Deep Canonical Correlation Analysis

Galen Andrew¹ Raman Arora² Jeff Bilmes¹ Karen Livescu²

¹University of Washington

²Toyota Technological Institute at Chicago

ICML, 2013

э

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Outline

Background

- Linear CCA
- Kernel CCA
- Deep Networks

2 Deep CCA

- Basic DCCA Model
- Nonsaturating nonlinearity

3 Experiments

- Split MNIST
- XRMB Speech Database

Background
000000000

Experiments

Data with multiple views

 $x_{1}^{(i)}$

demographic properties

 $x_{2}^{(i)}$

responses to survey

audio features at time i

video features at time i

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Background
000000000

Correlated representations

• CCA, KCCA, and DCCA all learn functions $f_1(x_1)$ and $f_2(x_2)$ that maximize

$$\operatorname{corr}(f_1(x_1), f_2(x_2)) = \frac{\operatorname{cov}(f_1(x_1), f_2(x_2))}{\sqrt{\operatorname{var}(f_1(x_1)) \cdot \operatorname{var}(f_2(x_2))}}$$

- Finding correlated representations can be used to
 - provide insight into the data
 - detect asynchrony in test data
 - remove noise that is uncorrelated across views
 - induce features that capture some of the information of the other view, if it is unavailable at test time
- Has been applied to problems in computer vision, speech, NLP, medicine, chemometrics, meterology, neurology, etc.

Canonical correlation analysis

- CCA (Hotelling, 1936) is a classical technique to find linear relationships: $f_1(x_i) = W'_1x_1$ for $W_1 \in \mathbb{R}^{n_1 \times k}$ (and f_2).
- The first columns (w_1^1, w_2^1) of the matrices W_1 and W_2 are found to maximize the correlation of the projections

$$(w_1^1, w_2^1) = \operatorname*{argmax}_{w_1, w_2} \operatorname{corr}(w_1' X_1, w_2' X_2).$$

• Subsequent pairs (w_1^i, w_2^i) are constrained to be uncorrelated with previous components: For j < i,

$$\operatorname{corr}((w_1^i)'X_1, (w_1^j)'X_1)) = \operatorname{corr}((w_2^i)'X_2, (w_2^j)'X_2) = 0.$$

Background	Deep CCA	
0000000	0000000	

▲□▶▲□▶▲□▶▲□▶ □ のQ@

CCA Illustration

Two views of each instance have the same color

Background	Deep CCA	Experiments
0000000	0000000	0000000

CCA: Solution

Estimate covariances, with regularization.

$$\begin{split} \Sigma_{11} &= \frac{1}{m-1} \sum_{i=1}^{m} (x_1^{(i)} - \bar{x}_1) (x_1^{(i)} - \bar{x}_1)' + r_1 I \quad \text{(and } \Sigma_{22}\text{)} \\ \Sigma_{12} &= \frac{1}{m-1} \sum_{i=1}^{m} (x_1^{(i)} - \bar{x}_1) (x_2^{(i)} - \bar{x}_2)' \end{split}$$

- Solution Form normalized covariance matrix $T \triangleq \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1/2}$ and its singular value decomposition T = UDV'.
- **③** Total correlation at k is $\sum_{i=1}^{k} D_{ii}$.
- The optimal projection matrices are

$$(W_1^*, W_2^*) = (\Sigma_{11}^{-1/2} U_k, \Sigma_{22}^{-1/2} V_k)$$

(日) (日) (日) (日) (日) (日) (日)

where U_k is the first k columns of U.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Finding nonlinear relationships with Kernel CCA

- There may be nonlinear functions *f*₁, *f*₂ that produce more highly correlated representations than linear maps.
- Kernel CCA is the principal method to detect such functions.
 - learns functions from any RKHS
 - may use different kernels for each view
- Using the RBF (Gaussian) kernel in KCCA is akin to finding sets of instances that form clusters in both views.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

KCCA: Pros and Cons

Advantages of KCCA over linear CCA

- More complex function space can yield dramatically higher correlation with sufficient training data.
- Can be used to produce features that improve performance of a classifier when second view is unavailable at test time (Arora & Livescu, 2013)
- Disadvantages
 - Slower to train
 - Training set must be stored and referenced at test time
 - Model is more difficult to interpret

Deep Networks

- Deep networks parametrize complex functions with many layers of transformation.
- In a typical architecture (MLP), $h_1 = \sigma(W'_1x + b_1),$ $h_2 = \sigma(W'_2h_1 + b_2),$ etc.
 - σ is nonlinear function (e.g., logistic sigmoid) applied componentwise
- Each layer detects higher-level features—well suited for tasks like vision, speech processing.

Training deep networks

Background

00000000

- Until mid-2000s, little success with *deep* MLPs (>2 layers).
- Now, increasing performance with 10 or more layers due to pretraining methods like Contrastive Divergence, variants of autoencoders (Hinton et al. 2006, Bengio et al. 2007).
- Weights of each layer are initialized to optimize a *generative* criterion, to learn hidden layers that can in some sense reconstruct the input.
- After pretraining the network is "fine tuned" by adjusting the pretrained weights to reduce the error of the output layer.

Deep CCA

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Deep CCA

- Advantages over KCCA:
 - May be better suited for natural, real-world data such as vision or audio, compared to standard kernels.
 - Parametric model
 - The training set can be discarded once parameters have been learned.
 - Computation of test representations is fast.
 - Does not require computing inner products.

Deep CCA training

Background

- To train a DCCA model
 - Pretrain the layers of each side individually.
 - We use denoising autoencoder pretraining in this work. (Vincent et al., 2008)
 - 2 Jointly fine-tune all parameters to maximize the total correlation of the output layers H_1, H_2 . Requires computing correlation gradient:
 - Forward propagate activations on both sides.

Deep CCA

0000000

- 2 Compute correlation and its gradient w.r.t. output layers.
- Backpropagate gradient on both sides.
- Correlation is a population objective, but typical stochastic training methods use one instance (or minibatch) at a time
 - Instead, we use L-BFGS second-order method (full-batch)

DCCA Objective Gradient

- To fine-tune all parameters via backpropagation, we need to compute the gradient $\partial \operatorname{corr}(H_1, H_2)/\partial H_1$.
- Let $\Sigma_{11}, \Sigma_{22}, \Sigma_{12}$, and $T = \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1/2} = UDV'$. Then,

$$\frac{\partial \operatorname{corr}(H_1, H_2)}{\partial H_1} = \frac{1}{m-1} \left(\nabla_{12} (H_2 - \bar{H}_2) - \nabla_{11} (H_1 - \bar{H}_1) \right)$$

where

$$\nabla_{12} = \Sigma_{11}^{-1/2} U V' \Sigma_{22}^{-1/2}$$

and

$$\nabla_{11} = \Sigma_{11}^{-1/2} U D U' \Sigma_{11}^{-1/2}.$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Nonsaturating nonlinearity

- Standard, saturating sigmoid nonlinearities (logistic, tanh) sometimes cause problems for optimization (plateaus, ill-conditioning).
- We obtained better results with a novel nonsaturating sigmoid related to the cube root.

Background	C
00000000	C

Nonsaturating nonlinearity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

A D F A 同 F A E F A E F A Q A

Nonsaturating nonlinearity

- If $g : \mathbb{R} \mapsto \mathbb{R}$ is the function $g(y) = y^3/3 + y$, then our function is $s(x) = g^{-1}(x)$.
- Unlike σ and tanh, does not saturate, derivative decays slowly.
- Unlike cube root, differentiable at x = 0 (with unit slope).
- Like σ and tanh, derivative is expressible in terms of function value: $s'(x) = (s^2(x) + 1)^{-1}$.
- Efficiently computable with Newton's method.

Split MNIST data

- Left and right halves of MNIST handwritten digits.
- Deep MLPs have done extremely well at MNIST digit classification.
- Two views have a high mutual information, but mostly in terms of "deeper" features than pixels.
- Each half-image is 28x14 matrix of grayscale values (392 features).
- 60k train instances, 10k test.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Background		
000000000		

Split MNIST results

- Compare total correlation on test data after applying transformations f_1, f_2 learned by each model.
- Output dimensionality is 50 for all models.
 - Maximum possible correlation is 50.
- Hyperparameters of all models fit on random 10% of training data.
- DCCA model has two layers; hidden layer widths chosen on development set as 2038 and 1608.

	CCA	KCCA (RBF)	DCCA (50-2)	max
Dev	28.1	33.5	39.4	50
Test	28.0	33.0	39.7	50

Background
000000000

Acoustic and articulatory views

- Wisconsin XRMB database of simultaneous acoustic and articulatory recordings
 - Articulatory view: horizontal and vertical displacements of eight pellets on speaker's lips, tongue and jaws concatenated over seven frames (112 features)
 - Acoustic view: 13 MFCCs + first and second derivatives, concatenated over seven frames (273 features)

Comparing top k components

- We compare the total correlation of the top k components of each model, for all k ≤ o (DCCA output size).
- CCA and KCCA order components by training correlation, but the output of a DCCA model has no inherent ordering.
- To evaluate at k < o
 - Perform linear CCA over DCCA representations of training data to obtain linear transformations *W*₁, *W*₂.
 - Map DCCA representations of test data by W_1 and W_2 , then compare total correlation of top k components.

Correlation as a function of depth

- Explore relative contribution of depth/width
- Vary depth from three to eight layers, reducing the width to keep the total number of parameters constant
- Total correlation increases monotonically with depth, and at eight layers has still not reached saturation

layers	3	4	5	6	7	8	max
Dev set	66.7	68.1	70.1	72.5	76.0	79.1	112
Test set	80.4	81.9	84.0	86.1	88.5	88.6	112

Conclusions

- DCCA learns complex nonlinear transformations to discover latent relationships in two views of data.
- Unlike KCCA, DCCA is a parametric method.
 - does not require an inner product
 - representations of unseen instances can be computed without reference to the training set
- In experiments, DCCA finds much more highly correlated representations than KCCA or linear CCA.
- Tall skinny networks are better than short fat ones.