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Abstract

We present a generalization of dynamic Bayesian networksmaisely describe
complex probability distributions such as in problems withltiple interacting
variable-length streams of random variables. Our fram&Jimcorporates recent
graphical model constructs to account for existence uairdyt value-specific
independence, aggregation relationships, and local astzthbtonstraints, while
still retaining a Bayesian network interpretation and éffi¢ inference and learn-
ing techniques. We introduce one such general techniquehvidran extension
of Value Elimination, a backtracking search inference gtgm. Multi-dynamic
Bayesian networkare motivated by our work on Statistical Machine Transla-
tion (MT). We present results on MT word alignment in suppdrour claim that
MDBNSs are a promising framework for the rapid prototypinghefvy MT systems.

1 INTRODUCTION

The description of factorization properties of familiespgbbabilities using graphs (i.e., graphical
models, or GMs), has proven very useful in modeling a wideetarof statistical and machine

learning domains such as expert systems, medical diagriegission making, speech recognition,
and natural language processing. There are many diffeypastof graphical model, each with its
own properties and benefits, including Bayesian networkdjracted Markov random fields, and
factor graphs. Moreover, for different types of scientifiodaeling, different types of graphs are
more or less appropriate. For example, static Bayesianatksaare quite useful when the size of
set of random variables in the domain does not grow or shonlali data instances and queries of
interest.

Hidden Markov models (HMMs), on the other hand, are suchttrehumber of underlying random
variables changes depending on the desired length (whitlbea random variable), and HMMs
are applicable even without knowing this length as they camiended indefinitely using online
inference. HMMs have been generalized to dynamic Bayestmarks (DBNs) and temporal con-
ditional random fields (CRFs), where an underlying set ofaldes gets repeated as needed to fill
any finite but unbounded length. Probabilistic relationald@ls (PRMs) [5] allow for a more com-
plex template that can be expanded in multiple dimensiamsilshneously. An attribute common
to all of the above cases is that the specification of rulegfpanding any particular instance of a
model is finite. In other words, these forms of GM allow thedfieation of models with an unlim-
ited number of random variables (RVs) using a finite desicniptThis is achieved using parameter
tying, so while the number of RVs increases without bound thmber of parameters does not.

In this paper, we introduce a new class of model we call ndytiamic Bayesian networks. MDBNs
are motivated by our research into the application of gregdhinodels to the domain of statistical
machine translation (MT) and they have two key attributemfthe graphical modeling perspective.
First, an MDBN generalizes a DBN in that there are multipleeams” of variables that can get
unrolled, but where each stream may be unrolled by a diffeaimount. In the most general case,
connecting these different streams together would redb@especification of conditional probabil-



ity tables with a varying and potentially unlimited numbdrparents. To avoid this problem and
retain the template’s finite description length, we utilizewitching parent functionality (also called
value-specific independence). Second, in order to caph@&enttion of fertility in MT-systems
(defined later in the text), we employ a form of existence wadety [7] (that we callswitching
existencg whereby the existence of a given random variable migheddmn the value of other
random variables in the network.

Being fully propositional, MDBNSs lie between DBNs and PRMdérms of expressiveness. While
PRMs are capable of describing any MDBN, there are, in gérestaantages to restricting ourselves
to a more specific class of model. For example, in the DBN dasepossible to provide a bound on
inference costs just by looking at attributes of the DBN t&atgonly (e.g., the left or right interfaces
[12, 2]). Restricting the model can also make it simpler te ingpractice. MDBNSs are still relatively
simple, while at the same time making possible the easy sgjme of MT systems, and opening
doors to novel forms of probabilistic inference as we sholebe

In section 2, we introduce MDBNSs, and describe their apfittceto machine translation showing
how it is possible to represent even complex MT systems. dtise3, we describe MDBN learning
and decoding algorithms. In section 4, we present expetiaheesults in the area of statistical
machine translation, and future work is discussed in se&io

2 MDBNs

A standard DBN [4] template consists of a directed acyclapyG = (V, E) = (V1 U Vo, Eq U
E, U E57) with node se” and edge seE. Fort € {1,2}, the setd/; are the nodes at sliae E;
are the intra-slice edges between nodek;irandE;~ are the inter-slice edges between nodek;in
andV,. To unroll a DBN to lengthl’, the noded/;, along with the edges adjacent to any nod&4n
are clonedl" — 1 times (where parameters of cloned variables are consttambe the same as the
template) and re-connected at the corresponding places.

An MDBN with K streams consists of the union 5f DBN templates along with a template struc-
ture specifying rules to connect the various streams tegetihn MDBN template is a directed
graph
G=,E)=Jv® JE® UEY)
k k
where(V ) E(*)) is thek*" DBN, and the edgeE%) are rules specifying how to connect stream
k to the other streams. These rules are general in that thejfgplee set of edges for all values of

Ty There can be arbitrary nesting of the streams such as, omple, it is possible to specify a
model that can grow along several dimensions simultangousl

An MDBN also utilizes “switching existence”, meaning sonubset of the variables ii¥ bestow
existence onto other variables in the network. We call theseblesexistence bestowin@r eb-
node$. The idea of bestowing existence is well defined over a discspace, and is not dissimilar
to a variable length DBN. For example, we may have a jointithistion over lengths as follows:

p(X1,..., XN, N)=p(X1,...,Xun|N =n)p(N =n)
where hereV is an eb-node that determines the number of other randorablas in the DGM.

Our notion of eb-nodes allows us to model certain charasttesi found within machine translation
systems, such as “fertility” [3], where a given English wasdcloned a random number of times
in the generative process that explains a translation froendh into English. This random cloning
might happen simultaneously at all points along a given MDOffgam. This means that even for a
given fixed stream length; = ¢;, each stream could have a randomly varying number of random
variables. Our graphical notation for eb-nodes consisthefeb-node as a square box containing
variables whose existence is determined by the eb-node.

We start by providing a simple example of an expanded MDBNHeaee well known MT systems,
namely the IBM models 1 and 2 [3], and the “HMM” model [15We adopt the convention in [3]
that our goal is to translate from a string of French woRls= f of lengthM = m into a string

of English wordsE = e of length L = [ — of course these can be any two languages. The basic
generative (noisy channel) approach when translating fecench to English is to represent the joint

Ywe will refer to it as M-HMM to avoid confusion with regular HMMs.



distribution P(f,e) = P(f|e)P(e). P(e) is a language model specifying the prior over the word
stringe. The key goal is to produce a finite-description length repngation forP(f|e) wheref
ande are of arbitrary length. A hidden alignment strirg,specifies how the English words align to
the French word, leading tB(f|e) = >, P(f, ale).

Figure 1(a) is a 2-stream MDBN expanded representationeftitee models, in this cage= 4
andm = 3. As shown, it appears that the fan-in to nofjewill be ¢ and thus will grow without
bound. However, a switching mechanism wheré®yf;le,a;) = P(fileq,) limits the number of
parameters regardless 6f This means that the alignment variakleindicates the English word
eq,; that should be aligned to French wofd The variable is anull word that connects to French
words not explained by any ef, .. ., e,. The graph expresses all three models — the difference is
that, in Models 1 and 2, there are no edges betwgeanda;. 1. In Model 1,p(a; = ¢) is uniform
onthe sefl,..., L}; in Model 2, the distribution ovet; is a function only of its positiori, and on

the English and French lengthsindm respectively. In the M-HMM model, the; variables form

a first order Markov chain.
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(a) Models 1,2 and M-HMM (b) Expanded M3 graph

[ m ]

Figure 1:Expanded 2-stream MDBN description of IBM Models 1 and 2 taad1-HMM model for
MT; and the expanded MDBN description of IBM Model 3 withiligrtassignmentpy = 2, ¢, =

33¢2:17¢3:0'

From the above, we see that it would be difficult to expressitbdel graphically using a standard
DBN sinceL and M are unequal random variables. Indeed, there are two DBNpémation, one
consisting of the English string, and the other consistifithe French string and its alignment.
Moreover, the fully connected structure of the graph in tlgeie can represent the appropriate
family of model, but it also represents models whose paransgtace grows without bound — the
switching function allows the model template to stay finégardless of. and M.

With our MDBN descriptive abilities complete, it is now pdss to describe the more complex IBM
models 3, and 4[3] (an MDBN for Model3 is depicted in fig. 1(B)lhe top most random variablég,

is a hidden switching existence variable correspondingp¢déngth of the English string. The box
abutting? includes all the nodes whose existence depends on the valudmthe figure,l = 3,
thus resulting in three English words, e5, andes connected using a second-order Markov chain.
To each English word, corresponds a conditionally dependent fertility eb-n@devhich indicates
how many timeg; is used by words in the French string. Eaghn turn controls the existence of a
set of variables under it. Given the fertilities (the figuepttts the caseé, = 3, 9> = 1, p3 = 0), for
each worde;, ¢; French word variables are granted existence and are debptgd, 7,2, . . . , 74, ,
what is called thdablet[3] of ¢;. The values taken by the variables need to match the actual
observed French sequengge ..., f,,. This is represented as a shared constraint between all the
f, m, and 7 variables which have incoming edges into the observed haria v’s conditional
probability table is such that it is one only when the asdedi@onstraint is satisfiédThe variable

2This type of encoding of constraints corresponds to the standard misghased by Pearl [14]. A naive
implementation, however, would enumerate a number of configuratigmenential in the number of con-
strained variables, while typically only a small fraction of the configuratiensld have positive probability.



mik € {1,...,m} is a switching dependency parent with respect to the cdnstrariablev and
determines whicly; participates in an equality constraint with,.

The bottom variablen is a switching existence node (observed to be 6 in the figuit) eorre-
sponding French word sequence and alignment variableskFrEmeh sequence participates in the
constraint described above, while the alignment variables {1,...,¢},j € 1,...,m constrain
the fertilities to take their unique allowable values (floe given alignment). Alignments also restrict
the domain of permutation variables, using the constraint variable Finally, the domain size of
eacha; has to lie in the interval0, /] and that is enforced by the variable The dashed edges
connecting the alignmentvariables represent an extension to implement an M3/M-HMfrial.

The null submodelnvolving the deterministic nodex' (= Zle ¢;) and eb-node, accounts for
French words that are not explained by any of the English wexd. .., e,. In this submodel,
successive permutation variables are ordered and thidgragrss implemented using the observed
child w of mo; andmg;41)-

Model 4 [3] is similar to Model 3 except that the former is béiem a more elaborate distortion
model that uses relative instead of absolute positionsWwittin and between tablets.

3 Inference, Parameter Estimation and M PE

Multi-dynamic Bayesian Networks are amenable to any typefefence that is applicable to regular
Bayesian networks as long as switching existence reldiipasre respected and all the constraints
(aggregation for example) are satisfied. Unfortunately DBfdrence procedures that take advan-
tage of the repeatable template and can preprocess it offlieenot easy to apply to MDBNs. A
case in point is the Junction Tree algorithm [11]. Triangjolaalgorithms exist that create an offline
triangulated version of the input graph and do not re-tridatg it for each different instance of the
input data [12, 2]. In MDBNSs, due to the flexibility to unroémplates in several dimensions and to
specify dependencies and constraints spanning the emticled graph, it is not obvious how we
can exploit any repetitive patterns in a Junction Treeestffline triangulation of the graph template.

In section 4, we discuss sampling inference methods we reaek tHere we discuss our extension to
a backtracking search algorithm with the same performaneeagtees as the JT algorithm, but with
the advantage of easily handling determinism, existencertainty, and constraints, both learned
and explicitly stated.

Value Elimination (VE) ([1]), is a backtracking Bayesiantwerk inference technique that caches
factors associated with portions of the search tree and uses theroio igerating again over the
same subtrees. We follow the notation introduced in [1] afdrrthe reader to that paper for details
about VE inference. We have extended the VE inference apprtmhandle explicitly encoded
constraints, existence uncertainty, and to perfapproximate local domain prunin@ee section 4).
We omit these details as well as others in the original papdrtaiefly describe the main data
structure required by VE and sketch the algorithm we refaistéir stPass (fig. 1) since it constitutes
the first step of the learning procedure, our main contrduth this section.

A VE factor, F, is such that we can write the following marginal of the jailigtribution

Y P(X=xY=y,Z) = Fuval x f(Z)
X=x

suchtha{XuUY)NZ = 0, F.val is a constant, anfl(Z) a function ofZ only. Y is a set of variables
previously instantiated in the current branch of search togthe value vectoy. The pair(Y,y) is
referred to as aependency set (F.Dset). X is referred to as aubsumed set (F.Sset). By caching

the tuple(F.Dset, F.Sset, F.val), we avoid recomputing the marginal again wheneveti{I)set

is active, meaning all nodes stored in Dset are assigned their cached values in the current branch
of the search tree; and (2) none of the variableB.ifiset are assigned yet.

FirstPass (alg. 1) visits nodes in the graph in Depth First fashion. ife [7, we get the values of
all Newly Single-valued (NSV) CPTs i.e., CPTs that involve the current nolifg,and in which all

We use a general directed domain pruning constraint. Deterministic redhtfmmthen become a special case
of our constraint whereby the domain of the child variable is constrainadgioegle value with probability one.



Variable traversal order: A, B, C, and D.
Factors are numbered by order of creation.

*Fi denotes the activation of factor i. Tau values propagated recursively

F7: Dset={} Sset={A B,C,D} val=P(E=e) F7.tau = 1.0 = P(Evidence)/F7.val

F5.tau = F7.tau * P(A=0) F6.tau = F7.tau * P(A=1)

F3.tau = F5.tau * P(B=0|A=0) + F6.tau * P(B=0]A=1) = P(B=0)
Wre.m *p(B=1]A=1) = P(B=1)

F1.tau = F3.tau * P(C=0|B=0) + F4.tau * P(C=0|B=1) = P(C=0)
F2.tau = F3.tau * P(C=1|B=0) + F4.tau * P(C=1|B=1) = P(C=1)

F5: Dset={A=0} Sset={B,C,D}

First pass )

ssed puooss

<
-

Factor values needed for c(A=0) and c¢(C=0,B=0) computation: c(A=0)=(1/P(e))*(F7.tau*P(A=0)*F5.val)=(1/P(e))(P(A=0)*P(E=e|A=0))=P(A=0|E:
F5.val=P(B=0|A=0)*F3.val+P(B=1|A=0)*F4.val ¢(C=0,B=0)=(1/P(e))*F3.tau*P(C=0|B=0)*F1.val
F3.val=P(C=0|B=0)*F1.val+P(C=1|B=0)*F2.val =(1/P(e) * (P(A=0,B=0)+P(A=1,8=0)) * P(C=0|B=0) * FL.val

=(1/P(e)) * P(B=0) * P(C=0|B=0) * F1.val
=(1/P(e)) * P(B=0) * P(C=0|B=0) * FL.val
F1.val=P(D=0|C=0)P(E=€|D=0)+P(D=1|C=0)P(E=e|D=1) =(1/P(e)) * P(C=0,B=0) * F1.val

F2.val=P(D=0|C=1)P(E=e|D=0)+P(D=1|C=1)P(E=€|D=1) =P(C=0,B=0,E=e)/P(e)=P(C=0,B=0|E=e)

F4.val=P(C=0|B=1)*F1.val+P(C=1|B=1)*F2.val

Figure 2: Learning example using the Markov chaihn— B — C — D — E, whereFE is observed.
In the first pass, factors (Dset, Sset and val) are learned in a bottomslpofa Also, the normalization
constantP(E = e) (probability of evidence) is obtained. In the second pass, tau valuesmtated in a
top-down fashion and used to calculate expected cat{ftsiead, pa(F.head)) corresponding to each Fhead
(the figure shows the derivations for (A=0) and (C=0,B=0), but all etsuare updated in the same pass).

other variables are already assigned (these variabledhaitd/alues are accumulated into Dset). We
also check for factors that are active, multiply their valirg and accumulate subsumed vars in Sset
(to avoid branching on them). In line 10, we addo the Sset. In line 11, we cache a new fadtor
with value F.val = sum. We storelV into F.head, a pointer to the last variable to be inserted into
F.Sset, and needed for parameter estimation described bdltllset consists of all the variables,
exceptV/, that appeared in any NSV CPT or the Dset of an activatedrfatime 6.

Regular Value Elimination is query-based, similar to vhiga elimination and recursive
conditioning—what this means is that to answer a query of ype P(Q|E = e), where( is
query variable and a set of evidence nodes, we forQeto be at the top of the search tree, run the
backtracking algorithm and then read the answers to thdepiB(Q = ¢|E = e),q € Dom|[Q)],
along each of the outgoing edges®@f Parameter estimation would require running a number of
gueries on the order of the number of parameters to estimate.

We extend VE into an algorithm that allows us to obtain Expoh Maximization sufficient statis-
tics in a single run of Value Elimination plus a second pagsctvcan never take longer than the first
one (and in practice is much faster). This two-pass proeetuanalogous to the collect-distribute
evidence procedure in the Junction Tree algorithm, but tverdo this via a search tree.

LetOx—,|pa(x)—y De a parameter associated with variaklevith valuex and parenty” = pa(X)

when they have valug;. Assuming a maximum likelihood learning scendrido estimate
0 x —z|pa(x)=y, W€ Need to compute

f(X =z,pa(X)=y,E=¢e) = >  P(W,X=zpaX)=y,E=e)
W\ {X pa(X)}

which is a sum of joint probabilities of all configurationsathare consistent with the assignment
{X = z,pa(X) = y}. If we were to turn off factor caching, we would enumeratesalth variable
configurations and could compute the sum. When standard \t&réaare used, however, this is no
longer possible wheneve¥ or any of its parents becomes subsumed. Fig. 2 illustratesample

of a VE tree and the factors that are learned in the case of &dvarhain with an evidence node

at the end. We can readily estimate the parameters assbeidtevariablesA and B as they are

not subsumed along any branafi.and D become subsumed, however, and we cannot obtain the
correct counts along all the branches that would lead snd D in the full enumeration case.

To address this issue, we store a special valuggu, in each factor. F.tau holds the sum over
all path probabilities from the first level of the search tteehe level at which the factaF was

3For Bayesian networks the likelihood function decomposes such thatmizing the expectation of the
complete likelihood is equivalent to maximizing the “local likelihood” of eaahiable in the network.



either created or activated. For exampl&.tau in fig. 2 is simplyP(A = 1). Although we can
computeF'3.tau directly, we can also compute it recursively usifg.tau and F'6.tau as shown in
the figure. This is because baitb and F'6 subsumée*'3: in the context{ '5.Dset}, there exists a
(unique) valued,,;, of F5.head* s.t. F'3 becomes activable. Likewise fét6. We cannot compute
F1.tau directly, but we can, recursively, froth3.tau and F'4.tau by taking advantage of a similar
subsumption relationship. In general, we can show thatdhewing recursive relationship holds:

~ HFact EFact Fact val
sub F.val

Fitau — Z FP? tau X NSVgra head—d Q)

FragFra

where 7P is the set of factors that subsumge F,.; is the set of all factors (including’) that be-
come active in the context ¢fF?*. Dset, FP*.head = dgyp} @NAN SVrre pead—d,,, 1S the product
of all newly single valued CPTs under the same context. Fopidwel factors (not subsumed by any
factor), F.tau = Peyidence/ F.val, which is1.0 when there is a unique top-level factor.

Alg. 2 is a simple recursive computation of eq. 1 for eachdaciVe visit learned factors in the
reverse order in which they were learned to ensure that, fgrfactor £/, F”’.tau is incremented
(line 13) by anyF" that might have activatefl” (line 12). For example, in fig. 25’4 usesF'1 and
F2, so F'4.tau needs to be updated befafd.tau and F'2.tau. In line 11, we can increment the
counts for any NSV CPT entries sindétau will account for the possible ways of reaching the
configuratior{ F.Dset, F.head = d} in an equivalent full enumeration tree.

Algorithm 1: FirstPass(level)

Input: GraphG
Output: A list of learned factors an@®.;dence
1 Select vai/ to branch on
2 if V==NONE then return
3 Sset{}, DsetH{}
for d € Dom[V]do
V «—d
prod = productOfAIINSVsAndActiveFactors(Dset, Sset)
if prod = 0 then FirstPass(level+1)
sum += prod
Sset = Sset U{V'}
10 cacheNewFactoH.head < V ,F.val «+ sum, F.Sset < Sset, F.Dset < Dset);

IN
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Algorithm 2: SecondPass()

Input: F: List of factors in the reverse order learned in the first passiangen.ce-
Result: Updated counts
1 foreach F € F do
if F.Dset = {} then
F.tau < Peyidence/F.val
else
F.tau < 0.0
Assign vars inF. Dset to their values
V « F.head (last node to have been subsumed in this factor)
foreach d € Dom[V] do
prod = productOfAIINSVsAndActiveFactors()
prodx = F.tau
foreach newly single-valued CPT do count(C.child,C.parents)+=prod/ Peyidence
F'=getListOfActiveFactors()
for F' € 7' do F'.tau+ = prod/F’.val

© 00N O 0 WN
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Most Probable Explanation We compute MPE using a very similar two-pass algorithm. & th
first pass, factors are used to store a maximum instead of enation over variables in the Sset. We
also keep track of the value @t.head at which the maximum is achieved. In the second pass, we
recursively find the optimal variable configuration by felimg the trail of factors that are activated
when we assign eadh.head variable to its maximum value starting from the last learfaedor.

“Recall, F.head is the last variable to be added to a newly created factor in line 10 of alg. 1



4 MACHINE TRANSLATION WORD ALIGNMENT EXPERIMENTS

A major motivation for pursuing the type of representatiord anference described above is to
make it possible to solve computationally-intensive r@atld problems using large amounts of data,
while retaining the full generality and expressivenessratiéd by the MDBN modeling language. In
the experiments below we compare running times of MDBNs @AGH+ on IBM Models 1 through

4 and the M-HMM model. GIZA++ is a special-purpose optimidé@ word alignment C++ tool
that is widely used in current state-of-the-art phraseetidd T systems [10] and at the time of this
writing is the only publicly available software that implemnts all of the IBM Models. We test on
French-English 107 hand-aligned senteAdesm a corpus of the European parliament proceedings
(Europarl [9]) and train on 10000 sentence pairs from theeseompus and of maximum number of
words 40. The Alignment Error Rate (AER) [13] evaluation ritetjuantifies how well the MPE
assignment to the hidden alignment variables matches hgma@rated alignments.

Several pruning and smoothing techniques are used by GIAAHMIBNS. GIZA prunes low lexical
(P(f|e)) probability values and uses a default small value for ungeepruned) probability table
entries. For models 3 and 4, for which there is no known patyiab time algorithm to perform
the full E-step or compute MPE, GIZA generates a set of higibability alignments using an M-
HMM and hill-climbing and collects EM counts over these aligents using M3 or M4. For MDBN
models we use the following pruning strategy: at each lef#lesearch tree we prune values which,
together, account for the lowest specified percentage abtiaéprobability mass of the product of
all newly active CPTs in line 6 of alg. 1. This is a more effeetpruning than simply removing
low-probability values of each CPD because it factors injdiet contribution of multiple active
variables.

Table 1 shows a comparison of timing numbers obtained GlZArd MDBNSs. The runtime num-
bers shown are for the combined tasks of training and degodiiowever, training time dominates
given the difference in size between train and test setsmoiels 1 and 2 neither GIZA nor MDBNs
perform any pruning. For the M-HMM, we prune 60% of probaigilinass at each level and use a
Dirichlet prior over the alignment variables such that leagge transitions are exponentially less
likely than shorter one$. This model achieves similar times and AER to GIZAs. Intéiregly,
without any pruning, the MDBN M-HMM takes 160 minutes to cdatp while only marginally
improving upon the pruned model. Experimenting with seivpraning thresholds, we found that
AER would worsen much more slowly than runtime decreases.

Models 3 and 4 have treewidth equal to the number of alignmeanables (because of the global
constraints tying them) and therefore require approxingference. Using Model 3, and a drastic
pruning threshold that only keeps the value with the top pbality at each level, we were able to
achieve an AER not much higher than GIZA's. For M4, it achgeaebest AER of 31.7% while we
do not improve upon Model3, most likely because a too rdstei@runing. Nevertheless, a simple
variation on Model3 in the MDBN framework achieves a lowerRAEhan our regular M3 (with
pruning still the same). The M3-HMM hybrid model combines Markov alignment dependencies
from the M-HMM model with the fertility model of M3.

MCMC Inference Sampling is widely used for inference in high-treewidth ralzd Although
MDBNSs support Likelihood Weighing, it is very inefficient wh the probability of evidence is very
small, as is the case in our MT models. Besides being slowkdtachain Monte Carlo can be
problematic when the joint distribution is not positive ghere, in particular in the presence of
determinism and hard constraints. Technigues such asibtp@ibbs sampling [8] try to address the
problem. Often, however, one has to carefully choose a prollependent proposal distribution.
We used MCMC to improve training of the M3-HMM model. We wel#eato achieve an AER of
32.8% (down from 39.1%) but using 400 minutes of uniprocete.

5 CONCLUSION

The existing classes of graphical models are not idealtgddor representing SMT models because
“natural” semantics for specifying the latter combine flessof different GM types on top of standard
directed Bayesian network semantissvitching parent$ound in Bayesian Multinets [6], aggrega-
tion relationships such as in Probabilistic Relational Eisd5], and existence uncertainty [7]. We

SAvailable atht t p: / / www. cs. washi ngt on. edu/ horres/ kari m
®French and English have similar word orders. On a different langpaiea different prior might be more
appropriate. With a uniform prior, the MDBN M-HMM has 36.0% AER.



Model GIZA++ MDBN
Init M1 M-HMM M1 M-HMM
M1 Im45s (47.7%) N/A 3m20s (48.0%) N/A
M2 2mo02s (41.3%) N/A 5ma30s (41.0%) N/A
M-HMM | 4m05s (35.0%) N/A Am15s (33.0%) N/A
M3 2m50 (45%) | 5m20s (38.5%) 12m (43.6%) om (42.5%)
M4 5m20s (34.8%)| 7m4b5s (31.7%)| 25m (43.6%) 23m (42.6%)
M3-HMM N/A 9m30 (41.0%) 9m15s (39.1%)
MCMC 400m (32.8%)

Table 1:MDBN VE-based learning versus GIZA++ timings and %AER using 5 EMtitera. The columns
M1 and M-HMM correspond to the model that is used to initialize the model icdhesponding row. The
last row is a hybrid Model3-HMM model that we implemented using MDBMNs$samot expressible using GIZA.

have introduced a generalization of dynamic Bayesian ndito easily and concisely build models
consisting of varying-length parallel asynchronous aneracting data streams. We have shown that
our framework is useful for expressing various statistivakchine translation models. We have also
introduced new parameter estimation and decoding algosithsing exact and approximate search-
based probability computation. While our timing resultsaoeyet as fast as a hand-optimized C++
program on the equivalent model, we have shown that evenisrgéneral-purpose framework of
MDBNSs, our timing numbers are competitive and usable. Oamgwork can of course do much
more than the IBM and HMM models. One of our goals is to useftaimework to rapidly prototype
novel MT systems and develop methods to statistically iedarcinterlingua. We also intend to use
MDBNSs in other domains such as multi-party social inte@ttnalysis.
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