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0. Abstract
• We introduce DCCA, a method to learn complex
nonlinear transformations of two views of data
such that the resulting representations are highly
linearly correlated.

• Unlike KCCA, DCCA is a parametric method and
does not require an inner product.

• In experiments on real-world datasets, DCCA
finds representations that are much more highly
correlated than those of KCCA.

• We also introduce a novel non-saturating sigmoid
function based on the cube root.

1. Correlated Representations
Consider a dataset in which each case has two multi-
dimensional “views” x

(i)
1 ∈ Rn1 and x

(i)
2 ∈ Rn2 .

x
(i)
1 x

(i)
2

demographic proper-
ties of survey partici-
pant i

responses of survey
participant i to politi-
cal questions

acoustic features of a
signal at time i

pixel intensities of
video signal at time i

• CCA, KCCA, and DCCA all learn functions
f1(x1) : Rn1 7→ Rk and f2(x2) : Rn2 7→ Rk that
maximize corr(f1(x1), f2(x2)).

• Finding correlated representations
– May provide insight into the data

– Can be used to induce features that capture
some of the information of the other view, if
it is unavailable at test time

– Can be used to detect asychrony

2. CCA and KCCA
CCA detects linear relationships: f1(x1) = w′1x1.
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Two views of each instance have the same color

• Estimate within view covariance matrices Σ11 and
Σ22, and cross-covariance Σ12.

• Let T , Σ
−1/2
11 Σ12Σ

−1/2
22 , with SVD T = UDV ′.

• The total correlation is
∑k

i=1 Dii.

• The matrices of the first k pairs of projection vec-
tors are (W ∗1 ,W

∗
2 ) = (Σ

−1/2
11 Uk,Σ

−1/2
22 Vk), where

Uk is the first k columns of U .

Kernel CCA (KCCA) can use f1 ∈ H for RKHS H.

• May use different kernels for each view

• Can be used to produce features that improve
performance of a classifier when second view is
unavailable at test time (Arora & Livescu, 2012)

• Disadvantages
– Slower to train

– Training set must be stored and referenced
when employing the model

– Model is more difficult to interpret

3. Deep CCA

• DCCA learns mappings f1 and f2 represented by
deep nonlinear networks under which the data is
highly correlated.

• Using a deep MLP for the transformation may be
well suited to natural, real-world data such as vision,
audio, or other high-dimensional sensor measure-
ments, compared to standard kernels.

• As a parametric model, the training set can be dis-
carded once parameters have been learned.

• Unlike KCCA, does not require computing inner
products.
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4. Training
• To train a DCCA model

1. Pretrain the layers of each side individually
– We use denoising autoencoder pretraining
(Vincent et al., 2008)

2. Jointly fine-tune all parameters to maximize
total correlation of the output layers H1, H2

• Correlation is a population objective, so it’s not
clear how to use typical stochastic training meth-
ods operating one instance at a time.
– Instead, we use L-BFGS second-order method
(full-batch)

• To fine-tune all parameters via backpropagation,
we need to compute the gradient ∂ corr(H1,H2)

∂H1
.

• Let Σ11,Σ22,Σ12, and T = UDV ′ as in box 2.
Then,

∂ corr(H1, H2)

∂H1
=

1

m− 1

(
2∇11H̄1 +∇12H̄2

)
.

where
∇12 = Σ̂
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−1/2
22

and
∇11 = −1

2
Σ̂
−1/2
11 UDU ′Σ̂

−1/2
11 .

5. Nonsaturating nonlinearity
• Standard, saturating sigmoid nonlinearities (logis-

tic, tanh) sometimes cause problems for optimiza-
tion (plateaus, ill-conditioning), particularly for
second-order methods.

• We obtained better results with a novel nonsatu-
rating sigmoid.

• If g : R 7→ R is the function g(y) = y3/3 + y, then
our function is s(x) = g−1(x).

• Closely related to cube root, but differentiable at
x = 0 with unit slope.

• Derivative: s′(x) = (s2(x) + 1)−1
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This type of nonlinearity may be useful more generally
in nonlinear networks (future work).
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6. Evaluation
• Evaluate model by estimating the total correla-
tion of unseen test data after applying learned
functions f1(x1), f2(x2).
• CCA and KCCA order components by training

correlation, but the output of a DCCA model has
no inherent ordering.
• Fine to compare correlation of top k components
when k = o, the DCCA output size.
• To evaluate at k < o

– Perform linear CCA on output layers on train-
ing data to obtain transformations W1, W2

– Map test data by W1 and W2, then compare
correlation of top k components

7. Split MNIST
• MNIST handwritten digits, left/right halves
• 28x14 matrix of 256 grayscale values

• 60k train, 10k test
• 10% of train used for hyperparameter tuning
• k = 50 for all models (max score: 50)
• DCCA model has two layers, hidden layer widths

chosen on development set as 2038 and 1608

CCA KCCA (RBF) DCCA (50-2)
Dev 28.1 33.5 39.4
Test 28.0 33.0 39.7

8. Speech
• Wisconsin XRMB database of simultaneous acous-

tic and articulatory recordings

Acoustic: 13 MFCCs +
first and second deriva-
tives, over seven frames
(273 features)

Articulatory: horizon-
tal & vertical displace-
ments of 8 pellets on
lips, tongue & jaws over
7 frames (112 features)
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