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Data with multiple views
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Correlated representations

CCA, KCCA, and DCCA all learn functions f1(x1) and
f2(x2) that maximize

corr(f1(x1), f2(x2)) =
cov(f1(x1), f2(x2))√

var(f1(x1)) · var(f2(x2))

Finding correlated representations can be used to
provide insight into the data
detect asynchrony in test data
remove noise that is uncorrelated across views
induce features that capture some of the information of the
other view, if it is unavailable at test time

Has been applied to problems in computer vision, speech,
NLP, medicine, chemometrics, meterology, neurology, etc.
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Canonical correlation analysis

CCA (Hotelling, 1936) is a classical technique to find linear
relationships: f1(xi) = W ′1x1 for W1 ∈ Rn1×k (and f2).
The first columns (w1

1, w
1
2) of the matrices W1 and W2 are

found to maximize the correlation of the projections

(w1
1, w

1
2) = argmax

w1,w2

corr(w′1X1, w
′
2X2).

Subsequent pairs (wi
1, w

i
2) are constrained to be

uncorrelated with previous components: For j < i,

corr((wi
1)
′X1, (w

j
1)
′X1)) = corr((wi

2)
′X2, (w

j
2)
′X2) = 0.
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CCA Illustration
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CCA: Solution

1 Estimate covariances, with regularization.

Σ11 = 1
m−1

∑m
i=1(x

(i)
1 − x̄1)(x

(i)
1 − x̄1)′+ r1I (and Σ22)

Σ12 = 1
m−1

∑m
i=1(x

(i)
1 − x̄1)(x

(i)
2 − x̄2)′

2 Form normalized covariance matrix T , Σ
−1/2
11 Σ12Σ

−1/2
22

and its singular value decomposition T = UDV ′.
3 Total correlation at k is

∑k
i=1Dii.

4 The optimal projection matrices are

(W ∗1 ,W
∗
2 ) = (Σ

−1/2
11 Uk,Σ

−1/2
22 Vk)

where Uk is the first k columns of U .
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Finding nonlinear relationships with Kernel CCA

There may be nonlinear functions f1, f2 that produce more
highly correlated representations than linear maps.
Kernel CCA is the principal method to detect such
functions.

learns functions from any RKHS
may use different kernels for each view

Using the RBF (Gaussian) kernel in KCCA is akin to
finding sets of instances that form clusters in both views.
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KCCA: Pros and Cons

Advantages of KCCA over linear CCA
More complex function space can yield dramatically higher
correlation with sufficient training data.
Can be used to produce features that improve performance
of a classifier when second view is unavailable at test time
(Arora & Livescu, 2013)

Disadvantages
Slower to train
Training set must be stored and referenced at test time
Model is more difficult to interpret



Background Deep CCA Experiments

Deep Networks

Deep networks parametrize
complex functions with many
layers of transformation.
In a typical architecture (MLP),
h1 = σ(W ′1x+ b1),
h2 = σ(W ′2h1 + b2), etc.

σ is nonlinear function (e.g.,
logistic sigmoid) applied
componentwise

Each layer detects higher-level
features—well suited for tasks
like vision, speech processing.
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Training deep networks

Until mid-2000s, little success with deep MLPs (>2 layers).
Now, increasing performance with 10 or more layers due to
pretraining methods like Contrastive Divergence, variants
of autoencoders (Hinton et al. 2006, Bengio et al. 2007).
Weights of each layer are initialized to optimize a
generative criterion, to learn hidden layers that can in
some sense reconstruct the input.
After pretraining the network is “fine tuned” by adjusting the
pretrained weights to reduce the error of the output layer.
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Deep CCA
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Deep CCA

Advantages over KCCA:
May be better suited for natural, real-world data such as
vision or audio, compared to standard kernels.
Parametric model

The training set can be discarded once parameters have
been learned.
Computation of test representations is fast.

Does not require computing inner products.
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Deep CCA training

To train a DCCA model
1 Pretrain the layers of each side individually.

We use denoising autoencoder pretraining in this work.
(Vincent et al., 2008)

2 Jointly fine-tune all parameters to maximize the total
correlation of the output layers H1, H2. Requires computing
correlation gradient:

1 Forward propagate activations on both sides.
2 Compute correlation and its gradient w.r.t. output layers.
3 Backpropagate gradient on both sides.

Correlation is a population objective, but typical stochastic
training methods use one instance (or minibatch) at a time

Instead, we use L-BFGS second-order method (full-batch)
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DCCA Objective Gradient

To fine-tune all parameters via backpropagation, we need
to compute the gradient ∂corr(H1, H2)/∂H1.

Let Σ11,Σ22,Σ12, and T = Σ
−1/2
11 Σ12Σ

−1/2
22 = UDV ′. Then,

∂corr(H1, H2)

∂H1
=

1

m− 1

(
∇12(H2 − H̄2)−∇11(H1 − H̄1)

)
where

∇12 = Σ
−1/2
11 UV ′Σ

−1/2
22

and
∇11 = Σ

−1/2
11 UDU ′Σ

−1/2
11 .
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Nonsaturating nonlinearity

Standard, saturating sigmoid nonlinearities (logistic, tanh)
sometimes cause problems for optimization (plateaus,
ill-conditioning).
We obtained better results with a novel nonsaturating
sigmoid related to the cube root.
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Nonsaturating nonlinearity
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Nonsaturating nonlinearity

If g : R 7→ R is the function g(y) = y3/3 + y, then our
function is s(x) = g−1(x).
Unlike σ and tanh, does not saturate, derivative decays
slowly.
Unlike cube root, differentiable at x = 0 (with unit slope).
Like σ and tanh, derivative is expressible in terms of
function value: s′(x) = (s2(x) + 1)−1.
Efficiently computable with Newton’s method.
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Split MNIST data

Left and right halves of MNIST
handwritten digits.
Deep MLPs have done extremely
well at MNIST digit classification.
Two views have a high mutual
information, but mostly in terms of
“deeper” features than pixels.
Each half-image is 28x14 matrix of
grayscale values (392 features).
60k train instances, 10k test.
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Split MNIST results

Compare total correlation on test data after applying
transformations f1, f2 learned by each model.
Output dimensionality is 50 for all models.

Maximum possible correlation is 50.

Hyperparameters of all models fit on random 10% of
training data.
DCCA model has two layers; hidden layer widths chosen
on development set as 2038 and 1608.

CCA KCCA (RBF) DCCA (50-2) max
Dev 28.1 33.5 39.4 50
Test 28.0 33.0 39.7 50
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Acoustic and articulatory views

Wisconsin XRMB database of simultaneous acoustic and
articulatory recordings

Articulatory view: horizontal and vertical displacements of
eight pellets on speaker’s lips, tongue and jaws
concatenated over seven frames (112 features)
Acoustic view: 13 MFCCs + first and second derivatives,
concatenated over seven frames (273 features)
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Comparing top k components

We compare the total correlation of the top k components
of each model, for all k ≤ o (DCCA output size).
CCA and KCCA order components by training correlation,
but the output of a DCCA model has no inherent ordering.
To evaluate at k < o

Perform linear CCA over DCCA representations of training
data to obtain linear transformations W1, W2.
Map DCCA representations of test data by W1 and W2,
then compare total correlation of top k components.
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Correlation as a function of depth

Explore relative contribution of depth/width
Vary depth from three to eight layers, reducing the width to
keep the total number of parameters constant
Total correlation increases monotonically with depth, and
at eight layers has still not reached saturation

layers 3 4 5 6 7 8 max
Dev set 66.7 68.1 70.1 72.5 76.0 79.1 112
Test set 80.4 81.9 84.0 86.1 88.5 88.6 112
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Conclusions

DCCA learns complex nonlinear transformations to
discover latent relationships in two views of data.
Unlike KCCA, DCCA is a parametric method.

does not require an inner product
representations of unseen instances can be computed
without reference to the training set

In experiments, DCCA finds much more highly correlated
representations than KCCA or linear CCA.
Tall skinny networks are better than short fat ones.
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