Deep Canonical Correlation Analysis

Galen Andrew¹, Raman Arora², Jeff Bilmes¹, Karen Livescu² ¹University of Washington ²Toyota Technological Institute at Chicago

3. Deep CCA

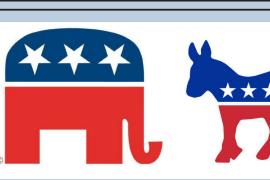
highly correlated.

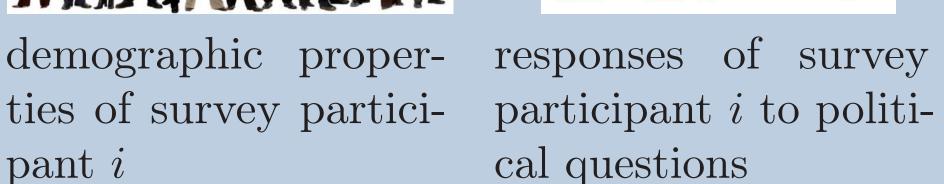
0. Abstract

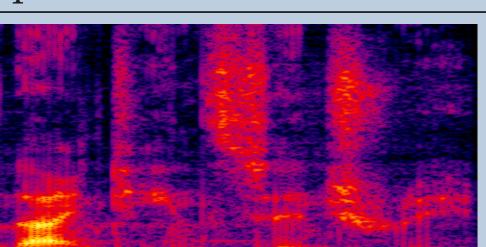
- We introduce DCCA, a method to learn complex nonlinear transformations of two views of data such that the resulting representations are highly linearly correlated.
- Unlike KCCA, DCCA is a parametric method and does not require an inner product.
- In experiments on real-world datasets, DCCA finds representations that are much more highly correlated than those of KCCA.
- We also introduce a novel non-saturating sigmoid function based on the cube root.

1. Correlated Representations

Consider a dataset in which each case has two multidimensional "views" $x_1^{(i)} \in \mathbb{R}^{n_1}$ and $x_2^{(i)} \in \mathbb{R}^{n_2}$.







acoustic features of a signal at time i

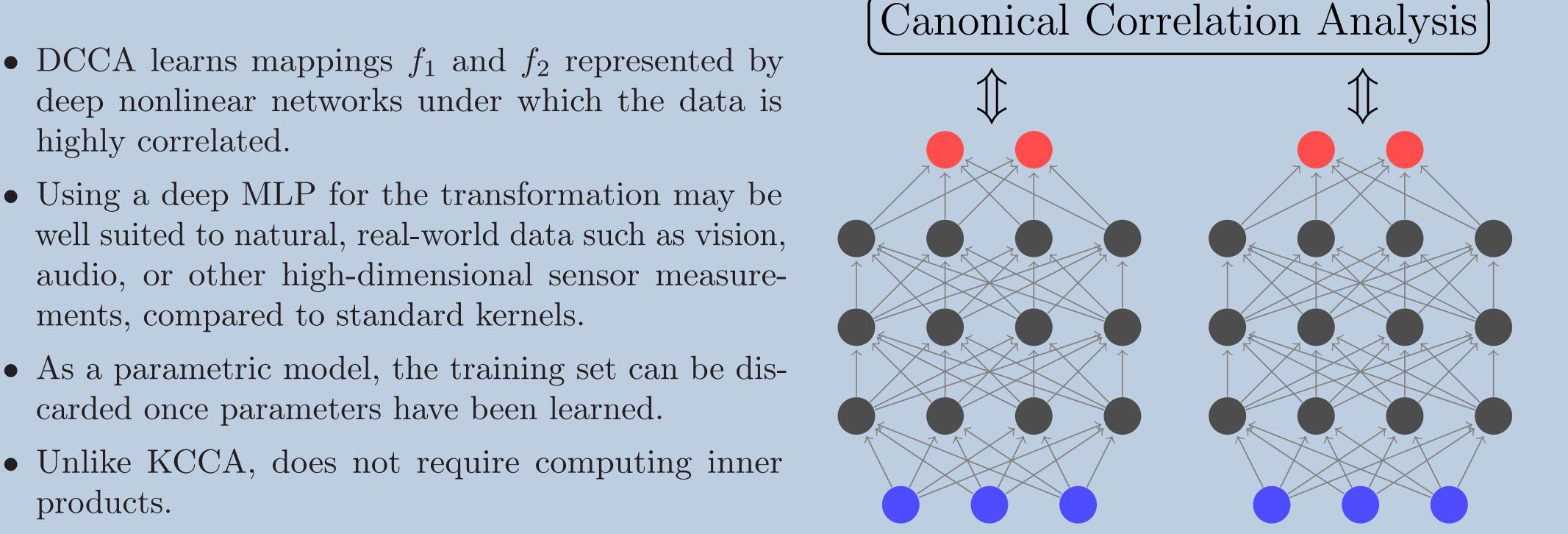
pixel intensities of video signal at time i

- CCA, KCCA, and DCCA all learn functions $f_1(x_1): \mathbb{R}^{n_1} \to \mathbb{R}^k \text{ and } f_2(x_2): \mathbb{R}^{n_2} \to \mathbb{R}^k \text{ that }$ maximize $corr(f_1(x_1), f_2(x_2))$.
- Finding correlated representations
 - May provide insight into the data
 - Can be used to induce features that capture some of the information of the other view, if it is unavailable at test time
 - Can be used to detect asychrony

• As a parametric model, the training set can be discarded once parameters have been learned.

ments, compared to standard kernels.

• Unlike KCCA, does not require computing inner products.



• Evaluate model by estimating the total correla-

• CCA and KCCA order components by training

• Fine to compare correlation of top k components

- Perform linear CCA on output layers on train-

ing data to obtain transformations W_1, W_2

- Map test data by W_1 and W_2 , then compare

when k = o, the DCCA output size.

correlation, but the output of a DCCA model has

tion of unseen test data after applying learned

View 1

6. Evaluation

functions $f_1(x_1), f_2(x_2)$.

no inherent ordering.

• To evaluate at k < o

View 2

4. Training

- To train a DCCA model
 - 1. Pretrain the layers of each side individually
 - We use denoising autoencoder pretraining (Vincent et al., 2008)
 - 2. Jointly fine-tune all parameters to maximize total correlation of the output layers H_1, H_2
- Correlation is a population objective, so it's not clear how to use typical stochastic training methods operating one instance at a time.

- Instead, we use L-BFGS second-order method (full-batch)

- To fine-tune all parameters via backpropagation, we need to compute the gradient $\frac{\partial \operatorname{corr}(H_1, H_2)}{\partial H_1}$.
- Let $\Sigma_{11}, \Sigma_{22}, \Sigma_{12}$, and T = UDV' as in box 2. Then,

$$\frac{\partial \operatorname{corr}(H_1, H_2)}{\partial H_1} = \frac{1}{m-1} \left(2\nabla_{11}\bar{H}_1 + \nabla_{12}\bar{H}_2 \right).$$

where

 $\nabla_{12} = \hat{\Sigma}_{11}^{-1/2} U V' \hat{\Sigma}_{22}^{-1/2}$

and

 $\nabla_{11} = -\frac{1}{2}\hat{\Sigma}_{11}^{-1/2}UDU'\hat{\Sigma}_{11}^{-1/2}.$

7. Split MNIST

• MNIST handwritten digits, left/right halves

correlation of top k components

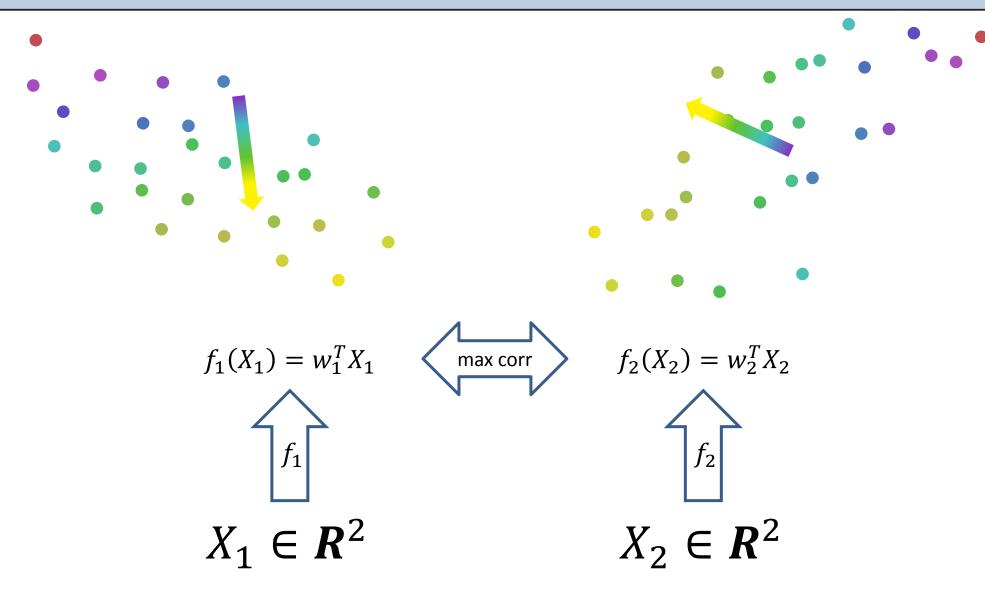
• 28x14 matrix of 256 grayscale values

- 60k train, 10k test
- 10% of train used for hyperparameter tuning
- k = 50 for all models (max score: 50)
- DCCA model has two layers, hidden layer widths chosen on development set as 2038 and 1608

	CCA	KCCA (RBF)	DCCA (50-2)
Dev	28.1	33.5	39.4
Test	28.0	33.0	39.7

2. CCA and KCCA

CCA detects linear relationships: $f_1(x_1) = w'_1 x_1$.



Two views of each instance have the same color

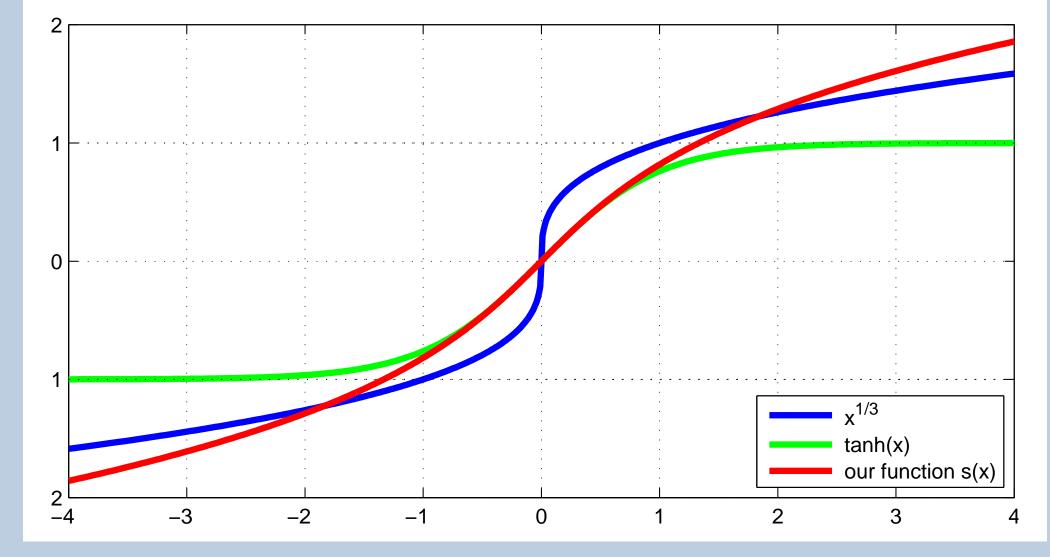
- Estimate within view covariance matrices Σ_{11} and Σ_{22} , and cross-covariance Σ_{12} .
- Let $T \triangleq \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1/2}$, with SVD T = UDV'.
- The total correlation is $\sum_{i=1}^{k} D_{ii}$.
- The matrices of the first k pairs of projection vectors are $(W_1^*, W_2^*) = (\Sigma_{11}^{-1/2} U_k, \Sigma_{22}^{-1/2} V_k)$, where U_k is the first k columns of U.

Kernel CCA (KCCA) can use $f_1 \in \mathcal{H}$ for RKHS \mathcal{H} .

- May use different kernels for each view
- Can be used to produce features that improve performance of a classifier when second view is unavailable at test time (Arora & Livescu, 2012)
- Disadvantages
 - Slower to train
 - Training set must be stored and referenced when employing the model
 - Model is more difficult to interpret

5. Nonsaturating nonlinearity

- Standard, saturating sigmoid nonlinearities (logistic, tanh) sometimes cause problems for optimization (plateaus, ill-conditioning), particularly for second-order methods.
- We obtained better results with a novel nonsaturating sigmoid.
- If $g: \mathbb{R} \to \mathbb{R}$ is the function $g(y) = y^3/3 + y$, then our function is $s(x) = g^{-1}(x)$.
- Closely related to cube root, but differentiable at x = 0 with unit slope.
- Derivative: $s'(x) = (s^2(x) + 1)^{-1}$



This type of nonlinearity may be useful more generally in nonlinear networks (future work).

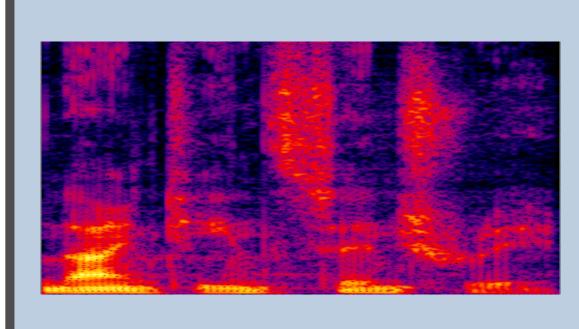
References/Acknowledgements

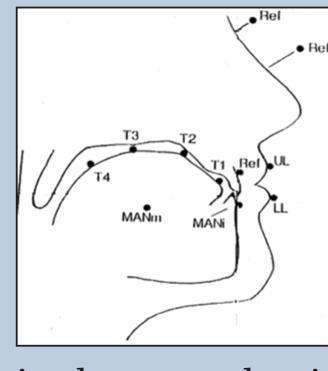
- [1] R. Arora, and K. Livescu, "Kernel CCA for multi-view learning of acoustic features using articulatory measurements," in Symp. on Machine Learning in Speech and Language Processing, 2012.
- P. Vincent, H. Larochelle, J. Bengio, and P.A. Manzagol "Extracting and composing robust features with denoising autoencoders," in ICML, 2008.

This research was supported by NSF grant IIS-0905633 and by the Intel/UW ISTC.

8. Speech

• Wisconsin XRMB database of simultaneous acoustic and articulatory recordings





Acoustic: 13 MFCCs + first and second derivatives, over seven frames (273 features)

Articulatory: horizontal & vertical displacements of 8 pellets on lips, tongue & jaws over 7 frames (112 features)

