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ABSTRACT

With thegrowing popularityof corpus-basethethoddor con-
catenatre speechsynthesisa large amountof interesthasbeen
placedon borraving techniquedrom the ASR community This
paperexploresthe applicationsof Buried Markov Models(BMM)
to speectsynthesis We shav that BMMs are moreefficient than
HMMs asa synthesisnodel,andfocusonusingBMM dependen-
ciesfor computingsplicing costs. We also shav how the com-
putationalcompleity of the dynamicsearchcanbe significantly
reducedby constrainingthe splicing pointswith a negligible loss
in synthesigquality.

1. INTRODUCTION

Recently a growing amountof attentionin speechsynthe-
sis researchhas beendravn toward unit selectionmeth-
ods,which usedynamicprogrammingo searchfor speech
segmentsin a databasehat minimize somecost function
[1, 2, 3]. Thecostfunctionis designedo quantify distor
tion introducedwhen selectedunits are modified and con-
catenated.Typically therearetwo componentgo the unit
selectioncostfunction: thetarget cost, whichis anestimate
of distancebetweerthedatabasenit andthetarget,andthe
concatenation cost, which is an estimateof the distortion
associateavith concatenatinginitsthatwerenot originally
spoken in sequence.Target and concatenatiorcostshave
mostly focusedon segmentaldistortion,andhave included
linguistically motivateddistanceshasedon phoneticcate-
gories[4] and/orspectradistance$3].

UnrestrictedTTS demandghe use of sub-word units.
Smallerunitsgive moreflexibility, but resultin alargerunit
inventory that requiresmore computationto be searched.
Oneapproacho reducethe computationatomplexity is to
prunethe unit databas¢5]. Alternatively, sincecomputing
concatenatiorcostsis the slowest operation,one can pre-
computeand cacheconcatenatiorcostsbetweenthe most
frequently used pairs of units [6], or vectorquantizethe
spaceof unitsandstorea completedistancetable between
groupsof units[3, 7]. In our earlierwork [7], we intro-

ducedsplicing costs asa measuref the potentialdisconti-
nuity thata given unit may incur whena spliceis madeat
its boundaryirrespectve of the adjoiningunit. This leads
to further computationreduction,sincethe searchtree can
be prunedbasedn the splicing costsprior to evaluatingall
possibleconcatenationsPerceptuaexperimentsshow that
splicing costsalsohelp achieve smootherconcatenations.

The recentfocus on corpus-basednethodsin speech
synthesishasencouragedesearcherso adapttechniques,
such as decisiontree clustering[8] and Hidden Markov
Models (HMM) [9, 10, 11], that are commonly usedin
speechrecognition.In this paperwe explore the benefitsof
using Buried Markov Models (BMM) [12] in speechsyn-
thesis.In particular we proposea nenv methodfor comput-
ing splicing coststhattakesthe predictabilityof successie
speecHramesinto account.We alsoinvestigatethe poten-
tial for reducingthe costof the unit selectionsearchby re-
strictingthe setof boundariesvherea spliceis allowed.

Therestof the paperis organizedasfollows. In Section
2 we provide somedetailsaboutthe modelingassumptions
madeby the BMM andhow the structureof the dependen-
ciesdiffers with the type of application(i.e. synthesisvs.
recognition).Section3 explainshow BMMs canbeapplied
to concatenatie synthesis. Experimentsare describedin
Section4, andwe concludewith a summaryof the key re-
sultsin Sectionb.

2. MODELING SPECTRAL DYNAMICS IN
SYNTHESIS WITH BMMS

Buried Markov models[12], a form of graphicalmodel
[13], augmentthe dependeng structurerelative to that of
anHMM. In aBMM, eachelementf afeaturevectormay
includedirectdependenciesn elementsf featurevectors
in additionto dependenciealreadyincludedin an HMM
(namely the hiddenstatevariableand possibly other ele-
mentsof thatsamevector). Thesedependencemay switch
dependingon the currenthiddenstatevalue. Specifically if



X} istheith elemenbf thet!® featurevector thena BMM

usesthe distribution p(X{|Q: = ¢, Z}(q)), whereQ is the
hiddenstateat time ¢t and Z; (¢) is a g-dependensubsebf
featurevectorseitherbefore,at, or aftertime ¢. In this pa-
per, all BMM dependenciearelinear anddistributionsare
unimodalGaussianin which case

P(Xe|Qt = q,Z4(q)) ~ N(Xy; B Zi(q) + kg, Zq),

whereB, is asparsamatrix.

Otherthanissuesof traininganddependengrepresen-
tation,oneof themainchallengesn producingaBMM sys-
temis in choosinghestructureof thedependenciefor each
stateq. Choosingall dependencieteadsto an enormous
free parameteincreasecould leadto over-training, andis
probablyunnecessaryThe goalfor structurelearningis to
choosdhatminimal setof dependencieshich aremostap-
propriatefor the taskat hand[12]. For automaticspeech
recognition(ASR),dependencieshouldbechoserdiscrim-
inatively, asASRis inherentlya problemof patternclassifi-
cation.For speeclsynthesishowever, dependencieshould
bechosemotsomuchfor their discriminative but ratherfor
their predictive ability — if a BMM can be “predictively
structured’sothatthey predict X; well given pastacoustic
vectors bothsynthesigjuality andquality assessmemrbuld
improve. A goodmeasuref the predictive ability between
two randomvariablesis standardmutualinformation[14]
whichwe investigatdn this paper

In orderto betterunderstandhe relationshipbetween
discriminatvely vs. predictively structuredBMMs, we per
formedtwo informal listening experimentsusing the syn-
thesisalgorithm describedin [10]. The first experiment
comparedspeechsynthesizedrom MFCCsthat had been
randomlysampledrom: 1) anHMM, 2) adiscriminatvely
structuredBMM (DBMM), and3) a predictively structured
BMM (PBMM). It hasbeenshawvn in thepastthata DBMM
can lead to improved ASR results. We predictedthat a
DBMM would not outperforman HMM for synthesizing
speechput thata PBMM would outperformboth. Our hy-
pothesisis basedon the factthatthe task of ASR is to ex-
tracttheword sequencéor acomputer(i.e. intelligibility is
the only concern)which is differentfrom synthesiswvhich
involves presentingspeechto a humanlistenerfor whom
naturalnesss alsoimportant. A model optimizedfor one
task could be ill-suited for the other The resultsof infor-
mal listening experimentssupportedhis hypothesis;sam-
plesbasedn Radionews dataareavailableat[15].

A secondinformal listening experimentcomparedthe
quality of HMM-synthesizedpeectwhenMFCCsincluded
deltacoeficientswith thatof PBMMs thatdid not include
deltas.Thesynthesisalgorithmutilized delta-coeficientsto
bettersmooththefinal speectsignal[10]. Theresultsof the
experimentshovedthattherewaslittle if any differencein
synthesigjuality, butthe PBMMs used25 percenfewer pa-

rameters. Eventhoughthe overall quality of speectoutput
wasnotgoodenoughfor generaluseracceptancehesdis-

teningtestdedusto believethatBMM modelsareatleastas
goodin capturingspectraldynamicsas HMMs, andhence
it maybeusefulin concatenatie speectsynthesis.

3. BMMS IN CONCATENATIVE SYNTHESIS

In applyingBMMs to the proces®f unit selectionn speech
synthesiswe look specificallyat concatenatiompoints. In
particular we introducea new methodfor computingsplic-
ing costsandassesshe potentialfor reducingsearchcom-
plexity by constraininghe setof possiblesplicing points.

3.1. Splicing Costs

As mentionedearlier, splicing costsmeasurethe potential
discontinuitythat a given unit may incur whena spliceis
madeatits boundary In [7] we proposeda splicingcostthat
is inverselyrelatedto the spectralchangeat a givenbound-
ary. In otherwords,unitboundariesvherethespectrathar
acteristican the originalrecordingarechangingrapidly are
potentiallygoodsplicingpoints.A simplemeasuref rapid
changewvasinvestigatedthe Mahalanobiglistancebetween
successie vectorsof spectralfeaturesat the splice point,
usingthe grandcovariancein the distance.However, there
is evidenceof context dependengin the perceptuakignif-
icanceof rate of spectralchangeat a unit boundary[16],
where a context-dependentcovariance (and addedmean
term) leadsto an improved concatenatiorcost. The cost
proposedn [16] is effectively the probability of the predic-
tion residualusingthe simple predictorf(tH = X + pq,
whereq representthe context (which couldbedescribedy
anHMM stateindex). Here,we extendthe notionusingthe
BMM, whichinvolvesamoregeneralinearpredictorof the
form X, 41 = B,Z(q) + pq, WhereZ(q) mayinclude X;
aswell aselementgrom othertime vectors.Our hypothesis
is thatif, giventhe phoneticcontext andthe spectrumon
onesideof the boundarywe areableto accuratelypredict
the spectrumon the otherside,thenthe concatenatiorwost
shouldbelow. Interpretingthis measurdor splicing costs:
whenthe framesarevery predictable theneffectsof coar
ticulation are strongandthe boundaryis a poor choicefor
makingasplice.

Our unit databasecontainshalf-phoneseggments. We
usedthe Festval TTS systento clusterthe unitsaccording
to the decisiontree clusteringproceduredescribedn [8].
Motivatedby work describedn [17], we usedline spectral
frequenciegL SF)for theparametrigepresentationf units.
Two BMM modelsweretrainedfor eachcluster: onewith
dependenciesntheprecedingrames(i.e. left-to-rightfea-
ture dependeng links), andanotherwith the dependencies
onthefollowing frames(right-to-left). For eachfeaturewe
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Fig. 1. Featuredependencieasedfor computingsplicing
costsfor unit U;. Dottedlines shav frame boundariesof
LSF vectors.Circlesareindividual features.

selectedhreelinks thatcorrespondo pairshaving thehigh-
estconditionalmutualinformation(conditionedon the unit
clusteridentity). We searchedip to ten10 msframesin the
past(or future, dependingon the type of model)to select
thesedependenciesThe meandistancewvas1.7 frames but
featuresasfar backas10 frameswereoccasionallychosen.

Eachunit hasleft andright splicing coststhatindicate
suitability of a splice at its left or right boundaryrespec-
tively. The left splicing costfor unit U; is computedby
findingtheinverseof the Mahalanobiglistancebetweerthe
first frame of LSFsin the unit and a frame predictedwith
the “left-to-right” modelfor the clusterthat U; belongsto,
using the dataframesthat precedeunit U; in the original
recording. This is illustratedin Fig. 1 at the left boundary
of unitU;. Symmetricallywe usedthe“right-to-left” model
andthedataframesfollowing U; to predictthelastframein
the unit. Thentheinverseof the Mahalanobidistancebe-
tweenthe true and the predictedlast framesgives us the
right splicingcost.

Through informal listening we establishedthat we
achieve asgoodor bettersynthesigjuality comparedo us-
ing the inverseof the Mahalanobisdistancebetweentwo
successie framesat the boundary but differenceddid not
appeatto besignificant.

3.2. Redefining Cutting Points

In [7] we suggestethatthedynamicsearchatrun-timecan
be mademoreefficientif the searchreeis prunedbasedn
the splicing costsprior to evaluatingall possibleconcate-
nations.Anotherapproachis to disallow a splicefor entire
classef boundaries Conditionalmutualinformationthat
we usedfor selectingthe BMM dependenciesan provide
us with an estimateof the degreeof coarticulationat unit
boundaries.Our hypothesiss thatif the amountof infor-
mationcarriedacrossa boundaryis high thentheboundary
is abadplaceto make a splice.

Note that even when two units are sharingthe same
boundary(i.e. areadjacentin the original recording)they
may have different sensitvity to having a splice madeat
this boundary We take this into accountby treatingthe left
andtheright boundariesndependentlyFor instancewhen
splicing is not allowed from the left side of the boundary
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Fig. 2. Averagecostperunitin the bestpath,asafunction
of the numberof arcs(lower scale)andthe percentof the
total numberof arcs(upperscale)removed from the unit
databaseetwork.

it may still be possibleto have anotherunit splicedon the
right. For the left boundariesve computethe conditional
mutual information carriedacrossfrom the previous unit.
Corversely for theright boundariesve collectinformation
that comesfrom the following unit. Differentcostsarein
factlearnedfor thetwo conditions.

4. EXPERIMENTS

The unit databaseusedin our experimentswas extracted
from the the synthesiscomponenof a travel planningsys-
temdevelopedat the University of Colorado[18]. The cor-

puscontainedapproximately2 hoursof speech= 150,000

half phone units) and was automaticallysegmented. FO
andenegy wereestimatedautomaticallyfrom thesignalby
meansof Entropictools. We usedthe weightedfinite state
transducefWFST)architecturedescribedn [7] andAT&T

FSMtoolsto performtheunit selection.Therewasno spec-
tral smoothingor prosodicmodificationappliedto the sig-
nal. Thetargetsentenceweretakenfrom the samedomain,
i.e. travel planning,but were producedby a differenttext

generatarso while therewas someoverlapin the vocab-
ularies, mary of the target words were not presentin the
databaseecordings. Alternative pronunciationsvere also
includedin thetarget,thusmakingthe searchmoreflexible
but morecostly.

We alteredtheunit databas®VFST by graduallyremov-

ing arcsthat correspondo the boundarieswith the largest
amountof conditionalmutualinformationcarriedacrosshe



boundary Entire classe®f boundariesvere eliminatedat

once.We kept,however, 5% of unitsin eachclusterwith the

smallestsplicing costsstill connectedo the VQ concate-
nation network to ensurethat a path can always be found.

Fig. 2 shawvs how the total costof the bestpath (taken as
an averageover thirty target utterancesand normalizedby

the numberof units) changesswe remove morearcsfrom

the databaseThe degradationin speechuality is graceful
at first, but it rapidly becomesvery noticeableafter we re-

move about130,000links which is approximately40% of

all links thatcarrysplicingcostsin theunit databas®VFST.

For examplesof synthesigeferto [15].

As mentioneckarlier thegoalof removing arcsfromthe
unit databasés to reducecomputationatost. We obsened
anearinearspeedujn synthesisasweremovedarcs.In the
casewhentheconcatenatiogostsarecomputedatruntime
for eachpair of candidateunits, onecanexpecta quadratic
reductionin computationatompleity associatedvith dis-
allowing a spliceto be madeat specificboundaries While
the useof multiple pronunciationsn the target slowed the
synthesiglown to lessthanrealtime performancewe were
ableto doublethe speecandmale it fasterthanrealtime by
removing approximatelyl00,000arcs.

5. DISCUSSION

We have demonstratetiow context andthe degreeof coar
ticulation canbe takeninto accountwhencomputingsplic-
ing costs.Our approachusespredictionaccurag of BMM
modelsasanindicatorof how suitablea givenboundaryis
for makingasplice. The predictionaccuray is measureét
the boundaryframes,but one could alsoassesshe predic-
tion over arangeof frameswithin theunit, which may give
amoreaccurateestimateof the effectsof coarticulation.In
addition, one could usethe BMM residuallikelihoodin a
concatenatiorostandto determinethe specificjoin points
of two units, but this would increasehe computatiorof the
concatenatiogostsubstantially

We alsoshoved how the computationacomplexity of
the dynamic searchcan be significantly reducedby con-
strainingthe setof boundariesvherea spliceis allowed.
The boundaryeliminationprocedureghatwe describeccan
be usedto meme certaintypesof units, thuscreatingnew
clustersof variablelengthunits. For instance startingwith
a unit databaseonsistingof half phonesonecanobtaina
heterogeneoudatabasef units rangingfrom half phones
to phonesdiphonesor longerunits, wherethe unit bound-
ariesareautomaticallychoseraccordingto their suitability
for makingasplice.
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