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0. Abstract

e We introduce DCCA, a method to learn complex

nonlinear transtormations of two views of data DCCA 1 , q tod b [
such that the resulting representations are highly ° earns mappings f1 and f, represented by

: deep nonlinear networks under which the data is
linearly correlated. ,
highly correlated.

3. Deep CCA

Unlike KCCA, DCCA is a parametric method and

e Using a deep MLP for the transformation may be
well suited to natural, real-world data such as vision,
audio, or other high-dimensional sensor measure-
ments, compared to standard kernels.

does not require an inner product.

In experiments on real-world datasets, DCCA

finds representations that are much more highly
correlated than those of KCCA.

We also introduce a novel non-saturating sigmoid
function based on the cube root.

e As a parametric model, the training set can be dis-
carded once parameters have been learned.

e Unlike KCCA, does not require computing inner
products.

1. Correlated Re

Consider a dataset in which each case has two multi-
dimensional “views” a:@ ¢ R"™ and xg) c R"2.

(i) () 4. Tralning

6. Evaluation

e To train a DCCA model e Evaluate model by estimating the total correla-
tion of unseen test data after applying learned
functions fi(x1), fo(x2).

CCA and KCCA order components by training
correlation, but the output of a DCCA model has
no inherent ordering.

1. Pretrain the layers of each side individually

— We use denoising autoencoder pretraining
(Vincent et al., 2008)

2. Jointly fine-tune all parameters to maximize
total correlation of the output layers Hq, Ho

demographic proper- responses of survey
ties of survey partici- participant ¢ to politi-
pant 7 cal questions

Fine to compare correlation of top k& components
when k = o, the DCCA output size.

To evaluate at k£ < o

e Correlation is a population objective, so it’s not
clear how to use typical stochastic training meth-
ods operating one instance at a time.

— Instead, we use L-BFGS second-order method
(full-batch)

— Perform linear CCA on output layers on train-

ing data to obtain transformations Wy, W5
— Map test data by W; and W5, then compare

correlation of top £ components

e s % Lk
acoustic features of a pixel intensities of
signal at time 2 video signal at time 72

e To fine-tune all parameters via backpropagation,
aCOI‘I'(Hl,Hg)

o CCA, KCCA, and DCCA all learn functions OH,
fl(xl) - RM™1 Rk and fQ(CEQ) - R™2 — Rk that o lect 2117222,212, and T" = UDV’ as in box 2.

maximize corr(fi(x1), fo(x2)). Then,

we need to compute the gradient

Split MNIST
MNIST handwritten digits, left /right halves

e Finding Correla.tted. re]._orese.ntatlons O corr(Hy, H») _ 1 (2V11 iy + V1o EQ) | 28x14 matrix of 256 grayscale values
— May provide insight into the data 0H, m — 1
— (Can be used to induce features that capture where

some of the information of the other view, if

A _1/2 A _1/2
.. . . Vig = Z11 / lezzz /
1t 1s unavailable at test time

60k train, 10k test

10% of train used for hyperparameter tuning

and

— Can be used to detect asychrony v, — —153_1/2UDU'§A]_1/2
B 11

2. CCA and KCC(

CCA detects linear relationships: f1(x1) = wjx;.

k = 50 for all models (max score: 50)

DCCA model has two layers, hidden layer widths
chosen on development set as 2038 and 1608

Nonsaturating

Standard, saturating sigmoid nonlinearities (logis-
tic, tanh) sometimes cause problems for optimiza-

tion (plateaus, ill-conditioning), particularly for CCA |KCCA (RBF) | DCCA (50-2)
second-order methods. Dev | 981 33 5 39 4

We obtained better results with a novel nonsatu- Test | 28.0 33.0 39.7
rating sigmoid.

If g : R — R is the function g(y) = v>/3 + v, then
our function is s(z) = g~ (z).

Closely related to cube root, but differentiable at e Wisconsin XRMB database ot simultaneous acous-
tic and articulatory recordings

Speech

r = 0 with unit slope.
Derivative: s'(z) = (s*(x) + 1)1

X, € R* X, € R?

Two views of each instance have the same color

e Estimate within view covariance matrices >11 and
Y99, and cross-covariance >.1.

o Let T 2 %,,/?%1,%,, /%, with SVD T = UDV".
e The total correlation is Zle D.;.

Acoustic: 13 MFCCs + Articulatory: horizon-
first and second deriva- tal & vertical displace-
tives, over seven frames ments of 8 pellets on

o o sion 504 (273 features) lips, tongue & jaws over
7 frames (112 features)

e The matrices of the first k pairs of projection vec-
tors are (W, W5) = (Zfll/QUk, Z;QI/QVk), where
Ui is the first k& columns of U.

2 3

Kernel CCA (KCCA) can use f; € H for RKHS H.

This type of nonlinearity may be usetul more generally 100,

: . B DCCA-50-2
in nonlinear networks (future work).

1:DCCA-112-8
@DCCA-112-3

e May use different kernels for each view
80

e Can be used to produce features that improve Aiggﬁ—gglﬁ\(
performance of a classifier when second view is | | References / Ackne S !%!CCA
ilable at test time (Arora & Li 2012) S 9
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- learning of acoustic features using articulatory measure- S
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— Training set must be stored and referenced
when employing the model

— Model is more difficult to interpret
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