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ABSTRACT
This paper provides a detailed description of the University

of Washington automatic speech recognition (ASR) system for
the 2001 DARPA SPeech In Noisy Environments (SPINE) task.
Our system makes heavy use of the graphical modeling toolkit
(GMTK), a general purpose graphical modeling-based ASR sys-
tem that allows arbitrary parameter tying, flexible determinis-
tic and stochastic dependencies between variables, and a gener-
alized maximum likelihood parameter estimation algorithm. In
our SPINE system, GMTK was used for acoustic model training
whereas feature extraction, speaker adaptation, and first-pass de-
coding were performed by HTK. Our integrated GMTK/HTK sys-
tem demonstrates the relative merits provided by each tool. Novel
aspects of our SPINE system include the capturing of correlations
among feature vectors via a globally-shared factored sparse inverse
covariance matrix and generalized EM training.

1. INTRODUCTION

The performance of state-of-the-art speech recognition systems in
carefully controlled acoustic environments has become more and
more impressive over time. When the test conditions are noisy,
however, or when training and test conditions are mismatched,
even the best systems show a drastic decrease in performance.
Human speech recognition performance, however, degrades only
mildly under these conditions [10]. Additive background noise and
convolutional channel distortion are two of the acoustic conditions
that often have crippling effects on system performance. A number
of techniques have been developed to improve the noise robust-
ness of ASR systems [6] and a number of standard databases have
been created in order to evaluate these techniques. The DARPA
SPINE task is one such database that provides an excellent envi-
ronment for testing recognition systems under various real-world
noise and channel conditions. SPINE speech data is recorded in
controlled conditions where two speakers play a battleship-type
game. Speakers are placed in separate sound booths, and pre-
viously recorded background noise is produced while recording
the speaker. Background noise affects speech recognition perfor-
mance not only because of the contamination of the speech signal,
but also because speakers adjust their articulation to compensate
for the environmental disturbance, a phenomenon known as the
Lombard effect [7]. Unlike some speech databases which simulate
noisy conditions by adding noise to speech recorded in a quiet en-
vironment, SPINE does include some amount of Lombard speech.

Previous approaches to improving noise robustness include
standard feature processing techniques such as cepstral mean sub-
traction and variance normalization, which are an attempt to com-
pensate for what are typically minimal differences in channel ef-
fects, owing for example to different microphones or room acous-
tics. Another example is maximum likelihood linear regression
(MLLR) [9], an adaptation methodology that can account for and
adapt to adverse acoustic conditions to some degree. Ideally, how-
ever, models should be used that can truly distinguish the prop-
erties of speech from the properties of noise without making any

assumptions about either speech or noise. We believe that these
models require richer and more sophisticated structures than the
simple hidden Markov model (HMM) structures commonly used.
A graphical model [8] is a natural extension to HMMs in that it
allows a much larger set of variables and dependencies between
those variables to be incorporated. We have recently developed
a toolkit for the development of graphical model-based ASR sys-
tems (GMTK) [3], which facilitates the exploration of this research
direction. This paper describes our GMTK-based DARPA 2001
SPINE system. One goal of this work was to begin to demon-
strate the feasibility of building a large state-of-the-art graphical
model-based speech recognition system. The second goal was to
explore a novel technique for noise robustness based on modeling
the correlation between speech feature vectors.

The organization of the paper is as follows: In Section 2, we
provide a brief overview of GMTK, followed in Section 3 by a dis-
cussion of the covariance models used in our system. In Section 4
we describe our baseline system that uses diagonal covariance ma-
trices, and in Section 5, we describe a system that uses globally
tied sparse inverse covariance matrices. Lastly, in Section 6, we
provide experimental results on the SPINE evaluations, and dis-
cuss future work in Section 7.

2. GMTK OVERVIEW

GMTK is an open source, (soon to be) publicly available software
package for developing graphical-model based speech recognition
systems and general time-series applications [3]. Graphical mod-
els are graphs where nodes represent random variables, and edges
represent sets of conditional independence relationships between
these variables. These representations provide an explicit and vi-
sual account of the underlying assumptions associated with a sta-
tistical model. Inference in graphical models can be done effi-
ciently by taking advantage of probabilistic factorizations that oc-
cur according to separation properties in a graph.

Graphical representations are useful because they provide a
common framework for rapidly comparing different models and
their underlying modeling assumptions. Thus, similarities be-
tween seemingly unrelated models can be made more explicit. For
example, the graphs for a Kalman filter and an HMM are identi-
cal, differing only in the discrete vs. continuous representation of
random variables. Inference in Kalman filters and HMMs is also
“identical”, as seen in the more abstract space of operations asso-
ciated with graphical inference.

Many time-series prediction, regression, and classification
models can be represented with graphical models. Furthermore,
many existing ASR techniques are subsumed by graphical mod-
els and their inference algorithms. This includes the forward-
backward algorithm used in HMM training, which is a special case
of the junction tree algorithm of graphical models inference. Mul-
tivariate Gaussians themselves may also be seen as either directed
or undirected graphical models [2]. Nevertheless, graphical mod-
els have only recently begun to be used for ASR [12, 2].

The probabilistic semantics used in the current version of



GMTK are dynamic switching Bayesian networks, a type of di-
rected acyclic graphical model that specifies the joint probability
distribution over random variables in factored form — each factor
represents the conditional probability of a variable given its par-
ents according to the graph. In GMTK, the conditional probability
tables can have dense, sparse, or deterministic forms. For continu-
ous nodes with discrete and continuous parents, Gaussian mixture
distributions with linear conditional dependencies on continuous
parents can be used. In addition to the usual diagonal and full co-
variance matrices, banded and factored sparse inverse covariance
matrices [4] (see Section 3) provide the advantages of full covari-
ance matrices while alleviating the associated storage and com-
putational costs. Moreover, switching parents [2] can be used to
change a variable’s parents conditioned on other values of parents.
GMTK allows extensive parameter tying between similar kinds of
model parameters, i.e. tying of probability mass functions, Gaus-
sian means, diagonal covariance matrices, and full covariance ma-
trix factorizations. Such parameter-tying can be useful for large
models that otherwise cannot be estimated reliably using only a
limited amount of training data. Parameter estimation in GMTK
can be done using standard Expectation-Maximization (EM) for
maximum likelihood parameter estimation [5], and also a general-
ized EM (GEM) algorithm when arbitrary parameter tying is used
[1]. In addition to the standard mixture splitting algorithm to in-
crease the number of components in a Gaussian mixture, GMTK
also allows vanishing of improbable mixture components.

3. SPARSE INVERSE COVARIANCE MATRICES

The usual choice of distribution for state conditional observation
model of phone HMMs is a mixture of multivariate Gaussians, i.e.
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where � � and 	 � refer to, respectively, observation and state of
HMM at time " , # � is the number of Gaussian components associ-
ated with state 
 , � ���$���  �! � denotes a multivariate Gaussian dis-
tribution with mean vector � and covariance matrix ! , and � �
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and ! �
�

are the weight, mean vector and covariance matrix of the%
th Gaussian component associated with state 
 . Because of the

high cost of full-covariance Gaussians, covariance matrices are of-
ten diagonal in speech recognition systems. This is especially true
in systems with large numbers of Gaussian components.1 Viewing
Gaussians as directed graphical models [2] and encoding only the
conditional independence relations useful for discrimination can
alleviate costs associated with computation, storage, and estima-
tion without sacrificing the advantages associated with full covari-
ance modeling.

The directed graphical model representation of a multivariate
Gaussian is obtained through reformulating the exponent in the
Gaussian probability density function [8]& ��'(��)��*�+� ,.- ! � /�0132�46587:9<;, ��) 9 �=��> ! / � ��) 9 �=�@? (2)
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where !MLON > B N is the Cholesky decomposition with diagonalB and unit upper-triangular N ,
G LQP 9 N where P is the identity

matrix and
I� LRN � . Equations 2 and 3 are equivalent representa-

tions of a Gaussian. Further insight can be obtained by factoring

1There are approximately 30,000 Gaussian components in even a
moderate-sized SPINE system, e.g. the one in Section 4.

the exponent, and making use of the fact that
G

is a strictly upper
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the upper triangular portion (note that ^ G _ V � LQh for 
�i g by con-
struction) of

G
and \ V L(^ ) VEd �Cfefef ) T _ > are the parents of child) V where ) V refers to g -th element of vector ) and ^ j _ � k refers��
  �l � -th element of matrix j . In this form it can be seen that the

conditional distribution of ) V given m ) VEd � c n n n c o.prq is another Gaus-
sian with conditional mean

[ > V]\ Vts I� V and conditional varianceIX YV . Further details may be found in [4, 2].
The zeroes in the upper triangular portion of

G
encodes the

conditional independence relationships among the elements of ' .
If ^ G _ V � � h for 
*u g , then ) V is conditionally independent of ) �given m ) Ved �  ev@veve ) T qAw m ) � q . Note that even if

G
is sparse, i.e. it

has only a few non-zero elements, the corresponding ! could still
be a full matrix. This fact can be put to good use in Equation 1 to
replace diagonal covariance matrices with full covariance matrices
with sparse inverses [4].

It is straightforward to derive closed form parameter update
equations for conditional means,

I� V , and variances,
IX YV , and

[ V
for learning with hidden variables using the EM algorithm. More-
over, it is possible to share the same

G
matrix globally across a

variety of Gaussian components in the system. This can further
lessen the storage requirements and estimation problems, but the
EM update equations are unfortunately no longer analytical. In this
case a GEM training procedure [1] can be used, as implemented in
GMTK and used for training the globally-shared sparse

G
system

below (Section 5).

4. BASELINE SYSTEM

In the baseline system we use GMTK for acoustic model training.
HTK is used for feature extraction, decision tree clustering, adap-
tation, and x -best list generation. The features are per side mean-
subtracted and variance-normalized ; , mel-frequency cepstral co-
efficients (MFCCs) plus logarithm of energy with their associated
first- and second-order differences.2

First, a monophone system with y{z distinct phones is trained
using GMTK. Each phone is modeled by a | -state HMM with left-
to-right topology and single Gaussian component output distribu-
tions and diagonal covariance matrices. In addition to between-
word silence phones, single state beginning and end of utterance
silence models are used. At the start of monophone training, all
Gaussian means and variances are set to h and ; h , respectively,
while all state transition matrices are set to be uniform, allowing
only left-to-right state transitions without any skips. The transi-
tion matrices of the HMMs, Gaussian means and covariances are
trained with GMTK for } EM iterations, which are then loaded
into HTK for decision tree clustering of triphone states. The deci-
sion tree state-clustered triphone HMM system with ,�~ yr| distinct
states is then re-trained using GMTK, using a splitting/vanishing
scheme for | h EM iterations to obtain roughly ; , Gaussian mix-
tures per state.

For recognition, the GMTK trained parameters are transferred
back to HTK to perform adaptation and x -best list generation.
After the segmentation of raw acoustic waveforms (described in
Section 6.1) a ; -best decoding is performed with a bigram lan-
guage model (LM), which is then used as the basis for the two-
class MLLR adaptation of the phone and silence models. The ; -
best decoding and MLLR adaptation steps are repeated and the

2We thank Bill Byrne for his per side mean-subtraction and variance-
normalization code.



resulting acoustic models are used to obtain a , h�h -best list which
is rescored with a trigram language model and final adapted acous-
tic models. A diagram showing the various steps of training and
recognition is depicted in Figure 1 for this system — also shown is
a second system that uses a shared sparse inverse covariance ma-
trix, described next. The experimental details and word error rates
are reported in Section 6.

DT - training,clustering - HTK

triphone training - GMTK

rescore 200-best by 3-gram LM
wer=38.3%

wer = 45.1%
1st decode - HTK

2nd MLLR - HTK

generate 200-best list - HTK  
1best wer = 39.4%

1st MLLR - HTK

2nd decode - HTK
wer = 39.9%

Baseline

global sparse B  - GMTK
12GM triphone training with 

sparse B matrix - GMTK

full B - GMTK
4GM triphone training with 

1st MLLR - HTK

2nd decode - HTK

1st decode - HTK

2nd MLLR - HTK

rescore 200-best by 3-gram LM

wer = 45.8%

wer = 40.0%

wer=38.1%

Global Sparse B

training - GMTK
monophone

Fig. 1. The training and testing of baseline and globally-shared
sparse

G
matrix systems.

5. GLOBALLY-SHARED SPARSE INVERSE
COVARIANCE SYSTEM

Instead of just diagonal covariance matrices, our second system
uses a single globally shared sparse

G
matrix to mimic full covari-

ances with virtually no increase in the number of parameters. Note
that while a single

G
has been tied globally among the Gaussian

components, the conditional means,
I� V ’s, and variances,

IX V ’s, are
still unique to each mixture and state. Hence, each Gaussian com-
ponent has a distinct full covariance matrix.

The decision tree used for state clustering for the baseline sys-
tem of Section 4 is re-used here. Initially, all conditional Gaussian
means and variances are set to h and ; h with a globally shared
strictly upper triangular full

G
matrix whose elements are all set

to h . After training a y component Gaussian mixture per state sys-
tem, we “sparsified” the

G
matrix by keeping only those entries

whose absolute values were greater than a threshold ( h�v h ; in our
case). The dense

G
matrix and the structure of the sparse

G
matrix

is depicted in Figures 2 and 3 respectively.
Assessing the importance of a

G
matrix “link” between a par-

ent and a child via the absolute value of the corresponding
G

el-
ement is justifiable for the per-side mean subtracted and variance
normalized features since each element of the feature vectors has
approximately the same dynamic range. The structure of the sparseG

matrix in Figure 3 reveals that MFCCs depend on themselves
plus their second-order differences, while first-order and second-
order differences of coefficients only depend on themselves. This
is expected given that the linear regression formulas used for first-
order differences do not include the current feature vector whereas
the second-order regression formula does. Using this sparse

G
matrix, further Gaussian splitting yielded our final ; , Gaussian
component per mixture system. At all stages of training, only
the elements of the globally-shared

G
matrix corresponding to the
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Fig. 2. The full non-sparse � matrix of � Gaussian mixture per
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Fig. 3. The resulting structure (a binary mask) of the global sparse� matrix.

structure depicted in Figure 3 are trained, all other elements are
fixed at � .

During recognition two passes of MLLR adaptation and ����� -
best rescoring with a trigram LM are performed with steps iden-
tical to the baseline. The rescored ����� -best list is the ����� -best
list generated by the final adapted acoustic models of the baseline
system. The word error rates are reported in Section 6.

6. EXPERIMENTS

All reported results that follow are from systems trained using
the official SPINE- � training and evaluation sets and the SPINE- �
training and development sets, totaling �@� hours of data3. The test
set is the official SPINE- � evaluation set, �F� � hours of data. All
recognition experiments use the standard SPINE- � bigram and tri-
gram language models provided to the participating sites by CMU
[11].

6.1. Speech/Non-Speech Segmentations

Given the high computational and memory cost associated with de-
coding long segments of acoustic waveforms, the incoming acous-

3SPINE- � and SPINE- � refer to year �@�@�@� and �@�@��� SPINE evalua-
tions respectively.



Table 1. WERs of baseline and sparse
G

systems before and after
adaptation. “no adapt.” results use no adaptation, and MLLR-; and MLLR- , refer to the results obtained after first and second
MLLR adaptations with the bigram LM. , h�h -best refers to the tri-
gram results obtained by rescoring a , h�h -best list generated using
the MLLR- , acoustic models and the bigram LM.

Model no adapt. MLLR- ; MLLR- , , h�h -best
baseline y{z v ; |�� v � |�� v y |�} v |
sparse

G y{z v } y hFv h |�� v � |�} v ;
tic speech signals needed to be segmented to find the “islands”
of speech. Otherwise, recognition of the unsegmented waveforms
might result in many insertions on the non-speech segments. An
energy-only approach, where a segment is hypothesized as speech
only if the energy is above some threshold, might not work reliably
on the SPINE data due to the variety of background noise types.
In our system, we therefore segmented the waveforms using a bi-
nary classifier consisting of an ensemble of neural networks. The
procedure consists of three steps. First, speech features (MFCCs)
are extracted from the unsegmented acoustic waveforms. Second,
frame-level “speech” probabilities are obtained from the neural-
network ensemble. Lastly, the frame level probabilities are post-
processed to determine speech segments satisfying a minimum du-
ration constraint.

The neural-network ensemble consists of two multi-layer per-
ceptrons trained on different subsets of training data. Their out-
puts are combined by taking the product and renormalizing. The
input to each network consists of speech features from a 9-frame
window centered at the current frame. The training targets for the
networks are the speech/non-speech designations as determined by
the SPINE hand transcriptions. Using this criteria, between-word
silences might also be treated as “speech” targets. The first neural
network is trained using the SPINE- ; training set and the SPINE-, training and development sets, and uses SPINE- ; evaluation set
for cross validation. The second neural network is trained using
the SPINE- ; training and evaluation sets and the SPINE- , train-
ing set, and uses the SPINE- , development set for cross-validation.
The number of hidden units are z h and ~ z for the two networks re-
spectively. A frame is classified as “speech” if the ensemble’s out-
put for that case is greater than h�v z . The consecutive frame level
hypotheses whose length are less than , h�h msec are modified to
be consistent with the decisions in their context. , h�h msec was
chosen as the minimum duration length based on the fact that it
corresponds roughly to minimum syllable length and was found to
be the shortest segment in the training transcriptions identified as
speech. On the official SPINE- , evaluations data, the frame level
error rate of the segmenter is ;�; v ,�� with ; , v � � miss detection
rate of “speech” segments as “non-speech” and �Fv } � false alarm
rate of “non-speech” segments as “speech”. All experiments re-
ported below use these segmentations.

6.2. Results

The word error rates (WERs) of the two systems at different stages
of adaptation and for different noise conditions are reported in Ta-
bles 1 and 2 respectively. All decodings used the bigram language
model except the final rescoring of , h�h -best list with the trigram
language model. In Table 1, even though the initial WER of the
globally-shared sparse

G
system (2nd column) is worse than the

baseline system, the final WER of this system (5th column) is at
least as good as that of the baseline. The WERs of both systems
change drastically under different noise conditions, and there ap-
pears to be no significant systematic difference between the two
systems. The results are competitive with other single (i.e., non-
combined) systems on this task. Moreover, these results are quite
preliminary, and we plan to further investigate the effect of a global

Table 2. WERs of baseline and sparse
G

systems under different
noise conditions corresponding to the overall WERs of |�} v | � and|�} v ; � (the last column of Table 1).

noise baseline sparse
G

quiet 40.8 41.4
office 35.0 34.9
street 41.0 41.0
car 35.0 34.5
f16 43.1 43.2

carrier 30.4 30.7
bradley 42.2 41.8G

in future systems, and their utility for system combination.

7. DISCUSSION

There are natural extensions to this work. First of all, converting
the frame-based “speech” vs. “non-speech” decisions to segment
level decisions can be made more systematic by using a left-to-
right HMM on the frame level “speech” decisions of the ensemble
to incorporate minimum duration constraints. Second, our simple
threshold-based algorithm for determining the sparse

G
matrix

should be replaced by a more statistically sound criteria such as
minimum decrease in likelihood, or the better yet a discrimination
measure. Third, instead of using a single globally shared

G
across

all speech units, tying could be done more finely such as at the
mixture or phonetic-category level.

This work was supported by NSF Grant 0093430, and by
DARPA contract N66001-99-2-892403.

8. REFERENCES

[1] J. Bilmes. Gaussian parameter sharing and training using a GEM
algorithm. In Preparation. University of Washington, Dept. of EE.

[2] J. Bilmes. Graphical models and automatic speech recognition. Tech-
nical Report UWEETR-2001-005, University of Washington, Dept.
of EE, 2001.

[3] J. Bilmes and G. Zweig. The Graphical Models Toolkit: An open
source software system for speech and time-series processing. Proc.
IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, 2002.

[4] J.A. Bilmes. Factored sparse inverse covariance matrices. In Proc.
IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, Istan-
bul, Turkey, 2000.

[5] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of Royal Statis-
tical Society Series B, 39:185–197, 1977.

[6] Y. Gong. Speech recognition in noisy environments: A survey.
Speech Communications, 16:261–291, 1995.

[7] H. Lane and B. Tranel. The Lombard sign and the role of hearing in
speech. Journal of Speech and Hearing Research, 14:677–709, 1971.

[8] S.L. Lauritzen. Graphical Models. Oxford Science Publications,
1996.

[9] C.J. Leggetter and P.C. Woodland. Maximum likelihood linear re-
gression for speaker adaptation of continuous density hidden Markov
models. Computer Speech and Language, 9:171–185, 1995.

[10] R.P. Lippmann. Speech recognition by machines and humans.
Speech Communication, 1(22):1–16, 1997.

[11] E. Marsh, A. Schmidt-Nielsen, and T. H. Crys-
tal. NRL presentation. 2001 SPINE Workshop,
http://elazar.itd.nrl.navy.mil/spine/nrl2/presentation/nrl2001.html.

[12] G. Zweig, J. Bilmes, T. Richardson, K. Filali, K. Livescu, P. Xu,
K. Jackson, Y. Brandman, E. Sandness, E. Holtz, J. Torres, and
B. Byrne. Structurally discriminative graphical models for automatic
speech recognition: Results from the 2001 Johns Hopkins summer
workshop. In Proc. of Intl. Conf. on Acoustics, Speech and Signal
Processing, 2002.


