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Abstract— We present a physical robotic arm performing
real-world tasks using continuous non-verbal vocalizations for
control. Vocalization control provides fewer degrees of control
freedom than are necessary to directly control complex robotic
platforms. To bridge this gap, we evaluated three control
methods: direct joint angle control of a selectable subset of
joints, inverse kinematics control of the end effector, and
control in a reduced-dimensionality synergy space. The synergy
method is inspired by neural solutions to biological body
redundancy problems. We conducted several evaluations of the
three methods involving the real-world tasks of water bottle
recycling and grocery bag moving. Users with no prior exposure
to the system were able to perform these tasks effectively and
were able to learn to be more efficient. This study demonstrates
the feasibility of continuous non-verbal vocalizations for control
of a full-scale assitive robot in a realistic context.

In the United States, there are over a quarter million
individuals with spinal cord injuries, 47% of which are
quadriplegic [1] (i.e., with restricted use of their upper limbs
and hands). There are even more individuals with severe
motor impairments such as paraplegia, amputations, arthritis,
or Parkinson’s disease. Individuals with limited mobility and
motor control rely on others to assist them in their daily
activities such as preparing meals, eating, lying down into
bed, and personal hygiene.

Recent advances in assistive technologies have
demonstrated several approaches to help these individuals.
There are robots that semi-autonomously assist the users with
spoken language and automatic speech recognition (ASR).
They hold great promise due to the hands-free interaction
they provide without significant investment in specialized
hardware (other than the robot itself). Stanford’s DeVAR is a
desktop-mounted robot that utilizes ASR to assist users’ daily
activities including meal preparation, self-feeding, and certain
personal hygiene tasks [2]. Another system called FRIEND
I & II uses a robotic arm attached to an electric wheelchair
[3]. The entire system is controlled by speaking relatively
simple verbal commands which invoke arm movements
or semi-automated high-level commands, such as motion
planning for grasping, or navigating. Unfortunately, controls
of this type require a structured physical environment to
successfully execute high-level commands triggered by
the user, or require a large number of voice commands to
achieve high accuracy of movement control. Moreover, they
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Fig. 1. Experimental setup for the two real-world tasks. (a) In the pick-
and-place task, users move water bottles into a trash can. (b) In the bag
moving task, users pick up a grocery bag by the handles and move it to the
specified region of another table.

rely heavily on robotic autonomy in human-environments,
which is still an unsolved research problem [4], [5].

Non-invasive brain control interface (BCI) via technologies
like electroencephalography (EEG) may be a future option for
providing hands-free interaction with the environment. There
have been demonstrations of controlling a mobile robot and
a wheelchair, as well as cursors [6], [7], and these systems
continue to improve. However, noninvasive BCI systems,
and even state-of-the-art invasive BCI systems, are currently
limited in the richness and robustness of the control signal
they provide and present practical hurdles to deployment such
as cost, and susceptibility to electromagnetic interference.

There are other interfaces for controlling robotic devices,
such as inductive tongue interfaces for robotic wheelchairs
[8], eye-tracking for semi-robotic wheel chairs [9], and
laser pointer and touch screen interfaces for high-level
control of an autonomous robot [10]. Such autonomous or
semi-autonomous systems provide discrete, as opposed to
continuous, control signals and therefore provide a discretized
suite of movement and manipulation options to the user. The
Vocal Joystick (VJ) [11] provides real-time control signals
from continuous human vocal qualities such as pitch, vowel
formation, and amplitude, creating a control interface which is
suitable for a complex robot. Previous work has demonstrated
that the VJ can be successfully used for not only mouse
control [12], but also simple robotic arm control [13]. The
robot in that study was not simulated, and it demonstrated that
users could successfully complete an object movement task
in a reasonable amount of time. On the other hand, the robot
was a relatively hobbyist’s Lynxmotion Lynx 6 arm, which is
too fragile and small for gross manipulation household tasks.
Consequently, the task that was performed (moving a piece of
candy from a starting position to a paper target) did not con-
stitute a task typical of what one might wish to perform in the
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home. The task was extremely simple and ignored various con-
trol difficulties arising from using the proposed system in the
real-world environment. For instance, there was no danger of
collisions, and fewer relevant degrees of freedom both in the
pose of the robot and in the objects. In this work, we demon-
strate an improvement of the state-of-the-art in voice con-
trolled robotics. The Vocal joystick (VJ) system [11] is used
to control a complex robotic arm capable of performing real-
world tasks. There are a number of novel aspects of our study
over previous work. First, we use a real “industrial strength”
robotic arm and hand, namely the WAM Arm [14] and the
BarrettHand [15]. We demonstrate three control methods, each
providing different tradeoffs for dealing with the complexity
of performing real-world tasks that one might wish to perform
in the home, including moving water bottles from a table into
the trash, and moving a heavy shopping bag full of groceries.

We tested these two tasks under three control methods:
direct joint angle control, inverse kinematics solving for
end effector position, and dimensionality-reducing synergy
control. A group of nine individuals participated in four
sessions over the course of two days (two sessions per day).
These studies allowed us to observe not only task and control
method preferences and competencies, but also the rate of
learning. Experiments on these nine users showed that, even
though they had no prior experience with voice-controlled
robotics, they could complete practical real world tasks and
learn to perform more effectively over the course of four
short sessions. To the best of our knowledge, this study
demonstrates the first instance of a full-scale robotic arm
being controlled by non-verbal vocalizations to perform real
world tasks. It is also a pilot demonstration of task-specific
synergies for robotic interface. Based on the results reported
here, we believe further research of non-verbal voice
controlled robotics and prosthetic limbs is warranted.

A. Sparse Control Problem and Synergy Hypothesis In Brief

While there has been active research in assistive interfaces,
there has been relatively little work addressing the problem
of interfaces providing fewer control dimensions than are
required to control a fully functional assistive robot. In [16],
this was named the sparse control problem. Jenkins addressed
this problem by utilizing a subspace of a robot’s position
space, and demonstrated the results on a simulated robot. We
compare the “default” solution of directly controlling a subset
of joint angles with two other subspace methods. This default
solution involves direct control of a subset of joint angles
while being able to select which subset is currently active. The
first alternative is to have the user control the cartesian posi-
tion of the end effector, while an autonomous algorithm selects
the appropriate joint angles. This control method we refer to as
inverse kinematics control. The second subspace method is a
new approach inspired by the Synergy Hypothesis in the study
of neural movement control. Ignoring this inspiration, the
method may be thought of as an Eigenvector dimensionality
reduction technique based on an example of the desired task.
In studies of neural control of movement, it remains unclear
what fundamental output the higher nervous system controls,

Fig. 2. The Vocal Joystick: Vowel sounds are used for control. Words
include the nearest vowel in American English. Note that pitch was utilized
as another continuous control dimension. Voice loudness controlled the speed
of motion in combination with the other control dimensions.

from low-level activation of individual muscles to high-level
task specifications which are acted on by a hierarchy of lower-
level controllers [17]. The synergy hypothesis states that the
neural system combines the activations of small groups of
muscles that operate cooperatively as structural units of an
overall control solution. These synergy components bridge
the gap between the relatively simple movement goals of a
task and the highly redundant variety of possible controls to
achieve it. For the purposes of this paper, synergy components
provide a way of mapping few controllable dimensions to a
rich, task-specific set of poses for the robotic arm. Synergies
used for robotic control or interface are sometimes constructed
by hand [18] but here we demonstrate automatic synergy
construction given examples of task completion. There are a
variety of strategies for constructing synergies, from simple
ratios of joint angle changes to more complex methods
incorporating time dependence and delays [19], [20]. Here
we use synergies in their simplest form, a linear weighting of
joint angle displacements, to act as a small number of control
knobs that each affect the joint angles by a fixed amount. This
weighting is advantageous because it incorporates examples
of the movements necessary to achieve the goal to provide
a task-specific interface.

I. METHODS

The Vocal Joystick engine provided the control inputs
to the robotic hardware. The engine provided controls at
100Hz in the form of vowel quality velocities, pitch, loudness,
and discrete identifiers as shown in Fig. 2. (For detailed
information about the Vocal Joystick engine, please refer to
[11]) Pitch values were in log-scale frequency, which is closer
to the human perception of pitch than linear frequency. To be
consistent with units of vowel quality velocities, we used the
derivative of pitch values, the pitch velocity, instead of abso-
lute pitch values for our system. Two-dimensional continuous
values from vowel quality velocities and the one-dimensional
continuous signal from pitch velocity were used as joint angle
controls, while the loudness of the user’s voice determined
the speed of motion. The two discrete phonemes, [k] and
[tS], were used for commanding discrete actions of the robot,
such as opening/closing of the robot hand. These correspond
to the sounds beginning the words kill and chill, respectively.
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A. Arm and Hardware Overview

The MARVIN Mobile Manipulation Platform was
assembled by Intel Labs Seattle, and is a WAM Arm [14]
and a BarrettHand [15] mounted on a Segway RMP 100
[21]. The WAM Arm has 7 degrees of freedom (DoF):
shoulder rotate, shoulder bend, elbow rotate, elbow bend,
wrist rotate, wrist bend, and a redundant wrist rotation. The
WAM Arm is controlled by a real-time Linux PC at a rate
of 500hz. Joint limit safety checks, high-level smoothing of
joint movements, the inverse kinematics solver, and network
communication with the Vocal Joystick engine were all
executed on another computer and communicated to the
robot via TCP network. The end effector of the WAM Arm
is a BarrettHand. The BarrettHand has 4 DoF, but for this
study is used as a simple 2-prong gripper with pre-tuned
open and closed positions. A computer monitor was used
to display simple feedback information about robot state as
shown in Fig. 1-(a) (a monitor on right side of the robot).

B. Control Methods

The Vocal Joystick provides four simultaneous control sig-
nals, to interface with the 7-DoF robotic platform. Therefore,
the system operates under the sparse control problem [16], and
cannot produce a one-to-one map between control data from
the VJ engine to robot joints. We explored three control meth-
ods for bridging this gap, each involving a trade-off among
simultaneousness, ease of understanding, and expressiveness.

1) Direct Joint Angle Control: The direct joint angle
control method solves the sparse control problem by allowing
the user to switch active control joints. The user controlled
two joint DoFs at any given time: rotation and bend of
a joint connecting two segments of the robotic arm. The
discrete sound [tS] was used to switch between the currently
active DoFs. Default control started with controlling shoulder
rotation/bend, switching to elbow, then wrist, and back to
shoulder 3. This control method did not make use of the
second wrist rotation joint. The monitor displayed a unique
color indicator of current state: blue for shoulder, green
for elbow, and orange for wrist. For example, in Fig. 1-(a),
the user is controlling the shoulder joint and blue is being
displayed on the monitor. The discrete sound [k] is used to
command the hand to open or close.

Direct joint control is the most expressive control method
since the user has direct access to the most number of joints
(6 out of 7 DoFs), giving the most freedom to the user in the
robot’s joint space. The number of simultaneously controlled
DoFs is very low, which can increase the time needed to
perform tasks, but is easy to understand conceptually for an
inexperienced user.

2) Inverse Kinematics: Two modes were available for this
method: positioning mode and manipulation mode. Position-
ing mode was designed for gross positioning of the end effec-
tor, but preliminary explorations indicated that more expres-
sive control is required for fine interaction with the objects. In
positioning mode, inverse kinematics control solves the sparse
control problem by finding joint configurations which produce
a controlled cartesian position of the end effector. Users of

Fig. 3. Instructional figures provided to the users, describing each control
method. (a) Reference for direct joint angle control details the sounds
necessary to move the joints. (b) The endpoint position of the robot is
controlled in cartesian coordinates. (c) It is difficult to depict the motions
produced by synergy control in a still frame, so the reference simply reminds
the user of which axes of vocal joystick control are used.

inverse kinematics control are able to control all 7 joints, but
only through specification of end effector position, not directly.
As in Fig. 3-(b)) the end effector is positioned by making [u]
and [æ] sounds to move towards and away from the user, and
the sounds [i] and [A] are used to move left and right. Rising
pitch and falling pitch raise and lower the effector. Loudness
is used in combination with these sounds to control speed.

The manipulation mode allowed the user to directly
control wrist rotation bend for close-range, fine manipulation
of objects. It was identical to the wrist control interface
(orange) of the direct joint angle control method. The discrete
sound [tS] was used for switching between positioning and
manipulation mode. As above, the monitor displayed the
unique color indicator of current mode: grey for positioning
mode, and orange for wrist mode. The discrete sound [k]
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is again used to command the hand to open or close
Inverse kinematics control can be intuitive for the users be-

cause it provides a control interface in Cartesian space, which
most users find to be comfortable. Having only two modes
instead of three as in direct joint control, inverse kinematics
was a more simultaneous control interface. On the other hand,
inverse kinematics was the least expressive control method;
when the user is in position mode, they cannot configure the
joints of the arm because the controller set the joint angles
autonomously. The user could only configure the two joints
of the wrist directly in manipulation mode, which limited the
overall expressiveness of inverse kinematics control.

3) Dimensionality Reduction: Synergy Control: The syn-
ergy control method was based on movement primitives, each
a weighting of the robot joints which provided a particular
motion tailored to the task. The weightings were constructed
from a single recording of a user completing the task using
the direct joint control mode. Each synergy component was an
“Eigenmotion” which best captured the variance encountered
in the recording. Principle Component Analysis (PCA) yielded
the synergy components, and the three which explained the
most variance were controlled by the user. Two dimensional
motion control data from vowel quality velocities and one
dimensional motion control data from pitch velocity controlled
the activation of the three synergy components. Loudness, as
before, controlled the speed of the motions. Since synergy
control did not have different modes or states, the monitor
feedback was not used. The discrete sound [k] was used to
open or close the hand.

Synergy control was the most simultaneous method, since
each control dimension of the VJ was used to move all
of the joints simultaneously. These motions were tailored
to the task, which limits the expressiveness to tasks for
which synergy components have been created. The control
dimensions of the synergy method are difficult to describe to
users in graphic form, since they involve complex motions
of all joints. This can lead to reduced perfomance, especially
for users without exposure to the method. For instance, the
first synergy component for the bottle task greatly rotates
the shoulder joint, as if moving from the table surface to the
trash bin, but it also pulls the hand toward the robot base.
This combination is useful for completion of the task, but
can take time to learn.

II. USER STUDY

A. Participants

We conducted user studies with nine naive healthy vol-
unteers (eight male and one female). The participants, ages
20-35, had varying occupations (undergraduate / graduate
students, department staff, and global health program), and
native language (Mongolian, Korean, English, Chinese). The
participants did not have any experience using the Vocal
Joystick or similar systems. The study was approved by the
University of Washington Human Subjects Division and each
user gave informed consent.

B. Experimental Design
The user study was designed to evaluate the three control

methods for performing two real-world tasks; it also investi-
gated the learnability of the interface. The study took place
over two days. The two real-world tasks were to throw away
water bottles in a trash can, and to move a heavy grocery
bag from one table to a subregion of another.

For the bottle task, six nearly empty water bottles were
placed at pre-assigned positions on the table as shown in
Fig. 1-(a). Bottles were separated so that users had enough
room to allow error in grabbing a single bottle without hitting
others. The table with bottles was placed 55cm away from
the center of the robot. The recycle bin was placed 45cm
away from the center of the robot’s right wheel (the left side
of table from the user perspective.) The goal of the bottle task
was to put as many bottles as possible from the table to the
recycling bin in 5 minutes. This task is challenging because it
requires fine-grained control for positioning the hand and arm.
The user can easily fail to achieve task goals by disturbing
the target bottle before achieving a grasp, knocking out other
bottles during transportation, or colliding with the table.

For the bag moving task, users were asked to move a paper
grocery bag filled with 6 full 500ml water bottles, all together
weighing about 3kg, from one table to another table. The first
table was located 55cm from the center of the robot toward
the user. The other table was located 55cm away from the
center of the robot to the left from the user’s perspective.
The starting position of the bag was fixed for all users as
shown in Fig. 1-(b). The goal of the bag task was to pick
up the bag from first table and place it in the target region
of the other table as fast as possible. A challenging aspect
of this task is to successfully grasp the handle of the bag.
It is necessary to grasp correctly as a first step for the task
without dropping the bag while transporting fragile objects
inside. Because the handle of the grocery bag was not rigid,
but could deflect around and fold, firmly grasping the handle
required fine-grained control.

C. Experimental Procedures
Two tasks combined with three different control methods

yields a total of six different experiments. To see the
learnability curve of each user, we asked each to participate on
two consecutive days. One experiment day included two trials,
each consisting of an experiment run for all six conditions.
The order of experimental runs was randomized in order to
minimize the ordering effects in learning as a confounding
factor for comparison of control methods. The details of the
study protocol are as follows:

1) Introduction: On the first day, users were given a brief
introduction to the Vocal Joystick system, and the basic
goals and methods of the study. The users were allowed
to ask any questions regarding VJ research in general.
On the second day, this step was skipped.

2) Calibration: Users were taught the nine vowel sounds
used by the VJ system with the help of a graphical
interface. The VJ system adapted its internal parameters
to match the user by having them produce 2 second
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segments of each vowel and each discrete sound. On the
second day, this step was repeated to capture various
changes of microphone setup, and any changes in user
behavior due to experience using the VJ system on the
first day.

3) Vocal Joystick Practice Session: Each user was allowed
10 minutes to practice using the VJ with visual feedback.
Within this practice time, users could ask questions.

4) Experimental Run Description: At this step, one of
six experimental setups was selected randomly. Each
user was provided a corresponding reference sheet
(Fig. 3) explaining the selected control method. Users
were shown a short instructional video of an expert
demonstrating the currently assigned tasks using the
currently assigned control method. Users were not
allowed to ask any questions after this point. On the
second day (trials 3 and 4) this step was skippable at
the user’s request.

5) Experimental Runs: Commencement of the experimen-
tal run was self-initiated by the user by producing their
first sound to control the system. The experimental run
was concluded after five minutes for the bottle task,
and whenever the task was successfully completed for
the bag task. The experimental run was recorded by
video for performance analysis, with only the robot and
task space visibile in the recording.

6) Repeating Experimental Runs: Each experimental con-
dition was run once, corresponding to all combinations
of the three control methods and two tasks. After
completing all six runs, the user was allowed to take
a short break before conducting a second trial of six
experimental runs.

7) Repeating Session: On the second day, the users
repeated the same procedure from Introduction to
Repeating Experimental Runs.

D. Evaluation Metric

For the bottle task, we used two evaluation metrics: the
number of bottles dropped in the recycle bin in 5 minutes and
the time taken per bottle for the user to grasp and place in
the bin. For the bag task, we used one metric: the time taken
to successfully transport the bag from its initial location from
one table to its end location. The metrics were measured by
reviewing the video recordings of each experimental run for
each user.

III. RESULTS

The three performance measures of both tasks indicate
that all three control methods are learnable, with statistically
significant performance improvement from trial one to trial
four (p < 0.05, see Fig. 4). Average completion time for the
bottle task decreased 45%, 50%, and 52%; time to complete
the bag task also decreased 67%, 63%, and 78%; and the
average number of successfully trashed bottles increased
88%, 86%, and 100% for direct joint, inverse kinematics,
and synergy controller respectively. By the last set of trials,
several users were able to place all of the bottles in the bin

Fig. 4. Results of the user study. (a) The mean time taken per bottle. The
users are able to improve their speed for all control methods. (b) Time taken
to complete the bag task (moving the bag from one table to another). Again,
the all users were successful and were able to improve their speed with
practice. (c) Total number of bottles trashed in 5 minutes for bottle task.

before the time limit. The results indicate that performance
using synergy control is competitive with the more standard
methods. Especially for the bag moving task, completion
using synergy control took 39% less time than with inverse
kinematics control with statistical significance(p < 0.05).
Task performance appears to continue increasing at trial 4,
which suggests that asymptotic performance levels may be
further improved.

IV. DISCUSSION

These results demonstrate the feasibility of using non-
verbal voice-controlled robots as practical assistive robots.
We would be remiss, however, if we did not carefully discuss
some limitations of the system as it appears here, how they
may be addressed, and some promising future directions
inspired by this study.

1) Feedback: Users must simply use vision of the robot
for feedback of its state. Since there is a control interface
in the form of a computer monitor, showing some enhanced
visual feedback for the robot state, and even, enhanced visual
feedback for the user voice input, could increase usability
and rates of learning the interface. The synergy control
method in particular could benefit from an intuitive indicator
of the effects of user input. Additional measurement and
indicators of the state of the robot and environment could
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make the system more safe and potentially more expressive.
For example, depth-camera sensing can be used to prevent
collisions, especially under the inverse kinematic control
method when the system is making many kinematic pose
decisions for the user. There is also potential for the use of
force feedback from the robotic hand to improve manipulation
performance [22], [23].

2) Hybrid/Adaptive Voice Control: Though continuous
non-verbal robotic control offers a rich and robust controller,
it is potentially quite tiring for users. Its use may also not
be appropriate for quiet locations and could be conspicuous.
Augmenting the system described here with a voice command
system which leverages recent advances in robotic autonomy
could provide a compromise. Adaptive interfaces, e.g. [7], the
system that can learn often-repeated tasks, could be possible
direction to explore.

3) Discriminative Synergy: The synergy control method
can be further explored in following direction. The property
captured by the synergy decompositions above is the variation
in observed data. This criterion corresponds to squared error,
but for many motor tasks, success is not defined by squared
error. For instance, when dropping a bottle into the trash
can, the task is likely to succeed for hand endpoints above
the trashcan boundaries, but jumps discontinuously as the
end effector moves outside those boundaries. We propose a
synergy decomposition based on Linear Discriminant Analysis
(LDA) of examples of task success and failure. This synergy
prioritizes motion important to task success, and allows for
variance when it is not relevant to the task.

Construction of the LDA synergies requires examples of
joint configuration x ∈ Rd for d joints, and their associated
class labels y ∈ (0, 1) where class 1 corresponded to success
and class 0 to failure respectively. An initial session using
direct joint control could be used to collect examples of
success and failure. The joint configurations x are used to
form a discriminant function f(x) expressed as in eq.1. When
f(x) > 0 , the joint configuration x is classified as success,
and it is considered a failure when f(x) 5 0 .

The weight vector w best describing the data is the
LDA synergy and can be used just as the previous synergy
formulation. Pilot experiments using LDA synergy control
are underway.

f(x) = wtx− w0 (1)

V. CONCLUSION

To our knowledge the results presented in this paper are the
first instance of using a non-verbal voice-controlled robotic
arm for practical tasks in human environments, and using
synergies constructed from task examples as a robotic control
interface. Nine users with no prior exposure to the system
were able to perform real tasks using a full-scale assitive
robot in a realistic context. Though all users were able to
accomplish the tasks to some degree immediately, the users
appear to still be learning after four trials over two days,
suggesting that further improvement may occur with more
practice.
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