
FRONTEND POST-PROCESSING AND BACKEND MODEL ENHANCEMENT ON THE
AURORA 2.0/3.0 DATABASES

Chia-Ping Chen∗, Karim Filali†, Jeff A. Bilmes∗
{chiaping,karim,bilmes}@ssli.ee.washington.edu

SSLI-Lab, University of Washington, Depts. of EE∗ and CS†

ABSTRACT

We investigate a highly effective and extremely simple noise-
robust front end based on novel post-processing of standard MFCC
features on the Aurora databases. It performs remarkably well on
both the Aurora 2.0 and Aurora 3.0 databases without requiring
any increase in model complexity. Our experiments on Aurora 2.0
have been reported in [1]. In this paper, we evaluate this technique
on the Aurora 3.0 corpus, and present updated results on Aurora
2.0. Results in the past have shown that endpointing (i.e., pre-
segmentation) on Aurora 3.0 can yield significant improvements.
Our experiments reported herein show that our approach integrates
well with this endpointing, namely we obtain additional signifi-
cant improvements. Overall, on Aurora 3.0 we obtain a 47.17%
improvement over the segmented baseline. Also, our most recent
Aurora 2.0 results show an overall improvement of 41.09% over
the baseline for the matched training conditions, and 65.07% for
the mis-matched conditions.

1. INTRODUCTION

Noise-robustness is today one of the most challenging and impor-
tant problems in automatic speech recognition (ASR). The per-
formance of ASR systems often decreases dramatically when the
noise level increases. Often the degradation is minor when the
signal-to-noise ratio (SNR) is high, but quite significant at low
SNR levels. In general, there are two types of noise, additive
and convolutional. These different noise type extremes corrupt
the speech signal in very different ways, so it is challenging to
design a methodology that is robust to both. Even given a tech-
nique that ideally handles both types of noise, the problem of mis-
match remains. That is, when the type of test conditions are dif-
ferent from the training conditions (different additive and/or con-
volutional noises in the training and testing environments), ASR
performance is often extremely poor. The severe degradation in
the noisy and/or mismatched environments is one of the major ob-
stacles for the realization of ASR systems in the full variety of ad-
verse acoustic environments that humans are prone to encounter.

The Aurora 2.0/3.0 databases provide excellent platforms in
which to research noise-robustness techniques. A variety of so-
phisticated techniques have been applied to Aurora 2.0. For exam-
ple, in [4], a frontend consisting of principle component analysis
and a discriminative neural network applied to two types of speech
features, and a backend consisting of standard Gaussian mixture
acoustic models is used. In [5], missing-data theory is used by
identifying reliable features in the spectral-temporal domain. In
[6], voice activity detector and variable frame rate techniques are
used to drop noisy feature vectors to reduce insertion errors.

In past work [1], we developed a novel feature post-processing
technique for noise-robust ASR, and demonstrated that it is very

This work was funded by NSF Award-0086032, and DARPA contract
N66001-99-2-892403

effective on Aurora 2.0, even with a simple three Gaussian com-
ponent per hidden Markov model (HMM) state backend system.
In this paper, we apply our technique to Aurora 3.0, and provide
new results on Aurora 2.0. In doing so, we show that our method,
even when integrated with systems having stronger backends, still
yields significant accuracy improvements.1

This paper is organized as follows. In section 2, we describe
our feature post-processing technique. In section 3, we analyze
our proposed method mathematically. In section 4, we present
experimental results and compare them with results of the baseline
system defined in [2][3]. In section 5, we draw conclusions and
describe future research.

Aurora 3 Reference Word Error Rate
Finn. Span. Germ. Dani. Avg.

Well 7.26 7.06 8.80 12.72 8.96
Mid 19.49 16.69 18.96 32.68 21.96
High 59.47 48.45 26.83 60.63 48.85
Overall 24.59 20.78 16.86 31.68 23.48
Aurora 3 Word Error Rate, our MVA Post-Processing

Finn. Span. Germ. Dani. Avg.
Well 3.64 3.66 4.09 7.39 4.69
Mid 10.47 8.45 11.20 20.90 12.76
High 30.04 16.69 13.14 37.93 24.45
Overall 12.63 8.59 8.84 19.75 12.45

Aurora 3 Relative Percentage Improvement
Finn. Span. Germ. Dani. Avg.

Well 49.86 48.16 53.52 41.90 48.36
Mid 46.28 49.37 40.93 36.05 43.16
High 49.49 65.55 51.02 37.44 50.88
Overall 48.51 52.93 48.49 38.74 47.17

Table 1. Our most recent Aurora 3.0 results using MVA post-
processing, given as percent word error rate (WER) results and
using a 12-Gaussian-component-per-state system. These results
include the four Aurora 3.0 languages (Finnish, Spanish, Ger-
man, and Danish) and the Well-Matched, Medium-Mismatched,
and Highly-Mismatched training/testing cases.

2. DESCRIPTION

In this section, we describe our feature post-processing method-
ology. Note that the post-processing described below will at first
appear quite similar to certain schemes well known to the commu-
nity (namely variance normalization and mean subtraction). The
crucial difference between this and past work, however, lies in the
domain in which the post-processing is applied.

1Note that this paper is an updated version of [1] but with many new
results.



Danish WM MM HM average rel imp
baseline2 87.28 67.32 39.37 68.32 =
ep 87.69 70.57 48.09 71.80 10.98
ep.m 89.90 75.26 45.37 73.64 16.79
ep.m.v 90.04 78.91 52.86 76.85 26.93
ep.m.a 91.21 81.38 45.74 76.40 25.51
ep.m.v.a 91.29 80.60 60.59 79.87 36.46
Finnish WM MM HM average rel imp
baseline2 92.74 80.51 40.53 75.41 =
ep 92.15 81.40 47.46 77.22 7.36
ep.m 93.22 84.47 55.41 80.71 21.55
ep.m.v 94.19 85.84 48.27 79.79 17.81
ep.m.a 94.08 84.27 65.27 83.44 32.66
ep.m.v.a 94.28 88.10 65.02 84.80 38.19
German WM MM HM average rel imp
baseline2 91.20 81.04 73.17 83.14 =
ep 92.27 81.63 76.04 84.49 8.01
ep.m 92.77 82.28 76.69 85.08 11.51
ep.m.v 93.97 86.60 84.14 88.93 34.34
ep.m.a 92.51 82.94 78.82 85.74 15.42
ep.m.v.a 94.35 88.21 85.62 90.02 40.81
Spanish WM MM HM average rel imp
baseline2 92.94 83.31 51.55 79.22 =
ep 94.36 84.79 64.51 83.55 20.84
ep.m 93.64 89.65 72.75 87.02 37.54
ep.m.v 95.26 91.97 77.08 89.56 49.76
ep.m.a 94.30 89.28 74.68 87.64 40.52
ep.m.v.a 95.08 92.27 80.78 90.52 54.38

Table 2. Word accuracies (as percentages) for Aurora 3.0 with
endpointing, for a 3-Gaussian-component-per-state system. Aver-
age = 0.4W +0.35M +0.25H . Percent relative improvement (rel
imp) is relative to endpointed baseline (baseline2). ep: endpointed
with HCopy as the feature extraction module. m: mean subtrac-
tion. v: variance normalization. a: ARMA. WM: Well-Matched;
MM: Medium-Mismatched; HM: Highly-Mismatched.

We start with standard mel-frequency cepstral coefficients
(MFCC) generated by a feature extraction module as our raw fea-
tures. For a given utterance, we represent the data by a matrix C
whose element Ctd is the dth component of the feature vector at
time t, t = 1 . . . T , the number of frames in the utterance and
d = 1 . . . D, the dimension of the feature space. In other words,
each row of C represents a feature vector and each column rep-
resents a time sequence. The first step is mean subtraction (MS)
defined by:

C′

td = Ctd − µd (1)

where

µd =
1

T

T
∑

t=1

Ctd (2)

This is followed by variance normalization (VN) defined by:

C̄td =
C′

td

σd

=
Ctd − µd

σd

(3)

where

σd =

√

√

√

√

1

T

T
∑

t=1

(Ctd − µd)2 (4)

The third step is processing by a mixed auto-regression moving

Danish WM MM HM average rel imp
baseline1 80.20 51.17 33.07 58.26 =
hcp 82.80 57.55 46.28 64.83 15.74
hcp.m 81.74 64.58 35.91 64.28 14.42
hcp.m.v 79.46 60.81 41.51 63.45 12.43
hcp.m.a 84.86 66.80 37.56 66.71 20.24
hcp.m.v.a 82.86 65.62 51.05 68.87 25.42
Finnish WM MM HM average rel imp
baseline1 90.39 72.37 31.06 69.25 =
hcp 92.36 76.40 35.58 72.58 10.82
hcp.m 92.92 86.39 39.54 77.29 26.15
hcp.m.v 79.49 71.55 15.65 60.75 -27.64
hcp.m.a 94.44 86.94 42.37 78.80 31.05
hcp.m.v.a 78.15 73.39 48.45 69.06 -0.62
German WM MM HM average rel imp
baseline1 90.58 79.06 74.28 82.47 =
hcp 91.18 80.31 76.27 83.65 6.70
hcp.m 91.73 78.77 72.90 82.49 0.08
hcp.m.v 91.22 79.28 78.35 83.82 7.71
hcp.m.a 91.08 77.23 74.10 81.99 -2.77
hcp.m.v.a 92.07 83.89 81.82 86.64 23.80
Spanish WM MM HM average rel imp
baseline1 86.85 73.74 42.23 71.11 =
hcp 89.65 75.26 60.27 77.27 21.33
hcp.m 90.28 82.46 60.99 80.22 31.54
hcp.m.v 91.84 85.25 67.22 83.38 42.47
hcp.m.a 88.88 82.15 65.53 80.69 33.16
hcp.m.v.a 91.99 86.51 75.43 85.93 51.31

Table 3. Word accuracies (as percentages) for Aurora 3.0 without
endpointing, for a 3-Gaussian-component-per-state system. Aver-
age = 0.4W + 0.35M + 0.25H . Relative improvement is relative
to non-endpointed baseline (baseline1). hcp: use HCopy as the
feature extraction module. m: mean subtraction. v: variance nor-
malization. a: ARMA.

wave → FE – C → M+V – C̄ → A – C̆ → Recognizer

Fig. 1. Block diagram of our feature post-processing technique.
Abbreviations are : FE – feature extraction; M – mean subtrac-
tion; V – variance normalization; A – mixed auto-regression and
moving average filter.

average (ARMA) filter, defined by:

C̆td =

{
∑M

i=1 C̆(t−i)d+
∑M

j=0 C̄(t+j)d

2M+1
if M < t ≤ T −M,

C̄td otherwise
(5)

where M is the order of the ARMA filter. The special case of
M = 0 degenerates to no ARMA filtering.

A block diagram of the post-processing technique is provided
in Figure 1. We will refer to this method as MVA post-processing.
Note that the MVA post-processing is the same for each time se-
quence and is not trained from specific data. This means that the
filter is not dependent or tuned to a particular type of noise.

Note, for the Aurora 2.0 results presented in [1] and pre-
sented in this work, we apply MVA post-processing after delta and
double-delta feature processing. For all of our Aurora 3.0 results
presented herein, however, we applied MVA post-processing after
the MFCC calculation but before the delta and double-delta feature
processing. In both cases, MVA post-processing yielded substan-
tial improvements. We plan to do a side-by-side same-corpus com-
parison to determine where it is most beneficial to do MVA post-



Danish WM MM HM average rel imp
3/6gc 91.29 80.60 60.59 79.87 =
4/8gc 91.12 79.66 62.54 79.96 0.45

8/16gc 91.93 79.38 64.54 80.69 4.07
12/24gc 92.61 79.10 62.07 80.25 1.89
16/32gc 93.03 80.51 60.62 80.55 3.38

Finnish WM MM HM average rel imp
3/6gc 94.28 88.10 65.02 84.80 =
4/8gc 94.45 88.51 65.76 85.20 2.63

8/16gc 95.77 89.12 67.28 86.32 10.00
12/24gc 96.36 89.53 69.96 87.37 16.91
16/32gc 96.44 89.33 71.17 87.63 18.62

German WM MM HM average rel imp
3/6gc 94.35 88.21 85.62 90.02 =
4/8gc 94.91 89.02 86.12 90.65 6.31

8/16gc 95.41 89.02 86.96 91.06 10.42
12/24gc 95.91 88.80 86.86 91.16 11.42
16/32gc 95.77 88.21 86.08 90.70 6.81

Spanish WM MM HM average rel imp
3/6gc 95.08 92.27 80.78 90.52 =
4/8gc 95.56 92.19 82.20 91.04 5.49

8/16gc 95.90 92.10 83.61 91.50 10.34
12/24gc 96.34 91.55 83.31 91.41 9.39
16/32gc 96.46 91.48 83.67 91.52 10.55

Table 4. Word accuracies (as percentages) for Aurora 3.0 with
various number of Gaussian components per state, all using MVA
post-processing. Average = 0.4W + 0.35M + 0.25H . Relative
improvement (rel imp) is relative to 3/6gc baseline system.

SNR/dB test A test B test C average baseline
clean 99.34 99.34 99.17 99.31 99.49

20 99.29 99.24 99.10 99.23 98.79
15 98.89 98.81 98.56 98.79 97.81
10 97.64 97.52 97.24 97.51 95.54
5 93.59 92.76 93.03 93.15 88.18
0 79.39 78.04 79.61 78.89 64.69
-5 49.25 45.20 49.80 47.74 27.25

avg 0-20 93.76 93.27 93.51 93.52 89.00

SNR/dB test A test B test C average baseline
clean 99.65 99.65 99.60 99.64 99.69

20 98.48 98.80 98.39 98.59 94.41
15 96.61 97.38 96.56 96.91 84.10
10 92.17 93.21 91.89 92.53 64.55
5 80.65 82.22 80.37 81.22 36.22
0 57.89 59.22 55.46 57.93 12.26
-5 27.99 28.12 26.67 27.78 2.52

avg 0-20 85.16 86.17 84.54 85.44 58.31

Table 5. Our most recent Aurora 2.0 results, using MVA process-
ing and a 16-Gaussian-components-per-whole-word-state system.
These results are compared to 20 Gaussian component “baseline”
results (right-most columns) that were reported in [7]. Top: multi-
condition training; bottom: clean training.

processing, but these results are not reported in this paper (also see
Section 5 for future work)

3. ANALYSIS

In equation (5), each mean-subtracted and variance-normalized
time sequence is further processed by an ARMA filter. The ARMA
filter used is essentially a low-pass filter, smoothing out any spikes
in the time sequence. The idea of smoothing out a spiky time se-
quence is quite natural. While in clean speech the spikes might
contain important information about the speech utterance, in noisy
speech these spikes are more likely to be caused by noise. There-
fore, there is an inherent trade-off in choosing the order M of the
filter. A small M will retain the short-term cepstral information
but is more vulnerable to noise, while a large M will make the
processed features less corrupted by noise, but the short-term cep-
stral information will be lost. Intuitively, the most extreme cases
of M = 0 or M � 1 would have the poorest performance when
the speech is noisy. This suggests that the optimal M ∗ will be a
small positive integer. We have verified this conjecture on Aurora
2.0 [1].

In order to examine the relationship between C̄ and C̆ in the
frequency domain, we can rewrite equation (5) as:

(2M +1)C̆td−C̆(t−1)d−· · ·−C̆(t−M)d = C̄td + · · ·+C̄(t+M)d

(6)
From (6), the transfer function is:

H(z) =
1 + z + · · ·+ zM

2M + 1− z−1 − · · · − z−M
(7)

The frequency response of the ARMA filter of order M is:

H(ejω) =
1 + ejω + · · ·+ ejMω

2M + 1− e−jω − · · · − e−jMω

=
1− ej(M+1)ω

2M + 2− (2M + 1)ejω − e−jMω

(8)

Note that for ω = 0, H(ejω) = 1. There are bM+1
2
c zeros in the

interval [0, π] equally spaced at

ω = 2nπ/(M + 1), n = 1, 2, . . . , b
M + 1

2
c (9)

The equation (8) (9) state that the number of zeros in the fre-
quency response of the ARMA filter is approximately proportional
to its order. They support the intuition that a large M will perform
poorly since it could filter out important speech information. This
and further analysis is reported [1]. Note also that for our Au-
rora 3.0 results presented herein, we consistently use a 2nd order
ARMA filter.

4. EXPERIMENTS

In this section, we evaluate our MVA post-processing scheme on
both the Aurora 3.0 and Aurora 2.0 corpora. For our Aurora
3.0 results, we comply with the system specified in [3], mean-
ing we vary only the frontend and apply different forms of post-
processing using identical backends. As stated above, MVA post-
processing is applied to feature streams consisting of 13 features
(c1, . . . , c12, log E) per frame on which delta and double-deltas
are computed. For Aurora 2.0, MVA post-processing is applied
after the delta computations.



In Table 1, we present the spreadsheet giving our Aurora 3.0
results on the four languages (Finnish, Spanish, German, and Dan-
ish) and training/testing conditions. The results reported are for
the case of 12/24gc (meaning 12 Gaussian components for each
wholeword state and 24 Gaussian components for each silence
state). As can be seen, our overall improvement over the baseline
is 47.17%.

Our results are produced using a speech endpointing (i.e., pre-
segmentation) algorithm prior to recognition, following the sug-
gested procedure given in the Aurora 3.0 evaluations guidelines
[3]. In this algorithm, a first-pass forced alignment is performed to
determine speech/non-speech endpoints on the distribution wave-
forms (both training and test sets). The beginning and ending non-
speech portion of the endpointed waveforms are then striped off,
and only the primarily speech portions are used for an additional
complete pass of training and recognition, yielding the final re-
ported results.

In Table 2, we present the results on the endpointed speech
using different frontends. This endpointing algorithm is done only
once using the non-MVA baseline features and is used for all of
the reported frontends. These experiments show that MVA post-
processing is very effective. Qualitatively, each stage of process-
ing improves the performance in addition to previous processing
stages. Quantitatively, the all-language average relative improve-
ment with MVA post-processing is 42.46% over the endpointed
baseline. Note that there is a gain when we use a different base
MFCC feature extraction program (HTK’s HCopy, listed as “ep”
in the figure) than the one (FrontEnd, listed as “baseline2” in the
figure) provided with the Aurora 3.0 distribution. Compared to
the HCopy baseline features, the all-language average relative im-
provement with post-processing is 34.98%. This number can be
attributed strictly to MVA post-processing.

For comparison, Table 3 shows the results without the end-
pointing algorithm. One can see that for most of the languages
(outside of Finish), MVA post-processing in this case is as effec-
tive as in the endpointed case. Furthermore, when comparing the
“baseline2” rows in Tables2 and “baseline1” rows in Table 3, one
can see the effect only of the endpointing algorithm, and the fact
that the improvements given by MVA post-processing are cumula-
tive.

In Table 4, we present the (once again endpointed) results
varying the backend, i.e., the number of Gaussian components
in the HMM system. The goal here is to identify the backend
that performs best with MVA features. Four epochs of parame-
ter re-estimation are performed at each step when increasing the
number of Gaussian components, so the total number of epochs
is 24 for 3/6gc (3 Gaussian components for each wholeword state
and 6 Gaussian components for each silence/sp states) and 40 for
16/32gc. It is noteworthy that as a general trend, the improvements
are significant over the 3/6gc system, but they saturate around
12/24gc. Different languages have slight variations in behavior.
We choose the 12/24gc case for our final Aurora 3.0 results given
in Table 1.

In [1], we investigated MVA post-processing using a 3gc base-
line recognizer. In this work, we re-evaluate our Aurora 2.0 using a
stronger backend [8].2 In Table 5, we present our results with a 16-
Gaussian-components-per-state system. One can see that the MVA
post-processing yields significant improvements compared to the
case without MVA post-processing. The overall average improve-
ment on the 0− 20dB test cases is 41.09% for the multi-condition
training and 65.07% for the clean training. This shows that the
MVA processing can be integrated with stronger backends to yield
additional improvements on Aurora 2.0.

2For these results, this system simulated only an HMM.

5. SUMMARY AND FUTURE WORK

In this paper, we presented a feature post-processing methodol-
ogy which is extremely simple yet extremely effective on the Au-
rora 2.0/3.0 databases, extending on work initially presented in
[1]. Our technique achieves the same level of performance as sys-
tems which use much more sophisticated acoustic modeling and/or
speech enhancements techniques. Our method does not require
any knowledge about the noise types, and yields significant im-
provements in the well-matched, medium-matched, and highly-
mismatched training and testing environments.

Our method also yields improvements when combined with
stronger backends. With the post-processing and endpointing al-
gorithm in place, increasing the number of Gaussian components
per state further improves the performance.

Comparing the performance of different languages, one can
see that the Danish and Finnish corpora have worse word accu-
racies than German and Spanish. Seeing that the system is de-
signed irrespective of the differences between languages (such as
the duration of digits or the amounts of the available data), fur-
ther improvements might be obtained if we were able to modify
the system in a language-dependent way. Furthermore, we expect
that some of the novel back-end statistical modeling available in
[8] could improve results further.

6. REFERENCES

[1] C. Chen, J. Bilmes, K. Kirchhoff, “Low-Resource noise-
robust feature post-processing on Aurora 2.0”, submitted to
ICSLP 2002.

[2] H. G. Hirsch and D. Pearce, “The AURORA Experimen-
tal Framework for the Performance Evaluations of Speech
Recognition Systems under Noisy Conditions”, ISCA ITRW
ASR2000, Paris, September 2000.

[3] Motorola Au/374/01, “Small vocabulary evaluation: Base-
line Mel-Cepstrum Performances with Speech Endpoints”,
Oct. 2001.

[4] D. Ellis and M. Gomez, “Investigations into Tandem Acous-
tic Modeling for the Aurora Task”, pp. 189-192, Proceedings
Eurospeech 2001.

[5] J. Barker, M. Cooke, and P. Green, “Robust ASR Based on
Clean Speech Models: An Evaluation of Missing Data Tech-
niques for Connected Digit Recognition in Noise”, pp. 213-
216, Proceedings Eurospeech 2001.

[6] Johan de Veth, Laurent Mauuary, Bernhard Noe, Febe de
Wet, Juergen Sienel, Louis Boves and Denis Jouver, “Fea-
ture Vector Selection to Improve ASR Robustness in Noisy
Conditions”, pp. 201-204, Proceedings Eurospeech 2001.

[7] David Pearce, Ansela Gunawardana “Aurora 2.0 Speech
Recognition in Noise: Update 2”, email from David
Pearce providing spreadsheet with most recent 20 Gaussian-
component Aurora 2.0 results, April 19, 2002. Also
see item 18, http://icslp2002.colorado.edu
/special sessions/aurora.

[8] Jeff Bilmes and Geoff Zweig, “The Graphical Models
Toolkit: An Open Source Software System for Speech and
Time-Series Processing”, in International Conference on
Acoustics, Speech, and Signal Processing, May 2002, Or-
lando Fl.


