
USING MUTUAL INFORMATION TO DESIGN FEATURE COMBINATIONS

Daniel P. W. Ellis

International Computer Science Institute
Berkeley CA USA

dpwe@icsi.berkeley.edu

Jeff A. Bilmes

University of Washington,
Seattle WA, USA

bilmes@ee.washington.edu

ABSTRACT

Combination of different feature streams is a well-established
method for improving speech recognition performance. This em-
pirical success, however, poses theoretical problems when trying
to design combination systems: is it possible to predict which
feature streams will combine most advantageously, and which of
the many possible combination strategies will be most successful
for the particular feature streams in question? We approach these
questions with the tool of conditional mutual information (CMI),
estimating the amount of information that one feature stream con-
tains about the other, given knowledge of the correct subword unit
label. We argue that CMI of the raw feature streams should be
useful in deciding whether to merge them together as one large
stream, or to feed them separately into independent classifiers for
later combination; this is only weakly supported by our results.
We also argue that CMI between the outputs of independent clas-
sifiers based on each stream should help predict which streams
can be combined most beneficially. Our results confirm the use-
fulness of this measure.

1. INTRODUCTION

A perennially successful approach to improving speech recog-
nition performance is to use several feature streams. Different
feature extraction algorithms can reveal complementary aspects
of the original acoustic signal, leading to more accurate classifi-
cation in acoustic models. In our own work and that of others,
systems combining multiple feature sources consistently outper-
form single-feature-source baselines, even when the combination
schemes are naive and in spite of highly redundant information in
the feature streams [1, 2, 3, 4]. This is not so surprising: as long as
the separate feature streams each contain some amount of useful
and complementary information, and provided our combination
scheme can exploit it, more information should always be better.

Within the context of systems exploiting such feature-stream
combination, there are several design choices whose optimal solu-
tions are unknown. In this paper, we consider two of the most im-
portant: how to choose which among a number of feature streams
to combine, and where in the classification process to combine
them. Choosing the streams to combine is complicated because
it depends not only on the baseline utility of the feature stream
as a basis for the desired speech-class discrimination, but also on
the complementarity of the information in each stream. As an
extreme example, combining the single best-performing feature
stream withitself is less likely to give much benefit, since the in-
formation in the two streams is entirely redundant. By contrast,
we have seen cases in which adding a second stream that per-
forms more than 10% worse than the original stream (in terms

of relative Word Error Rate (WER)) affords a relative improve-
ment of 5-10% in WER over the better stream (or 15-20% over
the added stream), provided the two streams have significantly
different properties [2].

We have also investigated a number of different combination
schemes, both in terms of the point at which streams are com-
bined (before or after the initial acoustic classifier, at the timescale
of individual frames, or at some other synchronization point), and
the precise rule used to combine them (for instance, combining
probabilities by averaging, log-averaging, taking the max or tak-
ing the min) [5, 3, 6]. We have seen that the difference between
best and worst combination schemes can easily exceed 20% rela-
tive, yet the best scheme depends on which streams are combined
and cannot easily be predicted.

Currently these design choices are made through a combination
of intuition and empirical comparison. Since, however, it can take
several weeks to train a speech recognition system for a large task
such as Broadcast News, it would be preferable to find some sim-
pler property of feature streams that could be used to decide when
and how to combine them. In this paper, we investigate the useful-
ness of conditional mutual information (CMI) in this role, making
theoretical arguments about why the mutual information between
different streams should relate to their properties in combination,
then testing these arguments against some experiments with four
different feature streams used on the Aurora noisy digits task [7].

The next section describes the task and our approach in more de-
tail, including a description of our estimation of CMI. Section
3 presents the arguments that low CMI between classifier out-
puts should correlate with streams amenable to combination, and
that low CMI between the feature streams should favor their sep-
arate (rather than integrated) presentation to independent classi-
fiers. Section 4 presents the experimental results for recogniz-
ers based on several different stream combinations, and compares
them to the predictions based on CMI. Finally, we discuss the im-
plications of the results and some future directions for this work.

2. APPROACH

In recent experiments with the Aurora noisy digits task [6], we
conducted an exhaustive investigation into combinations between
four feature streams: PLP cepstral coefficients, their deltas, and
modulation-filtered spectrogram (MSG) features for two different
modulation bands, 0-8 Hz and 8-16 Hz [8]. Our speech recognizer
was the hybrid connectionist-HMM framework [9], in which a
neural network serves as the acoustic model, estimating discrimi-
native posterior probabilities for each subword class. These prob-
abilities, converted to likelihoods, are then used in a conventional
HMM decoder to find the most likely word sequence.



Stream Description Elements Bsln WER Ratio
PLPa PLP cepstra 13 105.9%
PLPb deltas of PLPa 13 125.6%
MSGa modspec 0-8Hz 14 112.7%
MSGb modspec 8-16Hz 14 141.6%

Table 1: The four basic feature streams and their individual per-
formance, expressed as the average ratio of per-condition WER to
the HTK baseline system. Lower ratios are better.

The four streams are summarized in table 1, which shows their
relative recognition performance. The Aurora task includes 28
test conditions spanning a wide range of SNRs, so we quote
not absolute WER but the ratio of WERs to the Aurora base-
line system (defined in HTK and using MFCC features plus deltas
and double-deltas), averaged across all 28 conditions to give the
‘Baseline WER Ratio’ figure.

We contrasted two combination schemes: feature combination
(FC), where the streams are concatenated to make a single, larger
feature space for which a single acoustic model is built, and poste-
rior combination (PC), in which separate acoustic models for each
stream calculate the posterior probability of each phone class, and
these probabilities are combined and passed on to later process-
ing. In our experiments, we combined posteriors by averaging in
the log domain (i.e. taking the geometric mean). Modulo a factor
of the prior probabilities, this is the theoretically correct approach
if the two feature streams are conditionally independent. In prac-
tice, for speech recognition feature stream combination tasks, log-
domain averaging has consistently out-performed other rules such
as linear averaging, or taking the max or min [3].

Four streams offer six possible pairs, and each pair was combined
both by FC (by training a new neural-net acoustic model on the
concatenated feature vectors) and by PC (by combining the poste-
rior probability outputs of neural-nets trained on each individual
stream). The results (in section 4) show a variation of 20% or
more between different streams and combination method.

We also investigated ways of combining all four streams. The best
scheme, as reported below, was to use FC to combine the closely-
related pairs of streams (i.e. cepstra and their deltas, and the two
kinds of MSG features), then to use PC to combine the two result-
ing classifiers, further highlighting the difficulty in choosing the
best combination scheme.

2.1. Estimating Conditional Mutual Information

The mutual information (MI) between two random variables is
a measure of how much you discover about one variable given
knowledge of the other. It is the difference between the sum of the
marginal entropies of the variables and their joint entropy. Inde-
pendent random variables have a mutual information of zero; the
maximum mutual information exists between two observations
that are deterministically related and is equal to their individual
(equal) entropies.

Conditional mutual information (CMI) introduces a set of con-
ditioning events; mutual information is calculated between the
distributions of the two variables given a particular event, and
the overall value is the expected value over all events. In our
experiments, we condition upon the ‘true’ phone class (as deter-
mined by our forced-alignment training labels using the uncom-
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Figure 1: Examples of mutual information values calculated from
Gaussian mixture models of joint distributions. Each plot shows
data points overlaid on the resulting GM model; the white dots
are the centers of the 5 Gaussians. The data on the left have a
relatively high MI, those on the right very little MI.

bined streams). The unconditional MI yields the information be-
tween the two streams irrespective of the phone classes. In con-
trast, CMI reflects the average mutual information under the con-
dition that the phone class is known. We have used CMI in the
current investigation primarily because of its relation to the log-
domain averaging we use in Posterior Combination (discussed in
section 5), but also based upon an intuition that CMI might ex-
hibit greater variation across stream pairs, as compared with with
unconditional MI which should be large between any reasonable
features. However, our limited observations suggest that MI and
CMI behave similarly in the tasks we have examined.

The entropy of empirical data is typically measured by histogram
methods, where the relative probabilities of different values are
estimated by counting. MI requires this to be done for joint dis-
tributions – implyingN2 bins ifN were an adequate code-book
size for the quantized versions of the marginal variables – and
CMI requires MI for each conditioning class, further subdividing
the available training examples. To avoid problems arising from
having too little data to make accurate estimates of joint distribu-
tions, we first fit a low-order Gaussian mixture model to the joint
distribution, then use numerical methods to derive the MI from the
model [10, 11]. We typically use 5 mixture components; increas-
ing this to 20 made little change, so this value seems adequate.
Figure 1 illustrates the modeling of some example data pairs, and
figure 2 shows the complete matrix of element-to-element CMIs
for the four base feature streams (before the classifier).

We are interested here in the mutual information between multi-
dimensional feature vectors, but our CMI estimation algorithm is
practical only for pairs of scalar variables. To obtain an indica-
tion of the full stream-to-stream CMI, we use the average across
all vector elements of the maximum CMI to any of the elements
in the other stream. This is a kind of per-element CMI; calculat-
ing the full stream-to-stream CMI would need to incorporate the
within-vector dependence as well as was approximated in [11].

3. CMI IN SYSTEM DESIGN

In this section we describe how we see CMI being useful in the
design of combination schemes.

3.1. Choosing feature streams

As argued above, the streams that show the most benefit from
combination will have the greatest amount of complementary,
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Figure 2: Full matrix of pairwise CMIs between the elements of
the four feature streams. Only pairs beyond the leading diagonal
are shown. To make the streams more comparable, the spectral
MSG features were transformed by a DCT before CMI calcula-
tion.

non-redundant information relevant to the classification task. One
way to measure this is to look at theoutputsof classifiers trained
on each stream, which we assume have successfully extracted the
relevant information from the feature streams. (In practice, we
use log probabilities whose somewhat Gaussian distributions are
easier to model than plain probabilities.) If the classifiers behave
very similarly, then the useful information in the streams is effec-
tively redundant. In particular, if the classifiers make the same
errors, there is little hope of a gain from combining them.

Differences in classifier outputs suggest different information
available in the streams, which are then promising candidates for
combination. Since, for a well-modeled task, the majority of test
cases are correctly classified by both classifiers, significant dif-
ferences are enhanced by focusing on a subset of the test data
known to give many errors. Pairs of feature streams whose clas-
sifier outputs exhibit little mutual information (i.e. uncorrelated
behavior) on this ‘difficult’ subset are promising candidates for
combination, since they appear to reflect the availability of differ-
ent task-relevant information.

The design procedure this suggests is as follows: (a) Train single-
stream classifiers based on each available feature stream; we as-
sume that all streams have roughly equivalent performance in
isolation. (b) Measure the CMI between each pair of classifier
outputs over a set of ‘difficult’ cases; and (c) build multi-stream
recognition systems based on the stream pairs with the lowest
CMI, combined by some unspecified method.

3.2. Choosing combination methods

Looking at CMI between single-stream classifier outputs should
indicate which streams can be combined, but does not tell ushow
to combine them. For this question, the CMI of the base features
(i.e. before feeding into the classifier) may be helpful, at least
for deciding between Feature Combination (FC, where a single
model space is formed from both streams) and Posterior Combi-

nation (PC, where single-stream classifier outputs are combined,
in our case by log-domain averaging).

Since FC models a single, integrated feature space, it has the abil-
ity to exploit interdependence between the feature streams that
may only be evident when the full joint distribution of the streams
is available for modeling. In PC, by contrast, the streams do not
meet untilafter the features have been converted to class proba-
bilities, which can introduce ambiguity and complicate or obscure
informative joint behavior between the sources. By the same to-
ken, each PC classifier operates in a lower-dimensional feature
space and thus is better able to model a training set of fixed size.

From this perspective, the conditional mutual information be-
tween the feature streams might act as a heuristic to predict if
FC is worthwhile or unnecessary. If, given the correct class, one
feature stream is largely independent of the other (i.e. their CMI
is close to zero), then there is little structure to be learned by the
larger FC model. A large CMI suggests interrelated streams that
might be more easily modeled by FC.

4. RESULTS

Table 2 includes all six pairwise combinations of the feature
streams from table 1, along with the best-performing 4-stream
system, which PC-combined the FC combinations of PLPa+b and
MSGa+b. The table shows overall word-error rate performance
(again expressed as the average of per-condition ratios to the stan-
dard Aurora baseline) for both Feature Combination and Posterior
Combination. Also shown are the conditional mutual information
estimates, in bits, for both the base feature streams and the pos-
terior probabilities from classifiers trained on those streams. The
CMIs are measured over a special ‘difficult’ subset of the test data,
chosen from utterances in which the baseline system made word
errors.

As predicted, a small posterior CMI correlates well with stream
pairs, such as PLPa and MSGb, that show particular gains from
combination. The four stream system actually has a larger pos-
terior CMI, but these numbers are not really comparable given
the much better baseline performance of the stream pairs being
combined in the 4-way system.

Although feature CMI varies over a larger range, it is only weakly
correlated with the advantage of FC over PC; our argument that
PC should be favored when feature CMI is small is not conclu-
sively supported. Looking at just the first two lines, we do see
that PC is much worse than FC for the MSG streams, which have a
large feature CMI. However, in the next four lines, the PC system
that performs least badly compared to FC occurs for PLPa with
MSGa, which also has the largest feature CMI of that set. The
4-stream system of the final line, the only example in which PC
outperforms FC, nonetheless has a relatively large feature CMI.

5. DISCUSSION AND CONCLUSIONS

It is disappointing to find little support for our prediction that base
feature stream CMI should be low when PC is a relatively success-
ful combination method. One explanation could be that the stream
interdependence being measured is dominated by behavior that is
irrelevant to the classification task.

A second problem could lie in the estimation of stream CMI
from pairwise element CMI as described in section 2.1. Whereas
the posterior CMIs were measured between streams with very



Stream 1 Stream 2 FC WER Ratio PC WER Ratio Ftr CMI Post CMI
PLPa PLPb 89.6% 97.6% 0.04 0.26
MSGa MSGb 85.8% 101.1% 0.21 0.25
PLPa MSGa 86.4% 88.3% 0.23 0.26
PLPa MSGb 78.1% 86.3% 0.11 0.15
PLPb MSGa 87.5% 89.7% 0.09 0.24
PLPb MSGb 82.6% 89.9% 0.05 0.19
PLPa+b MSGa+b 74.1% 63.0% 0.16 0.24

Table 2: Comparison of various feature stream combinations: Recognition performance (average per-condition ratio to baseline WER)
for both Feature Combination (FC WER Ratio) and Posterior Combination (PC WER Ratio), along with CMI based on both the basic
features (Ftr CMI) and on the posterior probability outputs of classifiers trained on individual streams (Prob CMI).

similar characteristics and internal correlation (since they were
all approximations of the same posterior probability sequences),
the feature CMIs are measured between very different stream
types which might make comparisons between them irrelevant.
As noted, our streamwise CMI estimates can be influenced by
within-stream dependence, which varies among the different fea-
ture streams, as seen in figure 2.

Note that the only kind of Posterior Combination that we in-
vestigated was log-domain averaging. As mentioned above, this
particular combination rule is related to the theoretically optimal
method for conditionally independent feature streams i.e. streams
with a feature CMI of zero (consistent with our argument that PC
should be better when the feature CMI is small). Other combina-
tion rules correspond to different assumptions about the compo-
nent streams, and might turn out to be more consistent with the
CMIs we measured.

One factor not discussed so far is the influence of the baseline per-
formance: judgments about stream combinations must respect the
baseline utility of the individual streams, as well as indications of
the complementarity of stream information as investigated here.

In summary, we argued that low CMI between classifier outputs
indicated streams that would benefit from combination because
they contained complementary information. This was borne out
by our experimental results, and thus classifier output CMI could
serve as a useful basis for system design, avoiding the slow pro-
cess of evaluating complete systems based on all possible feature
configurations.

We also investigated whether CMI could indicate which stream
combination approach would be most beneficial for a particular
pair of streams. We argued that low CMI between base features
(i.e. beforepassing through the classifier) should indicate streams
with relatively little structure in their joint distribution, and which
were better matched to our form of Posterior Combination, obvi-
ating the need for the monolithic model space of Feature Combi-
nation. This was not supported by our experimental results; per-
haps a more sophisticated estimation of the CMI between feature
streams would have greater success as a basis for system design.
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