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Abstract

Sitting at the intersection between statis-
tics and machine learning, Dynamic
Bayesian Networks have been applied
with much success in many domains, such
as speech recognition, vision, and compu-
tational biology. While Natural Language
Processing increasingly relies on statisti-
cal methods, we think they have yet to
use Graphical Models to their full poten-
tial. In this paper, we report on experi-
ments in learning edit distance costs using
Dynamic Bayesian Networks and present
results on a pronunciation classification
task. By exploiting the ability within the
DBN framework to rapidly explore a large
model space, we obtain a 40% reduc-
tion in error rate compared to a previous
transducer-based method of learning edit
distance.

Introduction

edit costs, such as in (Ristad and Yianilos, 1998) in
the case of string edit distance and in (Neuhaus and
Bunke, 2004) for graph edit distance.

In this paper we revisit the problem of learn-
ing string edit distance costs within the Graphi-
cal Models framework. We apply our method to
a pronunciation classification task and show sig-
nificant improvements over the standard Leven-
shtein distance (Levenshtein, 1966) and a previous
transducer-based learning algorithm.

In section 2, we review a stochastic extension of
the classic string edit distance. We present our Dy-
namic Bayesian Network based edit distance mod-
els in section 3 and show results on a pronunciation
classification task in section 4. In section 5, we dis-
cuss the computational aspects of using our models.
We end with our conclusions and future work in sec-
tion 6.

2 Stochastic Models of Edit Distance

LetsT" = s152...5, b€ asourcestring over a source
alphabetA4, andm the length of the strings! is the

Edit distance (ED) is a common measure of the sinsubstrings;...s; ands{ is equal to the empty string,

ilarity between two strings.

It has a wide range:;, wheni > j. Likewise,t] denotes darget string

of applications in classification, natural languagever a target alphabét, andn the length oft}.
processing, computational biology, and many other A source string can be transformed into a target

fields.

It has been extended in various ways; fostring through a sequence eflit operations We

example, to handle simple (Lowrance and Wagnewrite (s,t) ((s,t) # (¢, €)) to denote aredit opera-
1975) or (constrained) block transpositions (Leusction in which the symbok is replaced by. If s=e¢
et al., 2003), and other types of block operaandt+e, (s,t)is aninsertion If s#eandt=e, (s, t)
tions (Shapira and Storer, 2003); and to measuis adeletion Whens#e¢, t#¢ ands #t, (s, t) is a
similarity between graphs (Myers et al., 2000; Kleinsubstitution In all other casess, t) is anidentity.

1998) or automata (Mohri, 2002).

The string edit distance](s}",t}) betweens?"

Another important development has been the usndt} is defined as the minimum weighted sum of

of data-driven methods for the automatic learning athe number of deletions, insertions, and substitutions



required to transformy* into ¢7 (Wagner and Fis- P(Z;=z;, s, t7]0), 1<i</, wherezi:<z§s),z§t)>
cher, 1974). AO(m -n) Dynamic Programming in the form

(DP) algorithm exists to compute the edit distance £ (t,) for 20 = ¢; 2" = 1,,
between two strings. The algorithm is based on the ) Flel(s,.) for 2 — S L _
following recursion: Zi) QT b NOIONE
o d(si, 1) + (s ), g (S0, 1) :)Ot:u(eff/vié:i )= (S, t5,)
d(sy,t]) = min d(szp 715{7 )1+ Y((€:25)), )
1— J— . i .
d(si oty ) +v((si ) where}". Q(z)=1; a; = Z;;ll 1{Z§S>¢e} (resp.b;)

with d(fe’ €)=0 and; {(s,1)[(s, ) %d(e, )} _:;RJF is the index of the source (resp. target) string gen-
a cost function. Whery maps non-identity edit 0p- ¢ .04 up to théth edit operation; angi"s, 4! and
erations to unity and identities to zero, string ED is,

often referred to as thieevenshtein distance dependence is not to be taken here to méan

To learn the edit distance costs from data, RiStagoes not depend o), or 7, . It depends on them
and Yianilos (1998) use a generative model (hencg: : i

hrough theglobal contextwhich forcesZ! to gen-
forth referred to as thRY modélbased on a mem ugh theg xwhi 1109

~erate(s",t7). The RY model ismemoryless and

oryless transducer of string pairs. Below we Suméontext—independemMCI).

marize their main idea and introduce our notation, Equation 2, also implicitly enforces theonsis-

which will b.e useful Iatgr on.. . tency constraintthat the pair of symbols output,
We are interested in modeling the joint prob-, (5" «) , .
. o m : (2,7, 2;7), agrees with the actual pair of symbols,
ability P(SY" =sy', Tj' =11 [0) of observing the ( ot Z) that needs to be generated at stép or-
source/target string paitsi*,¢}) given model pa- Sa;> tbi )y 9 op

. . : der for the total yieldy(z}), to equal the string pair.

.5, 1<6< ) D .
rameterg. 5;, L<i<m, is a random variable (RV) rp—The RY stochastic model is similar to the one in-
e o roduced earlier by Bahl and Jelinek (1975). The
bol at positioni and likewise for the target symbol difference is that the Bahl model is memoryless

RV T;.! , )
To model the edit operations, we introduce a hid‘f-’moI context-dependerfMCD); the f functions are

den RV, Z, that takes values itA U e x BU €) \ now indexed bys,, (or t,, or both) such that

{(e,€)}. Z can be thought of as mndom vector 2_; @sq,(2) =1 Vsq,. In general, context depen-
with two componentsz(®) and Z(®). dence can be extended to include up to the whole

We can then write the joint probability source (andor target) stringj*”", Sai> Sa;+1 Sey-
P(s™, 7| 6) as er_al oth(_ar types qf depe_ndence can be exploited as
will be discussed in section 3.

P(sT, 7] 6) :ZZ P(Zi=20 s7 17 6) (1) Both the Ristad and the Bahl transducer mod-
{zbw(z8)=<s™ 7>, maz(m,n) <l<m+n} els give exponentially smaller probability to longer
strings and edit sequences. Ristad presents an al-

string pair output by the transducer. ternate explicit model of the joint prqbability of.
Equation 1 says that the probability of a Ioar_the Iength of the source an.o! target strings. In this

ticular pair of strings is equal to the sum of thepa_rametrlzatlon the probability of the length of an

probabilities of all possible ways to generate th&dit Sequence does not necessarily decrease geomet-

pair by concatenating the edit operations.z;. If rlcally._ A similar effect can t_)e ach|eyed by directly

we make the assumption that there is no depeﬁr]od.elmg the length of the hidden edit sequence (see

dence between edit operations, we call our mod&fetion 3).

memoryless P(Z{, s, 7 | 6) can then be factored 3 DBNs for Learning Edit Distance

as I, P(Z;,s{",t7]0). In addition, we call the Dynamic Bayesian Networks (DBNs), of which

modelcontext-independeiriftwe can writeQ(z;) = Hidden Markov Models (HMMs) are the most fa-

sub are functions mapping tf, 1].2 Context in-

where v(2f) is the yield of the sequence{: the

We follow the convention of using capital letters for ran-  °By convention,s,, = e for a; > m. Likewise,t,, = e if
dom variables and lowercase letters for instantiations of randoty > n. f"*(¢) = f%(e) = f*“*(¢,¢) = 0. This takes care
variables. of the case when we are past the end of a string.



mous representative, are well suited for modeling frame ¢ (P) | frame 1 CC) | frame 2 (E)
stochastic temporal processes such as speech and
neural signals. DBNs belong to the larger family of
Graphical Models (GMs). In this paper, we restrict send
ourselves to the class of DBNs and use the terms
DBN and GM interchangeably. For an example in
which Markov Random Fields are used to compute
a context-sensitive edit distance see (Wei, 2504). ¥ tend
There is a large body of literature on DBNs and
algorithms associated with them. To briefly de-
fine a graphical model, it is a way of representingrigure 1: DBN for the memory-less transducer
a (factored probability distribution using a graph. model. Unshaded nodes are hidden nodes with prob-
Nodes of the graph correspond to random variableabilistic dependencies with respect to their parents.
and edges to dependence relations between the valiedes with stripes are deterministic hidden nodes,
ables* To doinferenceor parameter learning us- i.e., they take a unique value for each configuration
ing DBNs, various generic exact or approximatef their parents. Filled nodes are observed (they can
algorithms exist (Lauritzen, 1996; Murphy, 2002;be either stochastic or deterministic). The graph
Bilmes and Bartels, 2003). In this section we startemplate is divided into three frames. The center
by introducing a graphical model for the MCI trans-frame is repeatedn + n — 2 times to yield a graph
ducer then present four additional classes of DBMith a total ofm +n frames, the maximum number
models: context-dependent, memory (where an edif edit operations needed to transforft into ¢7.
operation can depend on past operations), direCiutgoing light edges mean the parent is a switch-
(HMM-like), and length models (in which we ex- ing variable with respect to the child: depending on
plicity model the length of the sequence of editgshe value of the switching RV, the child uses different
to avoid the exponential decrease in likelihood o€CPTs and/or a different parent set.

longer sequences). A few other models are dis- N

_ Common to all the frames in fig. 1, are position
3.1 Memoryless Context-independent Model  pyg , andsp, which encode the current positions in
Fig. 1 shows a DBN representation of the memome source and target strings resp.; source and target
ryless context-independent transducer model (Se§ymbols,s and¢; the hidden edit operatior; and
tion 2). The graph representsemplatewhich con-  consistency nodes: andte, which enforce the con-
sists, in general, of three partspeologug achunk  gistency constraint discussed in section 2. Because
and anepilogue The chunk is repeated as manysf symmetry we will explain the upper half of the
times as necessary to model sequences of arbitragyaph involving the source string unless the target
length. The product otinrolling the template is a paf s different. We drop subscripts when the frame
Bayesian Network organized into a given number ok mber is clear from the context.

frames The prologue and the epilogue often differ In the first frame,a andb are observed to have
from the chunk because they model boundary coRy|ye 1, the first position in both stringsa and b

ditions, such as ensuring that the end of both stringgtermine the value of the symbolsndt. Z takes
is reached at or before the last frame. arandom valuéz(®), z(0)). sc has the fixed observed
Associated with each node is a probability funcygjue 1. The only configurations of its parens,

tion that maps the node’s parent values to the valuggq s, that satisfyP(sc = 1|s, z) > 0 are such that
the node can take. We will refer to that function as @7(s) — 5y or (Z(*) = ¢ and Z +# (¢, €)). This is the

*While the Markov Edit Distancentroduced in the paper CONSistency constraint in equation 2.
takes local statistical dependencies into account, the edit costs|n the following frame, the position RV, de-

are still fixed and not corpus-driven. . . . .
“The concept ofl-separatioris useful to read independence pends ona; and 7. If Z, is an insertion (l'e'

relations encoded by the graph (Lauritzen, 1996). Z£s) = ¢: the source symbol in the first frame is




not output), therus retains the same value as; franciy; {8 franest; (0 frane 2 L6
otherwiseas is incremented by to point to the next et
symbol in the source string.

Theend RV is an indicator of when we are past
the end of both source and target strings-(m and
b > n). end is also aswitching parenbf Z; when <
end = 0, the CPT ofZ is the same as described
above: a distribution over edit operations. When
end =1, Z takes, with probability 1, a fixed value
outside the range of edit operations but consistent Figure 2:Context-dependent model.
with s and¢. This ensures 1) no “null” statéq ¢))
is required to fill in the value ofZ until the end indirect dependence on whether there was an inser-
of the graph is reached; our likelihoods and modeion in the previous step because ; = s; might be
parameters therefore do not become dependent gfrrelated with the everﬂi(i)l —c
the amount of “null” padding; and 2) no probability 5 5 Memory Model
mass is taken from the other statesZadis is the case Memory models are another easy extension of the

with the special termination symbol # in the Originalbasic model as fig. 3 shows. Depending on whether
RY model. We found empirically that the use of ei-,o variableH; , linking Z;_, to Z; is stochastic

ther a null or an end state hurts performance {0 & geterministic, there are several models that can
small but significant degree. be implemented; for example, a latent factor mem-
In the last frame, two new nodes make their apgry model whent is stochastic. The cardinality of
pearance.send andtend ensure we aret or past 1 determines how much the information from one
the end of the two strings (the Ryvhd only checks  frame to the other is “summarized.” With a deter-
that we are past the end). That is whynd de- minjstic implementation, we can, for example, spec-
pends on botlw and Z. If a > m, send (observed ify the usualP(Z;|Z;_,) memory model whet is

to be 1) is1 with prObablIlty 1. If a < m, then aSimpIe copy ofZ or haveZ; depend on the type of
P(send = 1) = 0 and the whole sequencgl has ggit operation in the previous frame.

zero probability. Ifa = m, thensend only gets prob-
ability greater than zero if’ is not an insertion. This
ensures the last source symbol is indeed consumed.

Note that we can obtain the equivalent of the to-
tal edit distance cost by usingterbi inferenceand
adding acost; variable as a deterministic child of the
random variablgZ; : in each frame the cost is equal
to cost;—1 plus0 when Z; is an identity, or plusl
otherwise.

frame 0 (P} frame 1 {C} frame 2 (E)

3.2 Context-dependent Model

Adding context dependence in the DBN frameworltigyre 3:Memory model. Depending on the type of
is quite natural. In fig. 2, we add edges from dependency betweef; and H;, the model can be

sprev;, andsnext; 10 Z;. Thesc node is no longer |5tent variable based or it can implement a deter-
required because we can enforce the consistengynistic dependency on a function6f

constraint viathe CPT of given its parentssnext; )

is an RV whose value is set to the symbol atéhe1 ~ 3-4  Direct Model

position of the string, i.esnext;=s,,+1. Likewise, The direct modelin fig. 4 is patterned on the clas-
sprev; = sq,—1. The Bahl model (1975) uses a de-sic HMM, where the unrolled length of graph is the
pendency or; only. Note thats;_; is not necessar- same as the length of the sequence of observations.
ily equal tos,,—1. Conditioning ons;_; induces an The key feature of this model is that we are required



frame 0 {P)

inclen

frame 2 (E)

to consume a target symbol per frame. To achiev
that, we introduce two RVsins, with cardinality
2, anddel, with cardinality at mosin. The depen-
dency ofdel onins is to ensure the two events neverinilen
happen concomitantly. At each frame,is incre-
mented either by the value @kl in the case of a
(possibly block) deletion or by zero or one depend °
ing on whether there was an insertion in the previousc

inclen

atReqlen

send

frame. An insertion also forcesto take value.

frame 0 (P)

frane 1 (C)

frame 2 (E)

Z

tc

t

tend

b.

Figure 5:Length unrolling model.

surface form,t}, we need to find the set of words
W s.t. W = argmaz,, P(w|t}?). There are several
ways we could model the probabilify(w|t}). One
way is to assume a generative model whereby a word
w and a surface pronunciatiafy are related via an

In essence the direct model is not very differ-

ent from the context-dependent model in that herlémlerlylm‘;J canonical pronunciatioff of w and a

. Iy stochastic process that explains the transformation
too we learn the conditional probabilitig3(¢;|s;) from s to 2? This is sumFr)narized in equation 3
hich implicit in the CD 1. X . o
(which are implicit in the CD model) C(w) denotes the set of canonical pronunciations of
3.5 Length Model

w.
While this model (fig. 5) is more complex than
the previous ones, much of the network structure W gmeC(w)

is “control logic” necessary to simulate variable |f we assume uniform probabilities? (w|s7")
length-unrolling of the graph template. The key idegsi ¢ C'(w)) and use the max approximation in place
is that we have a new stochastic hidden BdMlen,  of the sum in eq. 3 our classification rule becomes
whose value added to that of the RMilen deter-  vjy — (4|8 0 C(w)£0, S = argmaxP (s, t7)}
mines the number of edit operations we are allowed. s
A counter variablegcounter is used to keep track . _ (4)
of the frame number and when the required numl-t _|ststraégrgflc_1rv?rd tomc;e:latg a S:N 0 mogellq\t/he
ber is reached, the RVt ReqLen is triggered. If at joint probability (w, s, .1). y adding a wor

%Ind a canonical pronunciation RV on top of any of

Figure 4:Direct model.

W = argmax) ~ P(w|s7")P(s7",t})  (3)

that point we have just reached the end of one of th . del
strings while the end of the other one is reached i © previous modets. - e
There are other pronunciation classification ap-

this frame or a previous one, then the variabhel proaches with various emphases. For example

is explained(it has positive probability). Otherwise, RIS ’

the entire sequence of edit operations up to that poiﬁtemZeIOOpOUIOS and Kokkinakis (1996? use HMMS
to convert phoneme sequences to their most likely

has zero prol?ab-lllty. o orthographic forms in the absence of a lexicon.

4 Pronunciation Classification 41 Data

In pronunciation classification we are giverlexi- We use Switchboard data (Godfrey et al., 1992) that
con, which consists of words and their correspondhas been hand annotated in the context of the Speech
ing canonical pronunciationsWe are also provided Transcription Project (STP) described in (Green-
with surface pronunciationsind asked to find the berg et al.,, 1996). Switchboard consists of spon-
most likely corresponding words. Formally, for eachtaneous informal conversations recorded over the



phone. Because of the informal non-scripted natufer much of their gains over the Levenshtein dis-
of the speech and the variety of speakers, the camance. We use uniform priors and the simple classi-
pus presents much variety in word pronunciationgication rule in eq. 4. We feel it is more compelling
which can significantly deviate from the prototypicalthat we are able to significantly improve upon stan-
pronunciations found in a lexicon. Another sourcelard edit distance and the MCI model without using
of pronunciation variability is the noise introducedany lexicon or word model.

during the annotation of speech segments. Ev@flemory Models Performance improves with the
when the phone labels are mostly accurate, the stafddition of a direct dependence &f on Z;_;. The

and end time information is not as precise and it afjggest improvement (27.65% ER) however comes

fects how boundary phones get aligned to the worgl,, conditioning OnZZ-(i)l, the target symbol that

sequence. As a reference pronunciation dictionaty hypothesized in the previous step. There was no

we use a lexicon of the 2002 Switchboard speeclin \when conditioning on the type of edit operation
recognition evaluation. The lexicon contains 40004}, i,o previous frame.

entries, but we report results on a reduced dictioé text Models It inalv. th ¢ i
nary’ with 5000 entries corresponding to only thosi on ?}i odels in e;esl ng );] € exac hopp03|he
words that appear in our train and test sets. Rist gem the memory models Is happening here when

o . . ndition on th r ntext (ver ndi-
and Yianilos use a few additional lexicons, some o\fve condition on the source context (versus cond

which are corpus-derived. We did reproduce theifoning on the tetrget gontext). Conditioning op
results on the different types of lexicons. gets us to 21.70%. With;, s; 1 we can further re-

0,
For testing we randomly divided STP data intoduce the error rate to 20.26%. However, when we

9495 training words (corresponding to 9545 proggd3;yth|r(:]'dﬁpeorll_detncy, the ek‘)rror frate wortsenst o
nunciations) and 912 test words (901 pronuncig-:" o, Which Indicales a number of parameters oo
igh for the given amount of training data. Backoff,

tions). Furthermore, for the Levenshtein and MC : lati tate clusteri iaht all b
results only, we performed ten-fold cross validatior " Po'ation, or state clustering might all be appro-

to verify we did not pick a non-representative tesP riate strategies here.

set. Our models are implemented using GMTK, &0sition Models Because in the previous mod-
general-purpose DBN tool originally created to ex€ls, when conditioning on the past, boundary condi-
plore different speech recognition models (Bilmedions dictate that we use a different CPT in the first
and Zweig, 2002). As a sanity check, we also imframe, it is fair to wonder whether part of the gain
plemented the MCI model in C following RY’s al- We witness is due to the implicit dependence on the
gorithm. source-target string position. The (small) improve-

The error rate is computed by calculating, for eacA?ent due to conditioning o indicates there is such

pronunciation form, the fraction of words that aredependence. Also, the fact that the target position is
correctly hypothesized and averaging over the te§0re informative than the source one is likely due to
set. For example if the classifier returns five wordé1e misalignments we observed in the phonetically
for a given pronunciation, and two of the words ardranscribed corpus, whereby the first or last phones

correct, the error rate is 3/5¥100%. would incorrectly be aligned with the previous or
Three EM iterations are used for training. Addi-Next word resp. |.e., the model might be learning

tional iterations overtrained our models. to not put much faith in the start and end positions

42 Results of the target string, and thus it boosts deletion and

_ _ insertion probabilities at those positions. We have
Table 1 summarizes our results using DBN basegs, conditioned on coarser-grained positions (be-
models. The basic MCI model does marginally betyinning, middle, and end of string) but obtained the
ter than the Levenshtein edit distance. This is consame results as with the fine-grained dependency.
sistent with the finding in RY: their gains come fromLength Models Modeling length helps to a small

the joint Iearnlng. (.)f the probabilitie& (w|si") and extent when it is added to the MCIl and MCD mod-
P(s{",t7). Specifically, the word model accounts . . o .
els. Belying the assumption motivating this model,
SEquivalent to théE2 lexicon in RY. we found that the distribution over the R¥iclen



(which controls how much the edit sequence extendke problem lies with this model once one considers
beyond the length of the source string) is skewed tdhat two very different strings might still get a higher
wards small values aficlen. This indicates on that likelihood than more similar pair because, given
insertions are rare when the source string is longand¢ s.t. s # t, the probability of identity is obvi-
than the target one and vice-versa for deletions. ously zero and that of insertion or deletion can be

Direct Model The low error rate obtained by this quite high; and whern = ¢, the probability of in-
model reflects its similarity to the context-depender€rtion (or deletion) is still positive. We observed
model. From the two sets of results, it is clear thahe same non-discriminative behavior when we re-
source string context plays a crucial role in predictPlaced, in the MCI modely; with a hidden RVX;,

ing canonical pronunciations from corpus ones. WéhereX; takes as values one of the four edit opera-
would expect additional gains from modeling conllons.

text dependencies across time here as well. 5 Computational Considerations

Mfe‘i'le' Zi Deﬁigge“des %ggg‘;te The computational complexity of inference in a
Baselne | one 3555 | graphlcal_model is _related to the state space_of the
7 2005 largest clique (maximal complete subgraph) in the
editOperationTypeq; 1) 36.16 graph. In general, finding the smallest such clique is
Memory |—Stochastic binaryf,_, 33.87 NP-complete (Arnborg et al., 1987).
glg,l 53'25_) In the case of the MCI model, however, it is not
8‘1 21:70 difficult to show that the smallest such clique con-
& 3506 tains all the RVs within a frame and the complex-
Context Siy Si—1 20.26 ity of doing inference is orde®(mn - max(m,n)).
S;i; - gg:g% The reason there is a complexity gap is that the
51 ey 41 (s, 1 inlast frame) 23.14 source and target position variables are indexed by
Sis Sa;—1 (sa 41 infirst frame) 23.15 the frame number and we do not exploit the fact
bosition a g?:gg that even though we arrive at a given source-target
ai.b; 3417 position pair along different edit sequence paths at
Mixed D1.5: 2292 different framgs, the pogition pair is rea_IIy the_ same
z0, s 24.26 regardless of its frame index. We are investigating
Length nghe gg.gg generic ways of exploiting this constraint.
Tt | — 2370 In practice, however, state space pruning can sig-

nificantly reduce the running time of DBN infer-

Table 1:DBN based model results summary. ence. Ukkonen (1985) reduces the complexity of the

: " classic edit distance 0(d-max(m,n)), whered is
When we combine the hest posﬁmn—depende%e edit distance. The intuition there is that, assum-

or memory models with the context-dependent ON%g a small edit distance, the most likely alignments
the error rate decreases (from 31.31% to 25'25%}% such that the source’ osition does rilot d?ver etoo
when conditioning orb; ands;; and from 28.28% P g

L B much from the target position. The same intuition
to 25.75% when conditioning orj_1 ands;) but not

g holds in our case: if the source and the target posi-
to the extent conditioning o#} alone decreases errorion do not get too far out of sync, then at each step,

rate. Not shown in table 1, we also tried several othq{my a small fraction of then - n possible source-

models, which although they are able to producg,yet hosition configurations need be considered.
reasonable alignments (in the sense that the Leven—The direct model, for example, is quite fast in

shtein dlstancg WOUIO.I result in similar a“gnmemsioractice because we can restrict the cardinality of the
between two given strings, they have extremely po del RV to a constant: (i.e. we disallow long-span

discriminative ability and result in error rates higher

. ) ._deletions, which for certain applications is a reason-
than 90%. One such example is a model in Wh|cI(1j bp

. able restriction) and make inference lineaniwith
Z; depends on botk; andt;. It is easy to see where o )
a running time constant proportional ¢&



6 Conclusion S. Greenberg, J. Hollenback, and D. Ellis. 1996. Insights

We have shown how the problem of learning edit Nt spoken language gleaned from phonetic transcrip-
distance costs from datap can be modeledg uite tion of the switchboard corpus. ICSLR, pages S24-
: ! _ quite 57,

naturally using Dynamic Bayesian Networks even . _ o
though the problem lacks the temporal or order corf> NﬁrKletmd 1?§8r- g‘t’rmp““g? the Z?r;t_dlsaagt%e:r?;wefn
straints that other problems such as speech recog—gurgg:anosyrengosifrﬁimbgf 5261 gpsages 91_101261
nition exhibit. This gives us confidence that other _ . ’ _
important problems such as machine translation cahk '—aUFE'tE‘I?”- t_1996.Graph|caI Models Oxford Sci-
benefit from a Graphical Models perspective. Ma- ence Fublications.
chine translation presents a fresh set of challenge€s Leusch, N. Ueffing, and H. Ney. 2003. A novel
because of the large combinatorial space of possibleSt”“gj'fo'?tfmgI dt|_stance lmetjcxsureMwnr;].app#catlolns to

- - machine translation evaluation. Machine Transla-
alignments between the sogrce strlng and the target. . .’ ummit X pages 240-247.

There are several extensions to this work that we _ _
intend to implement or have already obtained pre¥. Levenshtein. 1966. Binary codes capable of cor-
liminary results on. One is simple and block trans- recting deletions, insertions and reversaiav. Phys.

" L . - Dokl,, 10:707-710.
position. Another natural extension is modeling edit
distance of multiple strings. R. Lowrance and R. A. Wagner. 1975. An extension

. . to the string-to-string correction problemJ. ACM
It is also evident from the large number of depen- 22(2):177-183.

dency structures that were explored that our learn- . o _
ing algorithm would benefit from a structure learnM. Mohri. 2002. Edit-distance of weighted automata.
ing procedure. Maximum likelihood optimization 1 C1AA volume 2608 oL.ecture Notes in Computer
: . . . Sciencepages 1-23. Springer.
might, however, not be appropriate in this case, as
exemplified by the failure of some models to disK- Murtp?y. 2I()(]22.Dynam|c(:j BLayeS.lag,rl]\lgtV\t/ﬁrksi Rue%re-
. : o .« sentation, Inference and Learningh.D. thesis, U.C.
cr!m!nat_e between different pronunma_ttlon_s. _!Dls Berkeley, Dept. of EECS, CS Division.
criminative methods have been used with significant
success in training HMMs. Edit distance learnindR. Myers, R.C. Wison, and E.R. Hancock.  2000.

: . Bayesian graph edit distanclEEE Trans. on Pattern
could benefit from similar methods. Analysis and Machine Intelligenc22:628—635.
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