer. This rescaling
introduces an extra factor of at most n inside the log,
resulting in the extra factor of 2 outside the log.

4 NEGATIVE RESULTS

We have given an approximation algorithm for finding
a minimum size set satisfying Ψ(S) ≥ λ and a bicrite-
ria approximation for maximizing Ψ(S). These results
raise the question: can we do better? We give a par-
tial answer to this question: we show that there are
no exact algorithms for either of these problems and
no PTAS (polynomial time approximation scheme) for
(5). A problem has a PTAS if there is a constant factor
approximation algorithm for every constant. Our re-
sults do not exclude the possibility of a constant factor
approximation, however.

Theorem 5. Assume Γ(S) is graph cut. Given as
input W , k, and λ, determining whether there is a set
S with |S| ≤ k and Ψ(S) ≥ λ is NP-complete.

Proof. We show that, assuming W is a binary weight,
cubic graph, there is a set S with |S| ≤ k and Ψ(S) ≥ 3
iff the graph has a vertex cover of size k. Recall that
a cubic graph is a graph where every node has degree
3 and a vertex cover is a set S ⊆ V with either i ∈ S
or j ∈ S for every Wi,j 6= 0. The result then follows
from the fact that determining if a graph has a vertex
cover of size k is NP-complete, even when the graph is
restricted to cubic graphs (Garey and Johnson, 1979).
Note that in a cubic graph a set S is a vertex cover iff

Γ(V \ S) = 3|V \ S| (9)

We first show that if Ψ(S) ≥ 3 then S is a vertex cover.
If Ψ(S) ≥ 3 then we have from Lemma 1 that

min
T⊆(V \S)

(
Γ(T)− 3|T | = 0

)

We argue that one such T achieving this minimum is
V \ S implying (9) as desired. Assume for the sake of
contradiction that

Γ(V \ S)− 3|V \ S| > min
T⊆(V \S)

(
Γ(T)− 3|T |

)
Let T be one set achieving Γ(T)− 3|T | = 0. Consider
any s ∈ (V \ S) with s /∈ T . If we add s to T we
increase Γ(T) by at most 3 but we increase |T | by 1 so

Γ(T + s)− 3|T + s| ≤ Γ(T)− 3|T | = 0

Applying this recursively we therefore have

Γ(V \ S)− 3|V \ S| ≤ Γ(T)− 3|T |

which is a contradiction.

We now show that if S is a vertex cover then Ψ(S) ≥ 3,
completing the proof. Assume for the sake of contra-
diction that Ψ(S) < 3 and therefore by Lemma 1

min
T⊆(V \S)

(
Γ(T)− 3|T |

)
> 0

By (9)

min
T⊆(V \S)

(
Γ(T)− 3|T |

)
≤ Γ(V \ S)− 3|V \ S| = 0

which is a contradiction.

Note we’ve shown the result for Γ equal to the cut func-
tion, but clearly the problem with arbitrary Γ is only
harder. Since the decision problem is NP-complete,
both (5) and (6) are also NP-complete, as polynomial
time algorithms for these problems would imply poly-
nomial time algorithms for the decision problem. The
reduction used in the proof of Theorem 5 is approxima-
tion preserving (specifically it leaves the problem size
unchanged), and computing minimum vertex cover on
a cubic graph is known to be APX-complete (Alimonti
and Kann, 1997), so we also get the following corollary.

Corollary 2. There is no PTAS for (5) unless P=NP.

Theorem 5 shows that our proposed algorithm is ap-
proximately optimal in the sense that (unless P=NP)
no polynomial time algorithm can exactly minimize
the error bound which it approximately minimizes. A
different question is whether or not the error bound
itself (Theorem 2) is optimal. In previous work (Guil-
lory and Bilmes, 2009) we remark that a different ver-
sion of Theorem 1 is tight. Here we show formally in
our more general setting that no other error bound of
the same form can be strictly better.

Theorem 6. Assume Γ(S) is symmetric and submod-
ular and Γ(V) = 0. Assume that for some function
G(S) depending only on Γ and S we have

||y − y′||2 ≤ 1

G(L)
(Φ(y) + Φ(y′))

for any L, y, and y′ consistent with yL. We must have
G(L) ≤ Ψ(L) for every L with Ψ(L) 6= 0.

Proof. Assume for some such G we have G(L) > Ψ(L)
for some L with Ψ(L) 6= 0. Set y′ to be a vector of all
ones. Note Φ(y′) = 0 in this case. Let

T = argmin
T̂⊆(V \L):T̂ 6=∅

Γ(T̂)

|T̂ |

Set yi = 1 for i ∈ V \ T and yi = −1 for i ∈ T . By
construction we have

Ψ(L) =
Γ(T)

|T |
=

Φ(y) + Φ(y′)

||y − y′||2

We then have G(L) > (Φ(y) + Φ(y′))/||y− y′||2 which
contradicts our assumption ||y − y′||2 ≤ (Φ(y) +
Φ(y′))/G(L)

Ψ(L) 6= 0 holds under mild assumptions. For example,
for the cut function Γ, Ψ(L) > 0 when L contains at
least one node in each connected component of W .

5 EXPERIMENTS

5.1 COMPARISON TO BASELINES

We tested our method on a set of benchmark data
sets from Chapelle et al. (2006) (also used in previous
work (Guillory and Bilmes, 2009)) and two citation
graph data sets, Citeseer and Cora, from Sen et al.
(2008) (Cora was also used by Cesa-Bianchi et al.
(2010a)). In these experiments we set Γ to be stan-
dard graph cut. We tried our method for maximizing
Ψ(L) (Lemma 3) in conjunction with minimum cut
prediction (Blum and Chawla, 2001) and also the ver-
sion of label propagation proposed by Bengio et al.
(2006) (using µ = 10−6, ε = 10−6, and class mass nor-
malization). Minimum cut prediction is more directly
motivated by our theory (when Γ is graph cut) but
label propagation sometimes works better in practice.
We note Theorem 2 still holds for label propagation
prediction if we set L to be the set of points on which
our predictions agree with the observed labels. Also,
in our experiments we use binary search to find a set
S with |S| ≤ k (as opposed to |S| < Õ(k)), and we
do not perform binary search over all rational values
of Ψ(S) but instead stop when the relative difference
between the upper and lower bounds is less than .0001.

We compare against three baselines: minimum cut
prediction with a random labeled set, label propaga-
tion prediction with a random labeled set, and the
METIS active learning heuristic (Guillory and Bilmes,
2009). For predicting with k labeled points, the

Figure 2: Relative error compared to worst method for different data set / label counts. Top row is k-nn graphs,
bottom row citation graphs. Ψ-max is our method, Rnd is random selection, MC is minimum cut, LP is label
propagation, and METIS is a heuristic described in the text. Bars show one standard deviation.

METIS heuristic partitions the graph into k parts us-
ing the METIS graph partitioning program (Karypis
and Kumar, 1999), requests a label for a single ran-
dom point in each of the k parts, and then labels each
part according to that label. This method was found
to outperform a variety of other heuristic methods on
the benchmark data sets. We average over 1000 runs
of the baseline methods for each dataset / label count.
For our methods we average over 100 different runs of
the final selection(after binary search for λ∗) on differ-
ent random permutations of the data.

For the benchmark data sets we construct a k-nearest
neighbor graph with k = 10. These data sets are of
size n = 1500 except for BCI which is of size n = 400.
We use an unweighted graph for all methods except
label propagation for which we used a Gaussian kernel
weighted graph (Wi,j = e||xi−xj ||

2/2σ2

). We set σ
with a heuristic from Chapelle et al. (2006): we use
1/3 the average distance to the k-th nearest neighbor.
We chose to use an unweighted graph for our method
as in some preliminary experiments on other data sets
we found it can be sensitive to the choice of σ.

On the citation graph data sets, following the setup
used by Cesa-Bianchi et al. (2010a), we use the largest
connected component of the graph, group together

small classes to form more balanced classes, and per-
form one-vs-rest binary classification. We do not use
the feature vectors for the documents on these data
sets–only the citation graph structure. The edges in
these data sets are unweighted, and we treat them as
undirected. The Cora subset we use is of size n = 2485,
and the Citeseer subset is of size n = 2110. The
class groupings we use for Cora are Neural Networks
(coraN), Theory / Reinforcement Learning / Genetic
Algorithms (coraTRG), and Probabilistic Methods /
Case Based / Rule Learning (coraPCR). For Citeseer
we use AI / ML (citeseerAM), IR / DB (citeseerID),
and Agents / HCI (citeseerAH).

Figure 5.1 shows our results for different data set / la-
bel count combinations. On the benchmark data sets,
our method combined with label propagation performs
better than the others on 6/12 data set / label com-
binations, but on some problems our method hurts.
This is not entirely surprising in light of previous ob-
servations made about minimum cut prediction and
k-nearest neighbors graphs (Blum et al., 2004). We
speculate a different choice of graph construction or Γ
is needed to get more consistent improvement. Graph
construction and hyper parameter selection for semi-
supervised learning is in general a difficult problem.

Movies Maximizing Ψ(S)

American Beauty
Star Wars Ep. IV

Jurassic Park
Fargo

Star Wars Ep. I
Forrest Gump

Wild Wild West (1999)
The Blair Witch Project

Titanic
Mission: Impossible 2

Babe
The Rocky Horror Picture Show

L.A. Confidential
Mission to Mars
Austin Powers

Son in Law

Star Wars Ep. V
Star Wars Ep. VI

Saving Private Ryan
Terminator 2: Judgment Day

The Matrix
Back to the Future

The Silence of the Lambs
Men in Black

Raiders of the Lost Ark
The Sixth Sense

Braveheart
Shakespeare in Love

Movies Rated Most Times

Figure 3: Movies informative about a taste found by
our method compared to movies rated most frequently.

However, on the two citation graph data sets where
the graph is not constructed by us (i.e. the graph is
part of the data), our method has a significant and
more consistent benefit. On 9/12 of the classification
tasks one of our active learning methods performs best
(either the minimum cut or label propagation version),
and the difference between our active learning meth-
ods and the other methods is often large. On all but
one of the classification problems the label propagation
version of our method is within 1 percent of the best
method. The different variations of Cora (Citeseer)
differ only in their labels, so our method selects the
same labeled points for each of these variations. This
is a feature of our batch setting. Results also confirm
our method reduces variance in error. We think our
method’s strong performance on these natural graph
data sets suggests that, when the choice of Γ is appro-
priate for the data, our method performs well.

In a followup experiment we tried running METIS 100
times per trial instead of once, keeping the partition
with the lowest cut value. This variation helped some
on a few data set / label combinations (the biggest was
a 10% relative decrease in error on Digit1 / 10 where
METIS already performed well) but overall had very
little effect (relative to variance in error) and didn’t
change trends in the results. We have also begun ex-
perimenting with alternative graph constructions and
objectives for the benchmark data sets, for example
the δ construction of Blum et al. (2004), but have not
yet achieved consistent improvement

5.2 CHOOSING MOVIES TO RATE

In this section we discuss a problem setting which uses
the added generality of Corollary 1. We consider the
problem of training a collaborative filtering system for
a new user: which items (e.g. movies) should we ask a
new user to evaluate first so that we can then give the

user accurate recommendations?

We treat this problem as an active learning problem
over a hypergraph by constructing a hypergraph in
which nodes are items and edges encode user prefer-
ences. We make for each user an edge connecting all
movies that the user rated higher than 3 (out of 5)
stars and an edge connecting all movies that the user
rated lower than 3 stars. With a graph constructed
like this, a partition of the hypergraph which cuts few
hypergraph edges corresponds to a grouping of movies
that is on average consistent with all users’ preferences:
on average, movies that are liked by the same user will
be on the same side of the cut as will movies that are
disliked by the same user. More complicated methods
could assign different weights to the hypergraph edges
or create more than two edges per user.

We set Γ(S) to be the hypergraph cut function count-
ing the number of hypergraph edges crossing S and
V \ S. Corollary 1 then suggests a semi-supervised
learning method for predicting which items a user likes
based on their likes and dislikes for a subset of items
L. This method guarantees low error so long as the
user’s true preferences y are mostly consistent with
previously seen ratings. This Corollary also suggests
that in order to minimize error a new user should rate
a set of items L which maximizes Ψ(L).

We tested our Ψ maximization method on the 1 Mil-
lion Ratings version of the MovieLens data. We use
as a ground set all movies which received more than
10 ratings (3233 nodes). The construction method
described above then gives 11479 hypergraph edges
(about 737000 user/movie connections). We compute
hypergraph mincuts using the flow method of Yang
and Wong (1996). Figure 3 shows the 16 movies se-
lected by our method in order to minimize |S| subject
to Ψ(S) ≥ 2.5. We compare to the 16 movies which
were rated the most number of times.

There is some overlap between the two lists: movies
that are rated many times will have high degree in the
hypergraph, and therefore may be useful for learning.
However, the movies that are selected by our method
are more diverse in certain ways and therefore po-
tentially more useful for learning. For example, our
method chose movies that are controversial (The Blair
Witch Project which was liked/disliked with propor-
tion about 1.18:1 in the data set), a movie considered
a cult classic (The Rocky Horror Picture Show), a chil-
dren’s movie (Babe), and even unpopular movies (Son
in Law, which received an average rating of 2.67/5).
Unpopular movies may be valuable as they can confirm
which movies a user does not like. In comparison, the
movies rated most often are largely popular movies.

6 OPEN PROBLEMS

Our results do not exclude the possibility of a constant
factor approximation for either (5) or (6).

The algorithm of Cesa-Bianchi et al. (2010b) for ac-
tive learning on tree graphs is optimal in a very strong
sense: they show that their algorithm makes approx-
imately minimal errors on any tree graph. Our re-
sults for more general graphs are not as strong. We
only show that there is no strictly better bound of the
same form. This is a weaker result since there may be
a strictly better bound of a different form.

Our experimental results only consider graph cut and
hypergraph cut. We have yet to explore the practi-
cal value of other more general symmetric submodu-
lar functions. We conjecture that other more general
functions can be used to improve performance where
standard cut based methods fail (e.g. on some of the k-
nearest neighbor graphs in our experiments). The use
of more general submodular functions will require the
use of more general submodular function minimiza-
tion. Practical submodular function minimization is
an active area of research (Stobbe and Krause, 2010;
Fujishige et al., 2006).

Acknowledgments

This material is based upon work supported by the
National Science Foundation under grant IIS-0535100,
by an Intel research award, and by a Microsoft research
award.

References

P. Afshani, E. Chiniforooshan, R. Dorrigiv, A. Farzan,
M. Mirzazadeh, N. Simjour, and H. Zarrabi-Zadeh.
On the complexity of finding an unknown cut via
vertex queries. In COCOON, 2007.

P. Alimonti and V. Kann. Hardness of approximating
problems on cubic graphs. Algorithms and Complex-
ity, pages 288–298, 1997.

Y. Bengio, O. Delalleau, and N. Le Roux. Label prop-
agation and quadratic criterion. In O. Chapelle,
B. Schölkopf, and A. Zien, editors, Semi-Supervised
Learning. MIT Press, 2006.

A. Blum and S. Chawla. Learning from labeled and
unlabeled data using graph mincuts. In ICML, 2001.

A. Blum, J. Lafferty, M. R. Rwebangira, and R. Reddy.
Semi-supervised learning using randomized mincuts.
In ICML, 2004.

N. Cesa-Bianchi, C. Gentile, and F. Vitale. Fast and
optimal prediction of a labeled tree. In COLT, 2009.

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zap-
pella. Active Learning on Graphs via Spanning
Trees. In NIPS Workshop on Networks Across Dis-
ciplines, 2010a.

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zap-
pella. Active learning on trees and graphs. In COLT,
2010b.

O. Chapelle, B. Schölkopf, and A. Zien. Semi-
supervised learning. MIT press, 2006.

W. Cunningham. Optimal attack and reinforcement
of a network. Journal of the ACM, 1985.

S. Fujishige. Submodular Functions and Optimization.
2005.

S. Fujishige, T. Hayashi, and S. Isotani. The minimum-
norm-point algorithm applied to submodular func-
tion minimization and linear programming, 2006.

M. Garey and D. Johnson. Computers and intractabil-
ity. A guide to the theory of NP-completeness. 1979.

A. Guillory and J. Bilmes. Label Selection on Graphs.
In NIPS, 2009.

M. Herbster and G. Lever. Predicting the Labelling of
a Graph via Minimum p-Seminorm Interpolation. In
COLT, 2009.

S. Iwata and J. B. Orlin. A simple combinatorial al-
gorithm for submodular function minimization. In
SODA, 2009.

G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 1999.

M. Minoux. Accelerated greedy algorithms for max-
imizing submodular set functions. Optimization
Techniques, pages 234–243, 1978.

H. Narayanan. Submodular Functions and Electrical
Networks. 1997.

P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gal-
lagher, and T. Eliassi-Rad. Collective classification
in network data. AI Magazine, 29(3):93–106, 2008.

P. Stobbe and A. Krause. Efficient minimization of
decomposable submodular functions. NIPS, 2010.

L. Wolsey. An analysis of the greedy algorithm for the
submodular set covering problem. Combinatorica, 2
(4), 1982.

H. Yang and D. Wong. Efficient Network Flow Based
Min-Cut Balanced Partitioning. IEEE Transactions
on Computer-Aided Design of Integrated Circuits
and Systems, 15(12):1533, 1996.

