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ABSTRACT

We present a highly effective and extremely simple noise-
robust front end based on novel post-processing of standard MFCC
features. It performs remarkably well on the Aurora 2.0 noisy-
digits database without requiring any increase in model com-
plexity. Compared to the Aurora 2.0 baseline system, our tech-
nique improves the average word error rate by 45% in the multi-
condition training case, (matched training/testing conditions) and
60% in the clean training case (mismatched training/testing con-
ditions) — this is an improvement that rivals some of the best
known results on this database. Our method, moreover, improves
the performances in all cases, regardless of clean or noisy speech,
matched or mis-matched environments. Our technique is entirely
general because it makes no assumptions about the existence, type,
or level of noise in the speech signal. Moreover, its simplicity
means that it should be easy to integrate with other techniques in
order to yield further improvements.

1. INTRODUCTION

Noise-robustness is today one of the most challenging and impor-
tant problems in automatic speech recognition (ASR). The per-
formance of ASR systems often decreases dramatically when the
noise level increases. Often the degradation is minor when the
signal-to-noise ratio (SNR) is high, but quite significant at low
SNR levels. In general, there are two types of noise, additive
and convolutional. These different noise type extremes corrupt the
speech signal in very different ways, so it is therefore challeng-
ing to design a methodology that is robust to both. Even given a
technique that ideally handles both types of noise, the problem of
mismatch remains. That is, when the type of test conditions are dif-
ferent from the training conditions (different additive and/or con-
volutional noises in the training and testing environments), ASR
performance is often extremely poor. The severe degradation in
the noisy and/or mismatched environments is one of the major ob-
stacles for the realization of ASR systems in the full variety of ad-
verse acoustic environments that humans are prone to encounter.

The Aurora 2.0 database [1] provides an excellent platform in
which to research noise-robustness techniques. In the past, a vari-
ety of sophisticated techniques have been applied to this data set.
For example, in [2], a front end consisting of principle component
analysis and a discriminative neural network applied to two types
of speech features, and a backend consisting of standard Gaussian
mixture acoustic models is used. In [3], missing-data theory is
used by identifying reliable features in the spectral-temporal do-
main. In [4], an algorithm for signal estimation in the cepstral
domain is implemented. In [5], voice activity detector and vari-
able frame rate techniques are used to drop noisy feature vectors

to reduce the insertion errors. In [6], nonlinear spectral subtrac-
tion, noise masking, feature filters, and model adaptation tech-
niques are used. In [7], data-driven temporal filters, on-line mean
and variance normalization, voice activity detection, and server
side discriminant features are integrated together to improve noise-
robustness. Overall, each of the cases above yield significant per-
formance improvements on Aurora 2.0.

In this paper, we propose a feature post-processing technique
that is both extremely simple and also remarkably effective for
noise-robustness on Aurora 2.0. Our method was discovered by vi-
sually inspecting the cepstral-domain time sequences of the same
utterance in both the clean and the noisy environments (figures are
included later in the paper). Our experiments show that this ap-
proach does achieve a performance level that is comparable to the
currently best known technique [2]1.

This paper is organized as follows. In section 2, we describe
our feature post-processing technique. In section 3, we analyze our
proposed method mathematically. In section 4, we present exper-
imental results and compare them with results from the baseline
system defined in [1]. In section 5, we draw conclusions and de-
scribe future research.

2. DESCRIPTION

In this section, we describe our feature post-processing method-
ology. Note that the post-processing described below will at first
appear quite similar to certain schemes well known to the commu-
nity (namely variance normalization and mean subtraction). The
crucial difference between this and past work, however, lies in the
domain in which the post-processing is applied. We start with stan-
dard mel-frequency cepstral coefficients (MFCC), c0 . . . c12, along
with their deltas and double-deltas as our raw features. For a given
utterance, we represent the data by a matrix C whose element Ctd

is the dth component of the feature vector at time t, t = 1 . . . T ,
the number of frames in the utterance and d = 1 . . . D, the dimen-
sion of the feature space. In other words, each row of C represents
a feature vector and each column represents a time sequence. The
first step is standard mean subtraction (MS) defined by:

C′

td = Ctd − µd (1)

where

µd =
1

T

T
∑

t=1

Ctd (2)

This is followed by the variance normalization (VN) defined by:

C̄td =
C′

td

σd

=
Ctd − µd

σd

(3)

1On the Aurora 2.0 multi-condition training set.



SNR/dB test A test B test C average baseline[1]
clean 98.80 98.80 98.51 98.74 98.52

20 98.89 98.80 98.67 98.81 97.35
15 98.26 98.29 98.05 98.23 96.29
10 96.71 96.72 96.84 96.74 93.78
5 91.80 91.90 91.44 91.77 85.51
0 77.65 76.63 77.32 77.18 58.99
-5 47.08 44.78 47.62 46.27 24.49

avg 0-20 92.66 92.47 92.47 92.55 86.39

SNR/dB test A test B test C average baseline[1]
clean 99.18 99.18 99.04 99.15 99.03

20 97.72 97.98 97.55 97.79 94.07
15 95.73 96.39 95.61 95.97 85.03
10 90.88 92.33 90.78 91.44 65.51
5 80.10 81.91 80.31 80.87 38.60
0 57.80 60.54 57.25 58.79 17.09
-5 28.50 29.26 28.55 28.81 8.53

avg 0-20 84.44 85.83 84.30 84.97 60.06

Table 1. Word accuracies (as percentages) for our methodology.
The total number of free parameters is 42k. Top: multi-condition
training (i.e., matched training/testing conditions); bottom: clean
training (i.e., mis-matched training/testing conditions).

order clean test noisy test noisiest test
M = 1 98.32 92.27 43.99
M = 2 98.74 92.55 46.27
M = 3 98.64 92.26 45.64
M = 4 98.29 92.09 45.85
M = 10 96.79 87.47 37.32

order clean test noisy test noisiest test
M = 1 99.41 81.69 22.42
M = 2 99.21 84.24 28.21
M = 3 99.19 83.99 28.35
M = 4 99.15 84.97 28.81
M = 10 97.56 80.52 27.79

Table 2. Comparison of different order ARMA filters. Word
accuracies for clean test speech, the noisy test speech (average
over SNR= 20, 15, 10, 5, 0 dB) and the noisiest test speech
(SNR= −5dB). Top: multi-condition training; bottom: clean
training.

train condition word acc. WER im-
multi clean average provement

baseline[1] 86.39 60.06 73.23 =
MS+VN (M = 0) 91.40 78.25 84.83 43%
MS+VN+ARMA 92.55 84.97 88.76 58%

Table 3. Step-wise improvement of our technique. Word accura-
cies in noisy (SNR= 0, 5, 10, 15, 20dB) test speech (M = 2 for
multi-condition training and M = 4 for clean training). Note that
relative improvements (on the right) are word error rate (WER)
improvements.

test A test B test C average
non-causal ARMA 92.66 92.47 92.47 92.55

non-causal MA 92.36 92.42 92.12 92.34
causal ARMA 92.43 92.62 92.03 92.43

causal MA 92.08 92.38 91.92 92.17
test A test B test C average

non-causal ARMA 83.79 85.05 83.54 84.24
non-causal MA 84.02 85.75 84.85 84.88
causal ARMA 84.19 85.32 83.94 84.59

causal MA 81.45 82.71 81.23 81.91

Table 4. Comparison of different low-pass filters. All the filters
have M = 2. Shown in the table are word accuracies for noisy test
speech. Top: multi-condition training; bottom: clean training.

wave → FE – C → MS+VN – C̄ → ARMA – C̆ → HMM

Fig. 1. Block diagram of our feature post-processing technique.
Abbreviations are : FE – feature extraction; MS – mean sub-
traction; VN – variance normalization; ARMA – mixed auto-
regression and moving average filter; and HMM – hidden Markov
model, the standard backend for training and decoding.
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σd =

√

√

√

√

1

T

T
∑

t=1

(Ctd − µd)2 (4)

The third step is processing by a mixed auto-regression moving
average (ARMA) filter, defined by:

C̆td =

{
∑M

i=1 C̆(t−i)d+
∑M

j=0 C̄(t+j)d

2M+1
if M < t ≤ T −M,

C̄td otherwise
(5)

where M is the order of the ARMA filter. The special case of
M = 0 degenerates to no ARMA filtering.

A block diagram of these post-processing techniques is pro-
vided in Figure 1. The processing is performed individually for
each Aurora 2.0 training and testing utterance. Note that we per-
form the variance normalization and the ARMA filtering in the
same domain, namely both in the cepstral domain. This is dif-
ferent from previously proposed approaches that perform filtering
(often in the spectral or log-spectral domain) and the variance nor-
malization (often in the cepstral domain) in different domains [8].
Also note that the filter is the same for each time sequence and
is not trained from specific data. This means that the filter is not
dependent or tuned to a particular type of noise.

3. ANALYSIS

In equation (5), each mean-subtracted and variance-normalized
time sequence is further processed by an ARMA filter. The ARMA
filter used is essentially a low-pass filter, smoothing out any spikes
in the time sequence. As will be seen, this filtering operation re-
sults in further significant improvements. The idea of smoothing
out a spiky time sequence is quite natural. While in clean speech
the spikes might contain important information about the speech
utterance, in noisy speech these spikes are more likely to be caused
by noise. Therefore, there is an inherent trade-off in choosing the
order M of the filter. A small M will retain the short-term cep-
stral information but is more vulnerable to noise, while a large M
will make the processed features less corrupted by noise, but the
short-term cepstral information will be lost. Intuitively, the most



extreme cases of M = 0 or M � 1 would have the poorest per-
formance when the speech is noisy. This suggests that the optimal
M∗ will be a small positive integer, something that we experimen-
tally verify later in the paper.

An example is illustrated in Figure 2, which shows one of the
cepstral coefficients (c1) over time of the same digit-string uttered
under different SNRs. Note how the mean subtraction and vari-
ance normalization combine to bring the time sequences in differ-
ent noise levels to the same relative level (via mean subtraction)
and scale (via variance normalization). The low-pass ARMA fil-
ter smooths out the sequences toward temporal similitude, further
minimizing the differences between the clean and the noisy plots.
While there is always a danger in using visual inspection to deduce
a processing methodology for speech recognition, we have found
that these simple processing steps, when applied in the cepstral do-
main, have a remarkably positive influence on word error as will
be seen below.

In order to examine the relationship between C̄ and C̆ in the
frequency domain, we can rewrite equation (5) as:

(2M +1)C̆td−C̆(t−1)d−· · ·−C̆(t−M)d = C̄td + · · ·+C̄(t+M)d

(6)
From (6), the transfer function is:

H(z) =
1 + z + · · ·+ zM

2M + 1− z−1 − · · · − z−M
(7)

The frequency response of the ARMA filter of order M is:

H(ejω) =
1 + ejω + · · ·+ ejMω

2M + 1− e−jω − · · · − e−jMω

=
1− ej(M+1)ω

2M + 2− (2M + 1)ejω − e−jMω

(8)

Note that for ω = 0, H(ejω) = 1. There are bM+1
2
c zeros in the

interval [0, π] equally spaced at

ω = 2nπ/(M + 1), n = 1, 2, . . . , b
M + 1

2
c (9)

The equation (8) (9) state that the number of zeros in the fre-
quency response of the ARMA filter is approximately proportional
to its order. They support the intuition that a large M will perform
poorly since it could filter out important speech information. The
frequency responses of the cases M = 2, 4 are plotted in Figure 3.

4. EVALUATION

We evaluate our methodology on the Aurora 2.0 noisy digits
database. On this database, two training sets and three test sets are
defined [1]. The multi-condition training set consists of both clean
and noisy speech (so this constitutes matched training/testing con-
ditions), while the clean training set consists only of clean speech
(constituting much more mismatched training/testing conditions).
Test set A is composed of speech with conditions matched to the
multi-condition training set, test set B is composed of speech with
non-matched background noise, and test set C is composed of
speech with partly matched background noise and non-matched
convolutional noise.

In the experiments, we use a simple HMM-based system using
whole-word models, 16 states per word, 3 Gaussian components
per state, uniform segmental k-means Gaussian initialization, and
an EM-training allowing a Gaussian component to vanish when
the component weight gets small. During training, we use a 3-state
silence model at the beginning and the end of each utterance, and

a forced single-state short-pause model between words. During
testing, we allow the silence model to optionally occur between
words. In all experiments, the total number of model parameters
is no more than 42k, which is virtually the same as the number in
the baseline system.

We summarize the recognition results on the clean test speech,
the noisy test speech (SNR= 20, 15, 10, 5, 0 dB) and the nois-
iest test speech (SNR= −5dB) in Table 1. In both cases of the
clean and multi-condition training, our post-processing technique
results in significant improvements in all types of test conditions
over the baseline results. Note that it’s not unusual for a noise-
robust technique to degrade the clean-case performance, but our
technique improves over the baseline results in all test conditions.

A comparison of different orders of the ARMA filtering is
given in Table 2. We observe that the optimal value of M dif-
fers in the multi-condition training and clean training cases. In the
multi-condition training condition, M = 2 yields the best results
(shown in boldface). This value apparently strikes a good balance
between information preservation and noise robustness. In clean
training, M = 4 (also shown in boldface) yields the best results.
Larger M corresponds to longer window. Apparently, it is nec-
essary to use a wider temporal window to produce more reliable
features when the conditions are mismatched.

We also test the effectiveness of our technique both with and
without the ARMA filtering to better understand its relative merits.
The results of these experiments are summarized in Table 3. Note
that the mean subtraction is applied in both cases. The results show
that while variance normalization and mean subtraction improves
performance over the baseline, the addition of the ARMA filter
provides significant further improvements.

The ARMA filter that we used in (5) is a non-causal low-pass
filter. In order to see whether there is an intrinsic advantage to this
particular ARMA filtering method, or if any low-pass filter suf-
fices, we ran the same experiments with the ARMA filter replaced
by the following low-pass filters.

• causal ARMA filter

C̆td =

{
∑M

i=1 C̆(t−i)d+
∑M

j=0 C̄(t−j)d

2M+1
if M < t ≤ T ,

C̄td otherwise

• non-causal MA filter

C̆td =

{
∑M

i=−M C̄(t+i)d

2M+1
if M < t ≤ T −M,

C̄td otherwise

• causal MA filter

C̆td =

{
∑M

i=0 C̄(t−i)d

M+1
if M < t ≤ T ,

C̄td otherwise

A comparison of our experimental results where we replace
the non-causal ARMA filter with these filters is given in Table 4.
Note that because of the way we defined the causal MA filter, the
results are given for a 3- (rather than 5-) tap filter in that case. As
can be seen, the difference in performances between causal/non-
causal and ARMA/MA filters is small. These results lead us to
the conclusion that it is sufficient to use a general low-pass filter
in the cepstral domain to achieve good performance for this task.
The non-causal ARMA filter, however, has an extremely simple
implementation since the array computation can be done entirely
in-place.
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Fig. 2. The time sequences of the cepstral coefficient c1 for the
digit string 5376869 corrupted with different levels of noises, both
before and after our post-processing. In this case, M = 3.
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Fig. 3. Gains and phase shifts of the ARMA filters. Here 1Hz in
normalized frequency corresponds to 50Hz in the cepstral modu-
lation domain.

5. SUMMARY AND FUTURE WORK

In this paper, we propose a feature post-processing methodology
which is extremely simple yet extremely effective on the Aurora
2.0 noisy digits database. It achieves the same level of perfor-
mance as those systems which use much more sophisticated acous-
tic modeling and/or speech enhancements techniques. In general,
our improvements are comparable to systems with many more free
parameters, and which have significantly greater computational
and model complexity. Our method does not require any knowl-
edge about the noise types, and performs well in both the matched
and mis-matched training and testing environments. Furthermore,
the technique requires no additional model parameters and does
not require any computationally expensive training algorithms for
parameter learning.

The experimental results with the clean training set and the
noisy test set are of particular interest because of the implication
to robustness in mis-matched acoustic environments. A technique
where it is possible to train only in clean speech and have good
results in both clean and noisy speech is certainly desirable.

Since our feature post-processing scheme is performed within
the feature space, there are no difficulties to combine our technique
with other noise-robust techniques. Further, we plan to experiment
with extensions to our method, to post-process other types of fea-
ture streams, and to combine it with more sophisticated acoustic
models.
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