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Abstract

There is fast growing research on designing energy-efficient computational devices and applications running on them.
As one of the most compelling applications for mobile devices, automatic speech recognition (ASR) requires new methods
to allow it to use fewer computational and memory resources while still achieving a high level of accuracy. One way to
achieve this is through parameter quantization. In this work, we compare a variety of novel sub-vector clustering proce-
dures for ASR system parameter quantization. Specifically, we look at systematic data-driven sub-vector selection
techniques, most of which are based on entropy minimization, and others on recognition accuracy maximization on a
development set. We compare performance on two speech databases, PHONEBOOK, an isolated word speech recognition
task, and TIMIT, a phonetically diverse connected-word speech corpus. While the optimal entropy-minimizing or accu-
racy-driven quantization methods are intractable, several simple schemes including scalar quantization with separate
codebooks per parameter and joint scalar quantization with normalization perform well in their attempt to approximate
the optimal clustering.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

For certain applications, automatic speech recognition (ASR) will undoubtedly become the dominant
human–computer interface methodology. For example, whenever hands are occupied (e.g., while driving),
or where hand-based interfaces are bulky (using personal digital assistances (PDAs) or cell phones), ASR will
undeniably succeed. Indeed, ASR is increasingly used on hand-held devices (Moyers, 2001) – some PDA-based
ASR systems are starting to appear commercially such as the IBM personal speech assistant (Comerford et al.,
2001) and the Microsoft MiPad (Huang et al., 2000) (others are listed in Moyers (2001)). A number of wireless
communication companies also launched their products integrated with ASR systems, like Motorola�s voice-
XML and Nokia 9000 series.

Compared to their wired brethren, these portable computing devices invariably have limited computational
and memory resources and strict power consumption constraints. Therefore, as more functionality is pushed
0885-2308/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.csl.2005.10.003

* Corresponding author. Tel.: +1 206 715 3662; fax: +1 206 543 2969.
E-mail addresses: karim@cs.washington.edu (K. Filali), lixiao@ssli.ee.washington.edu (X. Li), bilmes@ssli.ee.washington.edu

(J. Bilmes).

mailto:karim@cs.washington.edu
mailto:lixiao@ssli.ee.washington.edu 
mailto:bilmes@ssli.ee.washington.edu�(J. 


626 K. Filali et al. / Computer Speech and Language 20 (2006) 625–643
into and better performance is demanded of portable ASR systems, it becomes crucial to investigate power
saving techniques. Several approaches such as voltage modulation, computation reduction, fixed-point arith-
metic, optimization for special applications (small vocabulary recognition for example), alternative training
and decoding algorithms, and low-memory consumption can achieve this goal. Varga et al. (2002) describe
a combination of several of these approaches in the implementation of an ASR system for mobile phones.
Memory reduction is an important area of research because large vocabulary ASR systems use a significant
amount of memory to store parameters, typically means and variances of multivariate Gaussian distributions.
Associated with a big memory foot-print are higher processor-memory bus traffic and CPU load, all of which
significantly increase power consumption (Roy and Johnson, 1997).

A simple yet effective way to reduce the required resources with little effect on performance is to use fewer
bits per parameter. This is done by quantizing numerical representations well below the typical 32 or 64 bits
per parameter used with the IEEE floating point standard. In the past, several techniques have been used to
achieve such quantization. Scalar quantization (Vasilache, 2000; Takahashi and Sagayama, 1995) simply clus-
ters the individual elements of parameter vectors (means and diagonal covariances). Sub-vector clustering,
also referred to as product VQ,1 breaks up vectors into sub-vectors, allowing reduced complexity search
and reduced storage requirements at the cost of an increase in distortion (Gray and Gersho, 1991). In most
cases, however, the choice of the sub-vectors uses knowledge only of the type of features used; for example
clustering Mel-frequency Cepstral Coefficients (MFCC) as one sub-vector, the first derivatives as a second
sub-vector, or grouping each MFCC with its 1st and 2nd derivatives. In Bocchieri and Mak (1997), 2-dimen-
sional sub-vectors are formed using a greedy algorithm that chooses pairs that are most strongly correlated. In
Bocchieri and Mak (2001), the approach was expanded to higher dimensional sub-vectors using a multiple
correlation coefficient. There is clearly a trade-off between the extent of parameter quantization and how much
recognition performance degrades, but there is also another trade-off involving computation time and memory
that arises from the possibility to pre-compute quantities such as Mahanalabolis distances and state log-like-
lihoods (see for example Ravishankar et al., 1997; Vasilache, 2000; Bocchieri and Mak, 2001). Although in this
work we are only interested in the memory savings of sub-vector quantization, the computation saving tech-
niques in the above references are applicable here.

It is important to emphasize that parameter quantization is different from feature quantization. In the
latter, it is the input vectors (derived from the speech waveforms) to the speech recognizer that are quan-
tized and not the learned distribution parameters. A common application of feature quantization is client–
server speech recognition, where the speech signal is processed on the client side (typically a low-resource
device) to extract speech feature vectors (Mel Frequency Cepstral Coefficients for example), which are then
quantized to minimize the communication cost of sending them to a server where the bulk of the speech
processing is performed. We focus on parameter quantization and refer the reader to Malkin et al. (2004)
and Li et al. (2004) for a study of how both types of quantization can be combined. The short summary
is that feature quantization and parameter quantization are quite complementary and can be optimized
independently.

In this paper, we evaluate and compare a variety of novel methods for sub-vector quantization of param-
eters of continuous density hidden Markov model (HMM) ASR systems. Specifically, we look at systematic
data-driven vector clustering techniques, most of which are based on entropy minimization (equivalently
mutual information maximization), and others on recognition accuracy maximization on a development
set. We compare their performance on two speech corpora, PHONEBOOK and TIMIT. We find that simple scalar
quantization using separate codebooks per parameter and joint scalar quantization with normalization per-
form surprisingly well.

In Section 2, we describe our algorithms for picking sub-vectors and the sub-vector quantization tech-
niques. Section 3 describes the speech corpus used and the experimental setup. In Section 4 we show the mem-
ory-performance trade-off results of our experiments. Section 5 discusses the results and conclusions.
1 We prefer the term sub-vector quantization as it more precisely refers to the idea of partitioning vectors for quantization, while the
term ‘‘product VQ’’ can be more general and refers to schemes that break up vectors in ways other than through partitioning (a shape
vector and a gain factor for example, or a vector and its residual).
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2. Clustering algorithms

In the general problem of sub-vector quantization, we are given N vectors v(i), i = 1, . . . ,N each of
dimension D, which are to be quantized in some way. In this work, the N v(i)s consist of the N means
or N diagonal covariance matrices in a Gaussian-mixture HMM-based ASR system.2 In sub-vector quan-
tization, one decides upon M subsets fCjgM

j¼1 of the index set S¼D f1; 2; . . . ;Dg, where Cj �S and where
Cj \ Cm = B for all j 5 m and

S
jCj ¼ S. For each of these sub-vectors, there is an associated table

(which we also call codebook) Bj with Kj codewords (table entries). This means that the goal is to find
the functions
2 Me
fCjðv
ðiÞ
Cj
Þ ¼ �vk

Cj
1 6 j 6 M ; 8i;
where vðiÞCj
is a partition of the vector v(i) corresponding to the elements within Cj, �vk

Cj
is the kth code word for

that partition, and k 2 {1, . . . ,Kj}. Note that if |Cj| = 1 "j, then this corresponds to element-wise scalar quan-
tization, and if |Cj| = D (implying that M = 1), then this corresponds to standard full vector quantization. We
also define composed quantization to be the application of scalar quantization to vector-quantized parameters
to reduce storage costs. Anything in between scalar and vector quantization, we will refer to as sub-vector

quantization. In this general scheme, any vector element may be clustered with any set of other vector ele-
ments. The overall goal is to find the number of clusters M, the clusters themselves fCjgM

j¼1 satisfying the
above, the code-book sizes Kj, and the quantization function ffCjð�Þg

M
j¼1. The above quantities need to be

found such that both the total memory and computation required is minimized, and also such that the word
error rate (WER) increase (relative to a baseline without quantization) is at a minimum. Because these two
minimization criteria cannot be optimized independently, we report in Section 4 results as 2-dimensional plots
showing WER versus total space required (equivalently number of bits per parameter). Plots which are both
lower and to the left are preferable.

We further distinguish between two quantization styles, disjoint versus joint quantization. Disjoint quantiza-
tion is described above. With joint quantization, different clusters of the same size are quantized together using
the same codebook, meaning that we form the L sets fC‘gL

‘¼1 defining the set of sets C‘ � fC1;C2; . . . ;CMg such
that C‘ \ Cn ¼£ and

S
‘C‘ ¼ fC1;C2; . . . ;CMg. In this case, the goal is to find the memory-size and WER

minimizing functions
fC‘ðv
ðiÞ
Cj
Þ ¼ �vk

C‘
8Cj 2 C‘; 1 6 j 6 M ; 8i;
such that jCij ¼ jCjj; 8Ci;Cj 2 C‘ (i.e., clusters of different size cannot be quantized together), where �vk
C‘

is the
kth code word for cluster group ‘, and k 2 {1, . . . ,K‘}.

From the above, we see that there are broadly two separate issues to solve. The first is how to select the
number M and set of sub-vectors fCjgM

j¼1, what we call the clustering problem. The second issue is how to per-
form the quantization once the clustering has been chosen. This entails choosing a quantization algorithm, a
distortion measure, and a bit allocation algorithm (refer to Makhoul et al. (1985) and Digalakis et al. (1998)
for a discussion of these issues in speech coding.)

As a concrete example of how we compute the total memory required to store Gaussian means (or vari-
ances) under a given quantization scheme, let q be the number of bits we decide to allocate for indexing each
codebook (we assume equal allocation of bits to each codebook). The size, Kj, of each codebook Bj,
j 2 1, . . . ,M is thus equal to 2q. Under the disjoint quantization scheme, each codeword in table Bj requires
|Cj| Æ 32 bits of storage, assuming 32 bits per unquantized scalar. Summing over all codebooks the total code-
book storage is 2q Æ 32 Æ D bits (D ¼

PM
j¼1jCjj because fCjgM

j¼1 form a partition of the index set {1,2, . . . ,D}).
The storage required for the indices themselves is q Æ M Æ N bits.

Under joint quantization, if we assume here for simplicity equal-sized sub-vectors, i.e., |Cj| = c, j = 1 . . . M

for some constant c (1 6 c 6 D), then the codebook storage is 2q Æ 32 Æ c bits. The index storage is the same as
above.
ans and variances are quantized separately.
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2.1. Sub-vector quantization

In lossless compression we want to come up with a minimal set of codewords to represent exactly a much
larger set of vectors. Lossless compression works because ‘‘natural’’ and human-generated data have a struc-
ture far from random, i.e. they have redundancy. Entropy, denoted as H(Æ), is a measure of this randomness
and of how predictable a sample of the data is. The lower the entropy the less random the data is and the easier
it is to compress. Even more importantly, Shannon proved that the best compression (the minimal number of
bits per sample) that can be achieved is bounded below by the entropy. The difference between lossless com-
pression and quantization is that in the latter we allow some amount of distortion between the quantized code-
words and the original vectors, which makes it possible to achieve quantization rates below the entropy.

Hereafter, we consider the vector v(i) to be a sample from a random vector V drawn from some distribution
p(v). This is a valid model of the parameters we want to quantize as long as the probability distribution is esti-
mated accurately. Assuming sufficient samples v(i) (i.e., that N is large) and ignoring the codebook size, it can
be shown by the law of large numbers that vector quantization (i.e., M = 1) is optimal in that it will minimize
the overall distortion between the original and the quantized data using a fixed number of bits per element.3

This can also be shown by the entropy inequality (Cover and Thomas, 1991),
3 See
(Juang

4 We
each ed
entry;
constr
solutio
HðV Þ=D 6
1

D

XM

j¼1

HðV CjÞ 6
1

D

XD

j¼1

HðV jÞ. ð1Þ
The entropy rate of an arbitrary quantization scheme, 1
D

PM
j¼1HðV CjÞ is upper bounded by that of scalar quan-

tization and lower bounded by that of vector quantization.
Vector quantization is optimal even when vector elements are independent because of the space filling

advantage (Lookabaugh and Gray, 1989). When dependencies do exist, vector quantization becomes even
more advantageous since fewer bits are required to jointly encode correlated elements. In our experiments
(Section 4) we found that it is indeed the case that dependencies exist between different vector elements and
that we should thus expect to see benefits in clustering those elements together.

This analysis gives us a potential scheme for optimally quantizing the parameters. We would compute
H(V), the smallest number of bits per vector we can use without penalty if we were to compress the vectors,
and run the best possible quantization algorithm to determine the codebook. However, this is the ideal case
where we assume sufficient data and do not take codebook size into consideration. In practice, these two prob-
lems stand out to be crucial.

First, given the high dimensionality of the parameter vectors, there is rarely enough data to accurately com-
pute H(V). Second, the cost of storing the codebook tables becomes prohibitive as the number of bits per
quantized vector increases. Therefore, an inherent trade-off exists: we prefer large clusters up to the point
where the limited amount of data available to perform the multi-dimensional sub-vector quantization and
the size of the tables become inhibiting factors. Sub-vector quantization is an attempt to perform better than
scalar quantization while avoiding the problems mentioned above.

Designing the sub-vector partitions fCjgM
j¼1, however, is a hopelessly intractable problem. Even in the case

where |Cj| = 2, finding the optimal clustering is NP-complete.4 One existing approach therefore is to manually
divide the parameters into subsets based on prior knowledge of the vector elements (Ravishankar et al., 1997):
for example, it might be argued intuitively that the joint entropies H(MFCCs), H(deltas), H(double deltas),
H(log energy) will be small. In Bocchieri and Mak (2001), a greedy algorithm is used to find clusters that have
low entropy based on a multiple correlation coefficient. In Section 2.1.1, we describe a more exhaustive algo-
rithm based on mutual information.
(Makhoul et al., 1985) for a discussion of the relative merits of vector and scalar quantization applied to speech coding. Also see
et al., 1982) for a comparison between vector and scalar quantization of LPC feature vectors.
can reduce to this problem from the Traveling Salesman Problem: Given a graph G = (V,E) and a distance d(u,v) associated with
ge (u,v), we create a V · V matrix. For each pair of vertices (u,v) with no edge between u and v put – inf in the corresponding matrix

otherwise put �d(u,v). The |Cj| = 2 case clustering problem is to find matrix entries such that their sum is maximal and satisfy the
aint that no two selected entries are in the same column or same row (a component cannot be in two clusters at the same time). The
n is also a solution to TSP because each vertex is visited only once and the sum of distances traveled is minimized.
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In the case where |Cj| = 2 "j, minimizing entropy is equivalent to maximizing pair-wise mutual information,
as seen using the formula H(Vm,Vn) = H(Vm) + H(Vn) � I(Vm;Vn), where I(Vm;Vn) is the mutual information
between Vm and Vn (Cover and Thomas, 1991). Moreover, standard linear correlation is monotonically
related to mutual information (Cover and Thomas, 1991). Therefore, the more jointly correlated the compo-
nents of a sub-vector, the smaller the entropy will be, meaning the distortion between the quantized and
unquantized sub-vector will be less.

We can view the D-dimensional parameters as a D-node fully connected weighted undirected graph, where
the weight of each edge denotes the mutual information (or correlation) between the corresponding nodes.
Clustering therefore can be seen as finding a graph M-partition, where nodes within each partition are as cor-
related as possible, and nodes between different partitions are as independent as possible.

Based on the above, in this paper we explore various novel data-driven clustering techniques. The basic
clustering algorithms are described in the following sections. Note that there are several other clustering
approaches that are applicable in our setting; for example, a recent algorithm in Narasimhan et al. (2005)
guarantees a factor 2 approximation to the optimal solution to our clustering problem for any fixed M.5 Spec-
tral clustering techniques (e.g. Ng et al., 2001), and graph cut techniques (e.g. Chung, 1997) have also been
popular clustering techniques.

2.1.1. Greedy-n pair

In this first algorithm, which we call Greedy-n Pair (where n is a parameter), we perform a tree search with
branching factor n. The nodes of the tree are pairs of vector elements (so that |Cj| = 2 "j, and M = D/2) with
the restriction that no two nodes on the path from the root of the tree to a leaf may contain the same element
(each vector element belongs to a unique cluster). The n children of a node are the top n ranked pairs in terms
of mutual information between the two corresponding vector elements. The larger n is the more exhaustive the
search is, and also the longer the running time.

Given the discussion in the previous section, the goal is to find the path from root to leaf that has the maximum
sum of all the mutual information values of the pairs along the path. This algorithm is summarized as follows:

Input: MI values of all possible pairs of vector elements.
Output: Assignment of vector elements to sub-vectors.

1. Form all possible nodes (pairs of vector elements) and sort them in decreasing order of weight (MI between
the two elements of the node).

2. Construct the search tree by placing the top n nodes under the (empty) root. For subsequent levels, each
node is assigned as children the n nodes that come after it in the ordered list from step 1.

3. Find the path from the root to the leafs that maximizes the sum of the nodes� weights along the path. This
can be done recursively in a top-down manner using branch-and-bound search.

The run-time of the Greedy-n Pair algorithm is dominated by the O(nD) search in step 3. The input to the
algorithm requires O(D2) computations of mutual information.

Greedy-1 Pair. Greedy-1 is a special case (n = 1) of the algorithm described above. Here we greedily select
the node with maximum MI, assign it to a cluster, then select the next best node consistent with previous
choices until D/2 nodes are selected. As mentioned above, a similar algorithm has been used in Bocchieri
and Mak (1997), but it uses linear correlation instead of mutual information to cluster pairs of vector
elements.

Greedy-1 Triplet. The Greedy-n Pair algorithm can be generalized to the case where the tree-nodes can have
more than two elements (|Cj| > 2). In this work, for computational reasons, we consider the less general case
when n = 1 and |Cj| = 3 and we call the technique Greedy-1 Triplet. In the procedure we implemented, the mea-
sure of mutual dependency within elements of a cluster is the average pair-wise mutual information between
all pairs of scalar elements. Another more accurate way to evaluate dependency between elements of clusters
5 In the case M = 2, a polynomial-time optimal algorithm exists.
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larger than two is to compare the entropies of the clusters. We discuss this alternative approach in 2.1.2. Other
than the different size of the clusters, the selection algorithm is the same as Greedy-1 pair.

This algorithm can be extended to the more general case, greedy-n m-let where n is the branching factor as
before and m is the size of the clusters formed. The measure of dependency can be either average pairwise
mutual information, or the joint entropy over m variables.

2.1.2. Linear entropy minimization

The previous schemes require a uniform sub-vector size (i.e., |Ci| = |Cj| "i,j) even though smaller or larger
sub-vectors might exhibit a higher degree of correlation (and thereby better overall quantization). In the follow-
ing scheme, we allow clusters with different sizes and calculate the entropy of the cluster. We make a
linear dependence assumption by assuming the probability distribution over vector elements is Gaussian.
This assumption simplifies the calculation of the entropy as a closed formula exits: HðV SÞ ¼
1
2

logðð2peÞjSj � detðKÞÞ, where VS is a sub-vector of dimension |S| and K is the covariance matrix of the Gauss-
ian (Cover and Thomas, 1991).

The algorithm proceeds as follows:

Input: Parameter vectors to be quantized and p, the maximum cluster size.
Output: Assignment of vector elements to sub-vectors.

1. Calculate the entropies of all sub-vectors of size up to p (there are MðpÞ ¼ D
1

� �
þ D

2

� �
þ � � � þ D

p

� �

possible sub-vectors) and normalize each entropy by the size of the corresponding sub-vector to avoid
penalizing large sub-vectors.

2. Rank entropies in increasing order.
3. Iteratively choose the cluster with the lowest entropy and remove all elements in the cluster from further

consideration. The cluster assignment is over when there are no elements left.

We will refer to this sub-vector quantization scheme as Entropy-min-p where p is the maximum cluster size
allowed. Below we describe a different algorithm that allows varied sized clusters.

The complexity of Entropy-min-p is M(p)log(M(p)) (where M(p) is defined in step 1) because of the sorting
in step 2.

2.1.3. Maximum clique quantization

In our max-clique6 scheme, we adopt a structural approach in which the dependency graph described in
Section 2.1 is pruned so that only those edges with weights above some threshold remain. A maximum clique
finding algorithm is then applied to the sparse graph.7 Essentially, it is attempting to minimize 1

D

PM
j¼1HðV CjÞ

in Eq. 1, without the constraint that Cj�s must be of equal size. When there are two overlapping cliques, the
one with the maximum average pairwise mutual information is chosen and its elements are removed from the
graph.

The algorithm is described below:

Input: MI values of all pairs of vector elements.
Output: Assignment of vector elements to sub-vectors.

1. Starting from a complete graph (all nodes are connected to each other) where the weight of each edge cor-
responds to the pair-wise mutual information, eliminate all edges with weights below a chosen threshold.
6 A clique is often defined as a maximal complete subset (all edges are present in the subset), but in some literature it refers to any
complete subset. To avoid any ambiguity, we use the expression ‘‘maximum clique’’.

7 The max-clique problem is NP-complete; however by limiting the maximum clique size (and thus the depth of the search), and
operating on sparse enough graphs, our problem instances are computable in a reasonable amount of time.
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2. Find the maximum sized clique of the graph. If there is more than one such clique, choose the one with the
maximum average mutual information between its nodes.

3. Assign this clique to a sub-vector and eliminate it from the graph.
4. Repeat 2 and 3 until all nodes are assigned to a sub-vector.

The search space for the set of thresholds is of course very large but in practice we can choose a threshold by
doing a significance test, i.e. we compute MI from random data and set the threshold around the highest value
observed. Herein we have tried different threshold values that result in clique sizes that tend to perform better.

2.2. Joint quantization

The discussion above assumes disjoint quantization, where each sub-vector is clustered using a separate
codebook. This makes the codebook size an important factor in memory consumption. An alternate scheme
is to quantize sub-vectors of the same size jointly, the motivation being that the codebooks for different sub-
vectors could have much overlap in their value ranges. In the extreme case, where all equal-sized sub-vectors
have the same probability distribution, the sub-vectors will have identical codebooks. In this case, joint quan-
tization can achieve a distortion as low as that of disjoint quantization while the memory for codebooks is
dramatically reduced.

Different sub-vectors, however, are not necessarily identically distributed. We, therefore, normalize all vec-
tor elements to have the same mean and covariance (under the Gaussian assumption, a probability distribu-
tion is fully determined by its mean and covariance), apply the joint quantization algorithm, and then convert
the quantized vectors back to vectors with the original means and variances. When all the sub-vectors are sca-
lars, this normalization procedure results in all elements Vj, j = 1, . . . ,D in the vector V being identically dis-
tributed (if they are indeed Gaussian). In general, however, component-wise normalization is not sufficient to
ensure sub-vectors V Cj , j = 1, . . . ,M have the same Gaussian distribution (for that, the off-diagonal elements
of the covariance matrices need to be made the same). Nevertheless, the overlap between the ranges of the sub-
vectors increases and in the two cases (scalar sub-vectors and pairs) in which we used normalization, this
scheme proved to work better than quantization without normalization.

The normalization procedure is described below:

1. Calculate the sample mean and variance for each element Vj in vector V.
2. Normalize each element according to its corresponding mean and variance.
3. Quantize the normalized parameters.
4. At decoding time, the values stored in the codebook need to be rescaled according to the mean and variance

associated with the vector element index.

When converting quantized normalized variances back to their original value ranges, these variances can
sometimes take on negative values. We solve this problem by setting such negative variances to a very small
positive value, which works well since, for a variance to be assigned a negative codeword, it must have been
close to zero in the first place.

2.3. Accuracy-based sub-vector selection

While entropy is a theoretically sound criterion for choosing sub-vectors that minimize quantization distor-
tion, what we are really after is a partition of the parameter vectors such that recognition accuracy remains as
close as possible to the baseline. The goal of our accuracy-based sub-vector selection scheme is to incremen-
tally build a partition that results in the smallest decrease in accuracy. This selection scheme is similar to dis-
criminative training approaches, where the goal is to learn a model (partitions in our case) that directly
optimizes a given discriminative criterion (e.g., accuracy) as opposed to optimizing a related quantity (e.g.,
likelihood, entropy). While such approaches often produce good results, the trade-off is that the discriminative
criterion is usually difficult to optimize, in particular our accuracy-based approach requires a full recognition
test to be performed for each candidate partition. The scheme is therefore only feasible if the recognition time
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is short. To ensure this is the case, we use a smaller development set (the ‘‘core set’’ in the TIMIT distribution)
which consists of about 15% of the utterances from the complete test set. We also restrict the cluster sizes to
two to limit the number of partitions to consider. We experiment with two algorithms.

First, we define a greedy accuracy-based algorithm, Max-acc-greedy-pairwise, which is the direct analogue
of the Greedy-1 Pair algorithm, except that we replace mutual information with recognition accuracy as a cri-
terion for ranking candidate vector component pairs. The greedy accuracy-based algorithm is outlined below:

Input: D-dimensional mean and variance parameter vectors.
Output: Assignment of vector elements to sub-vectors.

1. Form a list of all
D
2

� �
possible vector element pairs.

2. Form a partition such that a new pair is one sub-vector and the remaining elements are one-component
sub-vectors.

3. Run a recognition experiment using the above partition and store the corresponding recognition accuracy.
4. Go to 2 and repeat until all pairs are considered.
5. Rank the list of pairs in descending order of recognition accuracy and select the top pairs such that they

cover all vectors elements and no two pairs overlap. If D is odd, the last remaining component is assigned
a sub-vector.

Max-acc-greedy-pairwise requires O(D2) recognition runs.
The second algorithm, Max-acc-agglo is a greedy agglomerative scheme which starts with a partition where

each component is assigned to a sub-vector and iteratively pairs components that result in the highest accuracy
when they form a sub-vector. The algorithm stops when accuracy decreases by more than a threshold. The
agglomerative accuracy-based algorithm proceeds as follows:

Input: D-dimensional mean and variance parameter vectors.
Output: Assignment of vector elements to sub-vectors.

1. Let P be the set of sub-vectors selected so far. Initially all elements of P are one-component sub-vectors.
2. Find the pair of elements of P that maximizes recognition accuracy when merged together into a new sub-

vector. Replace the pair of elements with the new sub-vector.
3. Go to 2 and repeat until accuracy drops (in practice, a small decrease can be tolerated). The final partition

consists of elements of P.

Step 2 of Max-acc-agglo requires O(D2) recognition runs to find the best pair of sub-vectors to merge.
Because, in the worst case, we need to perform O(D) such merges, the overall complexity of the algorithm
is O(D3).

Table 1 summarizes all the algorithms described in this section.
Table 1
Summary of algorithms

Algorithm Description Parameters

Composed Vector quantization followed by scalar quantization None
Greedy-n Pair Tree search with branching factor n for sub-vectors of size 2 n: Tree branching factor
Greedy-1 Triplet Greedy search for sub-vectors of size 3 None
Entropy-min-p Selection of sub-vectors that minimize linear entropy p: Max sub-vector size
Max-clique-t Subvecs as cliques in sparse graph encoding pairwise MI t: Threshold for removing low MI edges
Joint-quant Vector elements clustered together across dimensions None
Max-acc-pairwise Accuracy-based greedy pairwise sub-vector quantization None
Max-acc-agglo Accuracy-based agglomerative clustering None
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3. Experimental setup

We use two speech corpora to test our clustering algorithms. NYNEX PHONEBOOK is a phonetically-rich,
isolated-word, telephone-speech database (Pitrelli et al., 1995). It contains 93,667 isolated-word utterances
and totals 23 h of speech. PHONEBOOK is a good database to use for this study because it contains a variety
of isolated words, which, we think, will be the most likely form of speech input using handhelds at least in
the near term. The second corpus, TIMIT consists of read continuous speech. It contains 6300 sentences, total-
ing 2.5 h of speech.

The feature extraction parameters and the training configuration were chosen such that the baseline results
are close to the state of the art for each database in terms of performance and the number of parameters
required. In the front-end, a 25 ms window and a 10 ms frame shift were used in addition to mean subtraction.
For the back-end, strictly left-to-right HMM-based phone models were used except for an optional beginning
and ending silence model. No pruning threshold was used in order to discount the possibility of it affecting
performance at different degrees at different quantization rates.

PHONEBOOK speech data are represented using 12 MFCCs plus c0 and their deltas (first-order time deriva-
tives) resulting in d = 26 dimensional feature vectors. The training and test sets are as described by Bilmes
(1999). We use a dictionary (part of the PHONEBOOK distribution) of 42 phones, four states per phone, 12 Gaus-
sians per state, yielding a total of 1900 mean and variance vectors. The results presented in this paper were
obtained on a 150-word test set, but we have also obtained similar results using 300 and 600-word test sets.

TIMIT feature vectors consist of 12 MFCCs, log energy, their deltas and double deltas (second-order time
derivatives). The test set (TIMIT distribution�s standard complete test set) consists of 1344 utterances. A core
test set of 194 utterances was used as a development set for a couple of our experiments. Forty two phones,
three states per phone, 24 Gaussians per state were used to yield 3007 39-dimensional vectors for each of the
mean and variance parameters.

We only quantize the means and variances of Gaussian distributions which are used to model the state out-
put probabilities in a continuous density HMM. Mixture coefficients are left unquantized. They account for a
very small percentage of the total number of parameters and quantizing them does not affect the WER in a
significant way.

We use a hierarchical clustering scheme similar to LBG (Linde et al., 1980)8 to perform quantization. The
distortion measure used is Euclidean distance. Other work has used measures such as the Batacharaya mea-
sure (Mak, 1998). We have conducted pilot scalar quantization experiments with two other clustering schemes:
kmeans and LVQ (Kohonen et al., 1995). Our scheme performed best and also had the advantage of being
simple and not requiring any parameter tuning compared to LVQ.

The baseline word error rate on the 150-word Phonebook test set is 2.42%, while the WER on the TIMIT full
test set is 13.3%. To our knowledge these baselines are at or near the current state of the art performance for
these datasets and dictionaries (see for example (Zhao et al., 1991; Kingsbury et al., 1997; Zweig et al., 1998;
Richardson et al., 2000; Livescu and Glass, 2001)).

4. Results

In this section, we evaluate the various clustering methods that were described in Section 2. Except for the
last Section (4.1), which summarizes the results on the TIMIT corpus, all the following experiments were con-
ducted using the PHONEBOOK corpus.

Vector, composed, joint scalar, and disjoint scalar quantization. Fig. 1 shows a comparison between vector,
composed, scalar, and disjoint scalar clustering methods. The horizontal line corresponds to the baseline per-
formance, with no quantization (meaning 32-bits per parameter, and a memory cost that does not require a
table). As can be seen, the scalar quantization schemes (both joint and disjoint) perform better than either the
vector or the composed schemes. Using only four bits per parameter (this includes the storage required for the
codebooks and corresponds to about 15% of the original memory requirements), both the joint and disjoint
8 The difference lies in that we split one cluster at a time instead of doubling the number of clusters at each epoch.
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schemes achieve baseline word-error rate. Composed quantization shown in Fig. 1 is the result of running
standard vector quantization at 15 bits per parameter followed by scalar quantization (at varying quantization
levels shown in the graph). It achieves the same error rate vector quantization achieves using 15 bits but with
only 3 bits per parameter. However, the WER does not decrease further even with additional bits. This is
clearly a limitation of the composed scheme that the lowest WER it can achieve is bounded by the WER
of the vector quantization it builds upon.

Pairwise dependencies. The extent to which sub-vector quantization improves upon scalar quantization
depends on the strength of correlation between vector components. From Fig. 2 it is clear that there are indeed
dependencies between vector element pairs, as evidenced by positive mutual information values that are larger
than those derived from artificial data that were generated randomly according to a normal distribution with
diagonal covariance. The MI values from the randomly generated data are very close to zero as expected, which
increases our confidence – but does not guarantee – that real data MI values are also accurately estimated.
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Greedy-n schemes. We compare several greedy-n schemes with disjoint scalar quantization and a procedure
that selects pairs randomly (Fig. 3). All mutual information-based greedy algorithms outperform the random
selection procedure, indicating that inter-component dependencies are indeed a good criterion for deciding
which vector elements to cluster together as sub-vectors. In Section 4.1, we look at some hand-crafted vector
partitions that make intuitive sense and we see again that unless there are underlying correlations according to
which the partitions are built, performance is poor.

Comparing the greedy-n algorithms, where n, the search branching factor, ranges from 1 to 8 (for
n 2 {3 . . . 8} the clusters turned out to be exactly the same), we see that there is not a significant difference9

between the corresponding WER-versus-memory curves. Since a larger n means a more thorough search
and given that the quantity we are trying to optimize, total MI over all selected pairs, does not increase by
much as n increases, we hypothesize that there might be a ‘‘dominance effect’’ whereby a few of the most cor-
related pairs account for the largest gains in terms of minimizing quantization distortion and word error rate.
While it is conceivable that greedy-n pair for n > 8 would achieve a better clustering, the computational cost of
the clustering algorithm quickly becomes prohibitive.

It is interesting to note that several quantization schemes perform better than the baseline (for example
Greedy-3-pair and Greedy-1-pair at around 8 bits per parameter). This might indicate a type of regularization
taking place. It would be interesting to retrain our parameters under this quantization constraint. Vasilache
(2000), however, uses a similar retraining procedure (dynamic quantization) and does not find it to improve
over simply quantizing the parameters at the end.

Greedy-1 triplet does the worse among the greedy schemes and although not shown in Fig. 3, performance
keeps dropping as the dimensionality of the sub-vectors increases and we move to greedy-1 quadruplet and
quintuplet. The same trend is found in the comparison between the entropy-minimization schemes, which
we discuss below.

Even though, at a rate of 8 bits per parameter or higher, the greedy schemes slightly outperform the disjoint
scalar algorithm, disjoint quantization achieves near baseline performance and does slightly better than the
best of the greedy schemes at a rate of only 4 bits per parameter. Clearly, the large decrease in storage achieved
by the disjoint scheme outweighs the small decrease in recognition accuracy.

It might be possible that a better heuristic or an exhaustive sub-vector partition search does better in com-
parison with the disjoint scalar scheme; however the worsening performance as the dimension of the sub-vec-
tors increases suggests that the higher-dimensional schemes are penalized by their greater codebook storage
9 By this we do not mean that there is no statistical difference, but that from a practical speech recognition application point of view the
difference in error rate is so small that there is no reason to prefer one approach over the other.
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requirements. Recall, there are two components to the total memory storage required by a clustering scheme,
index memory and codebook storage. For a fixed table size, smaller sub-vector schemes can encode more
codewords than larger sub-vector schemes and conversely, given the same bit allocation per scalar, higher
dimensional schemes will require larger codebooks. For example, using two bits per scalar, both disjoint scalar
and greedy-1 pair clusterings yield (22)26 = (24)13 possible vector codewords (assuming an input parameter vec-
tor dimension d = 26), but the first scheme requires codebooks with total number of entries 22 · 26 while the
later scheme requires 24 · 26 entries.

On the other hand, because of the vector quantizer advantage discussed in Section 2.1, higher dimensional
sub-vector clustering schemes achieve a smaller distortion at the same bit rate, or equivalently, they can use
lower bit rates for the same overall distortion. There are, therefore, trade-offs along two axes: storage-wise,
larger sub-vectors reduce index memory requirements but increase table size, and performance-wise, smaller
sub-vectors increase distortion but a reduced storage cost. We can see these trade-off at play in Fig. 3: as the
quantization rate gets higher, the cost of storing the indices starts to dominate and that is when the larger sub-
vector schemes start to perform better.

Mutual information-based versus correlation-based sub-vector selection. Fig. 4 shows the results of greedy-1
pair computed using two different forms of mutual information approximation. The first way uses a mixture of
Gaussians to estimate the joint density of the pair, and then uses that joint density to compute the mutual
information. The second method assumes that the two random variables are jointly Gaussian, and computes
the resulting MI analytically (Cover and Thomas, 1991). Note that the second way is equivalent to computing
simple correlation, which captures only first order (linear) dependencies. MFCC features are processed using a
discrete cosine transform (DCT) to reduce the linear correlation between vector components and we would
expect the orthogonalization effect to carry over from the feature space to the parameter space. We would
therefore expect mutual information to better reflect the remaining correlations since it captures linear and
non-linear dependencies, the latter having the potential of being stronger than the former because of the afore-
mentioned DCT. What we find, nonetheless, is that the most correlated vector component pairs, albeit not in
the exact same order, are the same whether MI or correlation is used. Linear dependencies still dominate as
evidenced by the MI values, which, for the top pairs, are around 0.7 using linear MI and around 1.0 for the
Gaussian mixture-based MI, i.e., the non-linear portion of the dependencies is about 0.3. Also, the fact that
the order of the most dependent pairs is mostly preserved is an indicator that the non-linear dependencies
‘‘parallel’’ the linear ones. The similar performance of correlation-based and MI-based greedy-1 in Fig. 4
reflects the similar dependency patterns.

Entropy minimization clustering. The linear entropy minimization scheme selects sub-vectors with maximum
length p. In Fig. 5, results are shown for p = 2, 3, and 6. As p increases the WER versus memory curve is shifted
up and to the left. As discussed above regarding the greedy heuristics, the likely reason for this is that, in general,
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with larger clusters, more bits per cluster need to be used to encode a given number of different codewords com-
pared to smaller clusters. And even though the average number of bits per vector element is actually smaller for
larger clusters, the table size – an exponential term – quickly swamps clusterings that use large clusters.

Maximum-clique clustering. We compare two max-clique clustering schemes with disjoint scalar quantiza-
tion (Fig. 6). The thresholds we choose in this experiment are 4% and 8%, meaning we keep 4% and 8% respec-
tively of the highest weight edges in the graph. Once again, the performance is no better than disjoint scalar
quantization. In other experiments (not shown in the plot), we find that differences are negligible with a thresh-
old ranging between 4% and 15%, and that quantization gets worse when the threshold is increased further.
Higher thresholds yield denser graphs (more edges are retained) and consequently larger cliques, a fact which,
per the discussion above, means worse performance.

Joint quantization. Lastly, in Fig. 7, we compare joint versus disjoint quantization for two different cluster-
ing methods (scalar and greedy-1 pair).

The joint schemes, joint scalar and joint greedy-1 pair, do slightly better than disjoint scalar and disjoint
greedy-1 pair, respectively. For example the joint scalar scheme reaches the baseline WER (2.42%) with only
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Fig. 6. Threshold-based maximum clique quantization.
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12.5% of the baseline memory, while the disjoint scheme achieves an WER of 2.49% with 13.3% of the baseline
memory. However, normalized joint schemes involve two extra steps, normalization, which is done offline and
the conversion to the original range of values, which has to be done online.10

4.1. TIMIT results

The experiments on the PHONEBOOK database show scalar quantization to perform best even though one
would expect sub-vector quantization do better because it can take advantage of the dependencies in the data.
In this section, we apply a subset of our quantization algorithms to the TIMIT corpus.11

TIMIT being a contin-
uous speech database with higher baseline error that PHONEBOOK, it is interesting to learn whether the same
conclusions about the relative performance of the different quantization schemes hold.

Entropy-based quantization. We first compare the various disjoint schemes used on PHONEBOOK above. As
Fig. 8 shows, scalar quantization again turns out to be a very good compromise between performance and
storage requirements. And as before, while algorithms such as greedy-1, linear-entropy-min-3, and the
max-clique, which did relatively well on PHONEBOOK, performed well on TIMIT, there is no indication that
any of the entropy-based schemes could be a better choice than plain scalar quantization.

For clarity, standard vector quantization is not shown in Fig. 8 because its performance is far inferior to
that of the other schemes. At around 5 total bits per parameter, the word error rate is as high as 67% and it
only decreases to 50% at 12 bits per parameter. This is not very surprising since the parameter vectors are 39-
dimensional the table size penalty accrues with increasing dimension because of the exponential increase in the
number of possible codewords.

One technique used to reduce the impact of the table storage and which does not involve breaking vectors
up into sub-vectors is residual or multiple stage quantization (Juang and Gray, 1982). Residual quantization
operates over two or more stages. In the first one a crude standard vector quantization is performed and in the
subsequent stages the residual vectors obtained by taking the difference between the original vectors and their
best approximations12 so far are quantized. By using lower quantization rates at each stage, residual quanti-
zation can reduce storage requirements and still produce good approximations. We have experimented with
10 It is possible to perform the conversion offline at the cost of more memory usage, since we would need to store as many codebooks as
there are sub-vectors instead of just one codebook.
11 We did not perform joint quantization experiments on TIMIT; however, given the PHONEBOOK results and the results presented in this

section, we do not expect much difference between disjoint and joint schemes.
12 The sum of the original quantized vectors and the quantized residuals in the previous stages.
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multiple stage quantization to reduce the memory required by the standard vector quantizer. The staged
approach does reduce storage: it achieves a lower WER (60% versus 67%) using fewer total bits per parameter
(3 versus 5); however, compared to scalar quantization this scheme performs far worse (at 5 bits per param-
eter, it achieves 66% WER compared to 13.53%).

Dependency patterns. It is interesting to look at the most dependent vector component pairs. Table 2 shows
mean vector component pairs chosen by the greedy-1 algorithm and their corresponding MI values. For mean
vectors, except for a few cases, parameters for MFCCs and their double deltas exhibit the strongest correla-
tions. For variance vectors, the trend seems to be that the strongest correlations occur between consecutive
deltas or double deltas and between deltas and double deltas (Table 3). We found the same variance vector
correlation patterns on PHONEBOOK. We did not use double deltas on PHONEBOOK and obviously the mean vec-
tor correlations patterns were found to be different. In Bocchieri and Mak (2001) and Mak (1998), very similar
results to the mean correlations are reported on a different speech corpus, Air Travel Information System
Table 2
TIMIT�s most dependent mean vector components as measured using mutual information

Pair MI

c10,DDc10 0.92
c12,DDc12 0.90
c11,DDc11 0.88
c8,DDc8 0.82
c7,DDc7 0.73
c9,DDc9 0.72
c5,DDc5 0.70
c6,DDc6 0.68
c2,DDc2 0.67
c1,E 0.67
c4,DDc4 0.66
Dc4,DE 0.54
c3,DDc3 0.45
Dc1,Dc7 0.33
DDc1,DDE 0.33
Dc2,Dc8 0.33
Dc3,Dc5 0.23
Dc6,Dc11 0.10
Dc10,Dc12 0.094
Dc9 N/A



Table 3
TIMIT�s most dependent variance vector components as measured using mutual information

Pair MI

Dc8,Dc9 1.1
DE,DDE 1.1
Dc10,Dc11 1.1
Dc5,Dc6 1.1
DDc8,DDc9 1.1
DDc5,DDc6 1.1
DDc10,DDc11 1.1
DDc2,DDc3 1.1
Dc1,DDc1 1.0
Dc2,Dc4 0.98
DDc4,DDc7 0.86
Dc7,Dc12 0.85
c11,c12 0.60
c8,c9 0.57
c5,c7 0.45
Dc3,DDc12 0.43
c6,c10 0.40
c1,E 0.34
c2,c4 0.25
c3 N/A
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(ATIS). Unlike us, however, they do not compute correlations directly on the mean and variance parameter
vectors but on the feature vectors themselves. It might seem surprising that the correlations between feature
vector components are similar to those between mean parameter vector components and not variance vector
components, but as class-conditional averages of the feature vectors, means vectors are likely to preserve the
same correlations whereas there is no reason for variance components to correlate in a similar fashion to the
data.

Heuristic partitions. Before we look at the accuracy-driven schemes, we compare three ‘‘natural’’ partition
schemes to their data-driven counterparts:

(1) Clustering consecutive pairs together.
(2) Clustering MFCCs, deltas, and double deltas as three separate sub-vectors.13

(3) Clustering the triples (MFCC,DELTA,DDELTA), i.e., each component and its first and second deriv-
atives form a sub-vector.

(4) Clustering deltas as one sub-vector, double deltas as a second one, and keeping MFCCs disjoint.

The first partition scheme is motivated by the existence of strong correlation between consecutive variance
parameter vector components. The second and third schemes are widely used for both feature and parameter
sub-vector quantization because of the assumptions that the strongest correlations exist between each vector
component and its time derivatives, and within each of the three types of components: base components, first
derivatives, and second derivatives. The last scheme is an attempt to first of all exploit the fact that, for var-
iance parameters, the strongest correlations are among the delta or the double delta group. Moreover, we want
to test the hypothesis that the base components of the parameter vectors are the most important to quantize
with minimal distortion and hence we quantize them using scalar quantization, the best scheme according to
our experiments. For the time derivatives, we are willing to incur a higher distortion by using vector quanti-
zation but save on storage.

As can be seen in Fig. 9, the consecutive pair clustering curve closely follows the curve of the greedy-1
scheme (which, in the case of variances, predominantly clusters consecutive pairs). The second and third par-
tition schemes perform poorly, which does not come as a surprise as we have already seen that in our tasks
13 To be accurate we should write ‘‘parameters for MFCCs, deltas. . .’’, but for convenience we allow this abuse of language.
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performance quickly deteriorates with increasing sub-vector dimensions. The last quantization scheme does
not do as well as one would expect if our hypothesis that the parameters for time derivatives are not very sus-
ceptible to quantization noise were true.

Accuracy-driven quantization. We have tried two recognition accuracy-based algorithms for finding optimal
vector partitions, Max-accuracy-greedy-pairwise and Max-accuracy-agglomerative, described in Section 2. The
first is the equivalent of the greedy-1 scheme but uses accuracy instead of entropy to rank component pairs; the
second, iteratively builds a partition by pairing vector components which result in the least decrease in accu-
racy compared to the partition in the previous step. We allocate 5 bits per sub-vector during the partition
search as, from the previous experiments, it achieves a performance close to baseline but still leaves some room
for improvement.

Max-accuracy-greedy-pairwise performs consistently worse than greedy-1. There are two possible explana-
tions for that: the performance development core test set might not be a good indicator of the performance on
the complete test set, even though we have tried to rule out this possibility by comparing a few quantization
curves using both test sets. The more likely explanation is that the effect of pairing components based on the
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maximum accuracy criterion is not cumulative and a greedy approach is inappropriate. This hypothesis is
reinforced by the fact that the less greedy Max-accuracy-agglomerative achieves a lower error rate than
Max-accuracy-greedy-pairwise at most quantization levels (Fig. 10). However, it is telling that even for
Max-accuracy-agglomerative, the maximum sub-vector size obtained in the final partition was 2, and there
were only two such sub-vectors. Higher levels of clustering caused the error rate to reach the level of the
Max-accuracy-greedy-pairwise algorithm.

5. Conclusion

We have defined and evaluated a number of novel methods for producing sub-vector-based parameter
quantization in Gaussian-mixture HMM-based ASR systems. We find that, whether we use entropy-based
or accuracy-driven sub-vector search methods, three schemes are the overall best for reducing memory: dis-
joint scalar, joint scalar and joint greedy-1-pair quantization. They do better than more elaborate heuristics
and achieve near-baseline error rate with less than a seventh of the storage requirements.

Even though, compared to the joint scheme, the disjoint scalar scheme requires more table storage for its
separate codebooks, its memory/WER curve is close to the best one achieved. Moreover it does not require the
normalization/re-conversion step in the normalized schemes. It seems surprising that a disjoint scheme would
do so well given the constraint of not sharing codewords and the resulting higher table storage requirements.
That same constraint, however, is key to the disjoint scheme�s good performance overall because it allows
fewer bits per parameter compared to a joint scheme where enough bits need to be allocated to index the single
codebook (which, although smaller than all the disjoint codebooks taken together, is larger than any single
one of them).

Similar constraints explain the better storage/performance trade-off of scalar and low-dimensional schemes
compared to standard VQ and high-dimensional sub-vector quantizers. By partitioning vectors, the optimality
of vector quantization is lost but a dramatic reduction in storage ensues as the VQ�s exponentially growing
codebook is replaced by a Cartesian product of smaller codebooks.

We have mentioned another type of product VQ, namely residual quantization, which quantizes the full
vectors over multiple stages to reduce table storage (as well as codeword search complexity). While, in our
experiments, it too has suffered from the curse of dimensionality, it did perform better than standard VQ.
It is an interesting future research direction to explore the interaction between residual quantization and
sub-vector quantization as a way to further mitigate the impact of table storage and at the same time use
higher dimensional sub-vectors that better capture dependencies.

Finally, while we have focused on a low-power application of ASR parameter quantization, large vocab-
ulary speech recognition (LVSR) typically uses a very large number of parameters and could also benefit from
the simple quantization schemes that were found to be effective in our setting. It is already standard practice in
LVSR decoding to vector quantize Gaussian parameters and limit the number of full Gaussian evaluations
required by pruning or approximating low-likelihood clusters or HMM states. Two such approaches are
described in Knill et al. (1996) and Saon et al. (2005). It would interesting to combine these computation-
saving approaches with memory-saving scalar quantization. Our composed clustering scheme is one step in that
direction.
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