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Intro Basics Applications

Goals of the Tutorial

+f (A) + f (B) f (A ∪ B)

= f (Ar ) +f (C ) + f (Br )

≥
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Alexander Schrijver
Garrett Birkho�
Hassler Whitney

Richard Dedekind

Get an intuitive sense for submodular functions, should be able to
apply them.

Learn to recognize submodularity, or recognize when it might be
useful.

Learn to realize why submodularity can be useful in machine
learning. Why is it worth your time to study it.
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Intro Basics Applications

Submodularity

Definition: given a finite ground set V , a function f : 2V → R is
said to be submodular if

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V (1)

The definition is the tip of the iceberg. This simple definition can
lead to great mathematical and practical richness.

Goals of tutorial: will be very simple, an attempt to cover some
important parts of the iceberg in 4.5 hours and in doing so give you
all strong intuition and sense of applicability in ML.

The tutorial itself is the tip of the iceberg!
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Intro Basics Applications

Overall Outline of Tutorial

1 Part 1 (now): basics and applications

2 Part 2 (later this afternoon): Theory (from matroids to
polymatroids), and other submodular properties

3 Part 3 (tomorrow): Algorithms and optimization
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Intro Basics Applications

Outline of Part 1: Basics and Applications

1 Introduction

2 Basics

3 Submodular Applications in ML
Where is submodularity useful?
Traditional combinatorial problems
As a model of diversity, coverage, span, or information
As a model of cooperative costs, complexity, roughness, and
irregularity
As a parameter for an ML algorithm
Itself, as a target for learning
Surrogates for optimization
Economic applications
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Intro Basics Applications

Outline of Part 2: Theory

4 From Matroids to Polymatroids
Matrix Rank
Venn Diagrams
Matroids

5 Submodular Definitions, Examples, and Properties
Normalization
Submodular Definitions
Submodular Composition
More Examples
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Intro Basics Applications

Outline of Part 3: Algorithms

6 Discrete Semimodular Semigradients

7 Continuous Extensions
Lovász Extension
Concave Extension

8 Like Concave or Convex?

9 Optimization

10 Reading
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Intro Basics Applications

Sets and set functions

We are given a finite “ground” set of objects:

V =









Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f (V ) = 6
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Intro Basics Applications

Sets and set functions

Subset A ⊆ V of objects:

A =









Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f (A) = 1
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Intro Basics Applications

Sets and set functions

Subset B ⊆ V of objects:

B =









Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f (B) = 6
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Intro Basics Applications

Two Equivalent Submodular Definitions

Definition (submodular)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) (2)

An alternate and equivalent definition is:

Definition (submodular (diminishing returns))

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \ B, we have that:

f (A ∪ {v})− f (A) ≥ f (B ∪ {v})− f (B) (3)

This means that the incremental “value”, “gain”, or “cost” of v
decreases (diminishes) as the context in which v is considered grows
from A to B.
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Intro Basics Applications

Two Equivalent Supermodular Definitions

Definition (submodular)

A function f : 2V → R is supermodular if for any A,B ⊆ V , we have
that:

f (A) + f (B) ≤ f (A ∪ B) + f (A ∩ B) (4)

An alternate and equivalent definition is:

Definition (supermodular (improving returns))

A function f : 2V → R is supermodular if for any A ⊆ B ⊂ V , and
v ∈ V \ B, we have that:

f (A ∪ {v})− f (A) ≤ f (B ∪ {v})− f (B) (5)

This means that the incremental “value”, “gain”, or “cost” of v increases
(improves) as the context in which v is considered grows from A to B.
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Intro Basics Applications

Sets and vectors

Any set A ⊆ V can be represented as a binary vector x ∈ {0, 1}V .

The characteristic vector of a set is given by 1A ∈ {0, 1}V where for
all v ∈ V , we have:

1A(v) =

{
1 if v ∈ A

0 else
(6)

If V = {1, 2, . . . , 20} and A = {1, 3, 5, . . . , 19}, then
1A = (1, 0, 1, 0, . . . )ᵀ.

It is sometimes useful to go back and forth. Given X ⊆ V then

x(X )
∆
= 1X and X (x) = {v ∈ V : x(v) = 1}.

f (x) : {0, 1}V → R is a pseudo-Boolean function. A submodular
function is a special case.
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Intro Basics Applications

Modular functions, and vectors in RV

Any set function m : 2V → R whose valuations, for A ⊆ V , take form

m(A) =
∑

a∈A
m(a) (7)

is called modular and normalized (meaning m(∅) = 0).

Any normalized modular function is identical to a vector:

m ∈ RV . (8)

Hence, the characteristic vector 1A of a set is modular.

Modular functions are often called additive or linear.

Modular functions are submodular since
m(A) + m(B) ≥ m(A ∪ B) + m(A ∩ B).

Modular functions are also supermodular since
m(A) + m(B) ≤ m(A ∪ B) + m(A ∩ B).

If f is both submodular and supermodular, then it is modular.
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Intro Basics Applications

Discrete Optimization

We are given a finite set of objects V of size n = |V |.

There are 2n such subsets (denoted 2V ) of the form A ⊆ V .

We have a function f : 2V → R that judges the quality (or value, or
cost, or etc.) of each subset. f (A) = some real number.

Unconstrained minimization & maximization:

min
X⊆V

f (X ) (9) max
X⊆V

f (X ) (10)

Without knowing anything about f , it takes 2n queries to be able to
offer any quality assurance on a candidate solution. Otherwise,
solution can be unboundedly poor.

When f is submodular, Eq. (9) is polytime, and Eq. (10) is
constant-factor approximable.
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Intro Basics Applications

Constrained Discrete Optimization

Often, we are interested only in a subset of the set of possible
subsets, namely S ⊆ 2V .

Example: only sets having bounded size S = {S ⊆ V : |S | ≤ k} or
within a budget

{
S ⊆ V :

∑
s∈S w(s) ≤ b

}
.

Example: the sets might need to correspond to a combinatorially
feasible object (i.e., feasible S might be trees, matchings, paths,
vertex covers, or cuts).

Ex: S might be a function of some g (e.g., sub-level sets of g ,
S = {S ⊆ V : g(S) ≤ α}, sup-level sets S = {S ⊆ V : g(S) ≥ α}).

Constrained discrete optimization problems:

maximize
S ⊆ 2V

f (S)

subject to S ∈ S (11)

minimize
S ⊆ 2V

f (S)

subject to S ∈ S (12)

Fortunately, when f (and g) are submodular, solving these problems
can often be done with guarantees (and often efficiently)!
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Outline: Part 1

1 Introduction

2 Basics

3 Submodular Applications in ML
Where is submodularity useful?
Traditional combinatorial problems
As a model of diversity, coverage, span, or information
As a model of cooperative costs, complexity, roughness, and
irregularity
As a parameter for an ML algorithm
Itself, as a target for learning
Surrogates for optimization
Economic applications

J. Bilmes Submodularity page 16 / 162



Intro Basics Applications

Where is submodularity useful in ML?

As a model of a physical process:

What a submodular function is good for modeling depends on if we
wish to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine
learning strategy (active/semi-supervised learning, discrete
divergence, convex norms for use in regularization).

Itself, as an object or function to learn, based on data.

As a surrogate or relaxation strategy for optimization

An alternate to factorization or decomposition based simplification
(as one finds in a graphical model).
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
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Intro Basics Applications

Set Cover and Maximum Coverage

We are given a finite set V of n elements and a set of subsets
V = {V1,V2, . . . ,Vm} of m subsets of V , so that Vi ⊆ V and⋃

i Vi = V .

The goal of minimum set cover is to choose the smallest subset
A ⊆ [m] , {1, . . . ,m} such that

⋃
a∈A Va = V .

Maximum k cover: The goal in maximum coverage is, given an
integer k ≤ m, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [m]
such that |⋃k

i=1 Vai | is maximized.

Both Set cover and maximum coverage are well known to be
NP-hard, but have a fast greedy approximation algorithm.

The set cover function f (A) = |⋃a∈A Va| is submodular!
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Intro Basics Applications

Area of the union of areas indexed by A

Let V be a set of indices, and each v ∈ V indexes a given sub-area
of some region.

Let area(v) be the area corresponding to item v .

Let f (S) =
⋃

s∈S area(s) be the union of the areas indexed by
elements in A.

Then f (S) is submodular.
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Intro Basics Applications

Area of the union of areas indexed by A

Union of areas of elements of A is given by:

f (A) = f ({a1, a2, a3, a4})
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Intro Basics Applications

Area of the union of areas indexed by A

Area of A along with with v :

f (A ∪ {v}) = f ({a1, a2, a3, a4} ∪ {v})

J. Bilmes Submodularity page 21 / 162



Intro Basics Applications

Area of the union of areas indexed by A

Gain (value) of v in context of A:

f (A ∪ {v})− f (A) = f ({v})

We get full value f ({v}) in this case since the area of v has no overlap
with that of A.
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Intro Basics Applications

Area of the union of areas indexed by A

Area of A once again.

f (A) = f ({a1, a2, a3, a4})
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Intro Basics Applications

Area of the union of areas indexed by A

Union of areas of elements of B ⊃ A, where v is not included:

f (B) where v /∈ B and where A ⊆ B
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Intro Basics Applications

Area of the union of areas indexed by A

Area of B now also including v :

f (B ∪ {v})
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Intro Basics Applications

Area of the union of areas indexed by A

Incremental value of v in the context of B ⊃ A.

f (B ∪ {v})− f (B) < f ({v}) = f (A ∪ {v})− f (A)

So benefit of v in the context of A is greater than the benefit of v in the
context of B ⊇ A.
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Intro Basics Applications

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls,
f (S) counts the number of distinct colors.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.

J. Bilmes Submodularity page 22 / 162



Intro Basics Applications

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls,
f (S) counts the number of distinct colors.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.

J. Bilmes Submodularity page 22 / 162



Intro Basics Applications

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls,
f (S) counts the number of distinct colors.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.

J. Bilmes Submodularity page 22 / 162



Intro Basics Applications

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls,
f (S) counts the number of distinct colors.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.

J. Bilmes Submodularity page 22 / 162



Intro Basics Applications

Vertex and Edge Covers

Definition (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V ,E ) is
a set S ⊆ V (G ) of vertices such that every edge in G is incident to at
least one vertex in S .

Let I (S) be the number of edges incident to vertex set S . Then we
wish to find the smallest set S ⊆ V subject to I (S) = |E |.
I (S) is submodular.

Definition (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V ,E ) is
a set F ⊆ E (G ) of edges such that every vertex in G is incident to at
least one edge in F .

Let |V |(F ) be the number of vertices incident to edge set F . Then
we wish to find the smallest set F ⊆ E subject to |V |(F ) = |V |.
Let |V |(F ) is submodular.
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Intro Basics Applications

Graph Cut Problems

Given a graph G = (V ,E ), let f : 2V → R+ be the cut function,
namely for any given set of nodes X ⊆ V , f (X ) measures the
number of edges between nodes X and V \ X .

f (X ) =
∣∣{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

∣∣ (13)

Minimum cut: Given a graph G = (V ,E ), find a set of vertices
S ⊆ V that minimize the cut (set of edges) between S and V \ S .
Maximum cut: Given a graph G = (V ,E ), find a set of vertices
S ⊆ V that minimize the cut (set of edges) between S and V \ S .
Weighted versions, we have a non-negative modular function
w : 2E → R+ defined on the edges that give cut costs.

f (X ) = w
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(14)

=
∑

e∈{(u,v)∈E :u∈X ,v∈V \X}
w(e) (15)

Both functions (Equations (13) and (14)) are submodular.
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Intro Basics Applications

Outline

1 Introduction

2 Basics

3 Submodular Applications in ML
Where is submodularity useful?
Traditional combinatorial problems
As a model of diversity, coverage, span, or information
As a model of cooperative costs, complexity, roughness, and
irregularity
As a parameter for an ML algorithm
Itself, as a target for learning
Surrogates for optimization
Economic applications
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Intro Basics Applications

Extractive Document Summarization

The figure below represents the sentences of a document

The summary on the left is a subset of the summary on the right.

Consider adding a new (blue) sentence to each of the two
summaries.

The marginal (incremental) benefit of adding the new (blue)
sentence to the smaller (left) summary is no more than the marginal
benefit of adding the new sentence to the larger (right) summary.

diminishing returns ↔ submodularity
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Intro Basics Applications

Image collections

Many images, also that have a higher level gestalt than just a few.
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Intro Basics Applications

Image Summarization

10×10 image collection: 3 best summaries:

3 medium summaries:

3 worst summaries:

The three best summaries exhibit diversity. The three worst summaries
exhibit redundancy.
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Intro Basics Applications

Feature Selection in Pattern Classification

Let Y be a random variable we wish to infer as best as possible, based
on at most n measurements (X1,X2, . . . ,Xn) = XV (or features) in a
probability model Pr(Y ,X1,X2, . . . ,Xn).

It is too costly to use them all, and we wish to choose a good subset
A ⊆ V of features to use that are within budget |A| ≤ k .

The mutual information function f (A) = I (Y ; XA) where

I (Y ; XA) =
∑

y ,xA

Pr(y , xA) log
Pr(y , xA)

Pr(y) Pr(xA)
= H(Y )− H(Y |XA) (16)

= H(XA)− H(XA|Y ) = H(XA) + H(Y )− H(XA,Y ) (17)

measures how well features A are for predicting Y (entropy reduction,
reduction of uncertainty of Y )
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= H(XA)− H(XA|Y ) = H(XA) + H(Y )− H(XA,Y ) (19)

measures how well XA does for predicting Y , entropy reduction, reduction
of uncertainty of Y , or information gain (Krause & Guestrin) of XA.

Goal is to find a subset A of size k that has high information gain.

When XA⊥⊥XB |Y for all
A,B (the Näıve Bayes as-
sumption), f (A) is sub-
modular

Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

If not, f (A) is naturally ex-
pressed as a difference of
two submodular functions.

Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7
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A,B (the Näıve Bayes as-
sumption), f (A) is sub-
modular

Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

If not, f (A) is naturally ex-
pressed as a difference of
two submodular functions.

Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

J. Bilmes Submodularity page 30 / 162



Intro Basics Applications

Data Subset Selection

Suppose we are given a data set D = {xi}ni=1 of n data items
V = {v1, v2, . . . , vn} and we wish to choose a subset A ⊂ V of
items that is good in some way.

Suppose moreoever each data item v ∈ V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.

That is, for u ∈ U and v ∈ V , let mu(v) represent the “degree of
u-ness” possesed by data item v . Then mu ∈ RV

+ for all u ∈ U.

Example: U could be a set of colors, and for an image v ∈ V ,
mu(v) could represent the number of pixels that are of color u.

Example: U might be a set of textual features (e.g., ngrams), and
mu(v) is the number of ngrams of type u in sentence v . E.g., if a
document consists of the sentence

Whenever I go to New York City, I visit the New York City museum.

then mthe(s) = 1 while mNew York City(s) = 2.
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Intro Basics Applications

Data Subset Selection

For X ⊆ V , define mu(X ) =
∑

x∈X mu(x), so mu(X ) is a modular
function representing the “degree of u-ness” in subset X .

Since mu(X ) is modular, it does not have a diminishing returns
property. I.e., as we add to X , the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X )) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B ⊇ A having more u-ness).

That is

g(mu(A + v))− g(mu(A)) ≥ g(mu(B + v))− g(mu(B)) (20)

Consider the following class of feature functions f : 2V → R+

f (X ) =
∑

u∈U
αug(mu(X )) (21)

where g is a non-decreasing concave, and αu ≥ 0 is a feature
importance weight. Thus, f is submodular.
f (X ) measures X ’s ability to represent set of features U as measured by
mu(X ), with diminishing returns function g , and importance weights αu.

J. Bilmes Submodularity page 32 / 162



Intro Basics Applications

Data Subset Selection

For X ⊆ V , define mu(X ) =
∑

x∈X mu(x), so mu(X ) is a modular
function representing the “degree of u-ness” in subset X .
Since mu(X ) is modular, it does not have a diminishing returns
property. I.e., as we add to X , the degree of u-ness grows additively.

With g non-decreasing concave, g(mu(X )) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B ⊇ A having more u-ness).

That is

g(mu(A + v))− g(mu(A)) ≥ g(mu(B + v))− g(mu(B)) (20)

Consider the following class of feature functions f : 2V → R+

f (X ) =
∑

u∈U
αug(mu(X )) (21)

where g is a non-decreasing concave, and αu ≥ 0 is a feature
importance weight. Thus, f is submodular.
f (X ) measures X ’s ability to represent set of features U as measured by
mu(X ), with diminishing returns function g , and importance weights αu.

J. Bilmes Submodularity page 32 / 162



Intro Basics Applications

Data Subset Selection

For X ⊆ V , define mu(X ) =
∑

x∈X mu(x), so mu(X ) is a modular
function representing the “degree of u-ness” in subset X .
Since mu(X ) is modular, it does not have a diminishing returns
property. I.e., as we add to X , the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X )) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B ⊇ A having more u-ness).

That is

g(mu(A + v))− g(mu(A)) ≥ g(mu(B + v))− g(mu(B)) (20)

Consider the following class of feature functions f : 2V → R+

f (X ) =
∑

u∈U
αug(mu(X )) (21)

where g is a non-decreasing concave, and αu ≥ 0 is a feature
importance weight. Thus, f is submodular.
f (X ) measures X ’s ability to represent set of features U as measured by
mu(X ), with diminishing returns function g , and importance weights αu.

J. Bilmes Submodularity page 32 / 162



Intro Basics Applications

Data Subset Selection

For X ⊆ V , define mu(X ) =
∑

x∈X mu(x), so mu(X ) is a modular
function representing the “degree of u-ness” in subset X .
Since mu(X ) is modular, it does not have a diminishing returns
property. I.e., as we add to X , the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X )) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B ⊇ A having more u-ness). That is

g(mu(A + v))− g(mu(A)) ≥ g(mu(B + v))− g(mu(B)) (20)

Consider the following class of feature functions f : 2V → R+

f (X ) =
∑

u∈U
αug(mu(X )) (21)

where g is a non-decreasing concave, and αu ≥ 0 is a feature
importance weight. Thus, f is submodular.
f (X ) measures X ’s ability to represent set of features U as measured by
mu(X ), with diminishing returns function g , and importance weights αu.

J. Bilmes Submodularity page 32 / 162



Intro Basics Applications

Data Subset Selection

For X ⊆ V , define mu(X ) =
∑

x∈X mu(x), so mu(X ) is a modular
function representing the “degree of u-ness” in subset X .
Since mu(X ) is modular, it does not have a diminishing returns
property. I.e., as we add to X , the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X )) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B ⊇ A having more u-ness). That is

g(mu(A + v))− g(mu(A)) ≥ g(mu(B + v))− g(mu(B)) (20)

Consider the following class of feature functions f : 2V → R+

f (X ) =
∑

u∈U
αug(mu(X )) (21)

where g is a non-decreasing concave, and αu ≥ 0 is a feature
importance weight. Thus, f is submodular.

f (X ) measures X ’s ability to represent set of features U as measured by
mu(X ), with diminishing returns function g , and importance weights αu.
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Intro Basics Applications

Data Subset Selection, KL-divergence

Let p = {pu}u∈U (i.e., pu ← αu) be a probability distribution over
features (i.e.,

∑
u pu = 1 and pu ≥ 0 for all u ∈ U).

Next, normalize the modular weights for each feature:

m̄u(X ) =
mu(X )∑
u∈U mu(X )

=
mu(X )

m(X )
(22)

where m(X ) ,
∑

u∈U mu(X ).
Then m̄u(X ) can also be seen as a distribution since m̄u(X ) ≥ 0 and∑

u mu(X ) = 1 for any X ⊆ V .
Consider the KL-divergence between these two distributions:

D(p||{m̄u(X )}) =
∑

u∈U
pu log pu −

∑

u∈U
pu log(m̄u(X )) (23)

=
∑

u∈U
pu log pu −

∑

u∈U
pu log(mu(X )) + log(m(X ))

= −H(p) + log m(X )−
∑

u∈U
pu log(mu(X )) (24)
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Intro Basics Applications

Data Subset Selection, KL-divergence

The objective once again, treating entropy H(p) as a constant,

D(p||{m̄u(X )}) = const. + log m(X )−
∑

u∈U
pu log(mu(X )) (25)

But seen as a function of X , both log m(X ) and
∑

u∈U pu log mu(X )
are submodular functions.

Hence the KL-divergence, seen as a function of X , i.e.,
f (X ) = D(p||{m̄u(X )}) is quite naturally represented as a difference
of submodular functions.

Alternatively, if we define

g(X ) , log m(X )− D(p||{m̄u(X )}) =
∑

u∈U
pu log(mu(X )) (26)

we have a submodular function g that represents a combination of
its quantity of X via its features (i.e., log m(X )) and its feature
distribution closeness to some distribution p (i.e., D(p||{m̄u(X )})).
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Intro Basics Applications

Sensor Placement

Information gain applicable not only in pattern recognition, but in
the sensor coverage problem as well, where Y is whatever question
we wish to ask about an environment.

Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).

We have a function f (A) that measures the “coverage” of any given
set A of sensor placement decisions. Then f (V ) is maximum
possible coverage.

One possible goal: choose smallest set A such that f (A) ≥ αf (V )
with 0 < α ≤ 1.

Another possible goal: choose size at most k set A such that f (A) is
maximized.

Environment could be a floor of a building, water network,
monitored ecological preservation.
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Intro Basics Applications

Sensor Placement within Buildings

An example of a room layout. Should be possible to determine
temperature at all points in the room. Sensors cannot sense beyond
wall (thick black line) boundaries.
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Intro Basics Applications

Sensor Placement within Buildings

Example sensor placement using small range cheap sensors (located
at red dots).
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Intro Basics Applications

Sensor Placement within Buildings

Example sensor placement using longer range expensive sensors
(located at red dots).
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Intro Basics Applications

Sensor Placement within Buildings

Example sensor placement using mixed range sensors (located at red
dots).
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Intro Basics Applications

Social Networks

(from Newman, 2004). Clockwise from top
left: 1) predator-prey interactions, 2) sci-
entific collaborations, 3) sexual contact, 4)
school friendships.
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Intro Basics Applications

The value of a friend
1982 1992 1997 2002 2012

Let V be a group of individuals. How valuable to you is a given
friend v ∈ V ?

It depends on how many friends you have.

Given a group of friends S ⊆ V , you can valuate them with a set
function f (S).

Let f (S) be the value of the set of friends S .

Submodular model: a friend is less valuable the more friends you
have.

Supermodular model: a friend is more valuable the more friends you
have (“I’d get by with a little help from my friends”).

Which is a better model?
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Intro Basics Applications

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).
How to find the most influential sources, the ones that often set off
cascades, which are like large “waves” of information flow?
Example when there is one seed source shown below:

Orig
inal Event
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Intro Basics Applications

A model of influence in social networks

Given a graph G = (V ,E ), each v ∈ V corresponds to a person, to
each v we have an activation function fv : 2V → [0, 1] dependent
only on its neighbors. I.e., fv (A) = fv (A ∩ Γ(v)).

Goal - Viral Marketing: find a small subset S ⊆ V of individuals to
directly influence, and thus indirectly influence the greatest number
of possible other individuals (via the social network G ).

We define a function f : 2V → Z+ that models the ultimate
influence of an initial set S of nodes based on the following iterative
process: At each step, a given set of nodes S are activated, and we
activate new nodes v ∈ V \ S if fv (S) ≥ U[0, 1] (where U[0, 1] is a
uniform random number between 0 and 1).

It can be shown that for many fv (including simple linear functions,
and where fv is submodular itself) that f is submodular (Kempe,
Kleinberg, Tardos 1993).
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Intro Basics Applications

Determinantal Point Processes (DPPs)

Sometimes we wish not only to valuate subsets A ⊆ V but to induce
probability distributions over all subsets.

We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b ∈ A, we prefer a and b to be different).

(Kulesza
& Taskar,
2011)

A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.
More “diverse” or “complex” samples are given higher probability.
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Intro Basics Applications

DPPs and log-submodular probability distributions

Given binary vectors x , y ∈ {0, 1}V , y ≤ x if y(v) ≤ x(v),∀v ∈ V .

Given a positive-definite n × n matrix M and a subset X ⊆ V , let
MX be a submatrix (which is |X | × |X |) with rows/columns
specified by X ⊆ V .
Consider the following probability distribution on binary vectors:

Pr(X = x) = exp

(
log
( |MX (x)|
|M + I |

))
(27)

where I is n× n identity matrix, and X ∈ {0, 1}V is a random vector.
Equivalently,

∑

x∈{0,1}V :x≥y
Pr(X = x) = Pr(X ≥ y) = exp

(
log
(
|KY (y)|

))
(28)

where K = M(M + I )−1

Given positive definite matrix M, function f : 2V → R with
f (A) = log |MA| (the logdet function) is submodular.
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Intro Basics Applications

Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V → [0, 1]:

p(x) =
1

Z
exp(−E (x)) (29)

where E (x) is the energy function.

A graphical model G = (V , E) represents a family of probability
distributions p ∈ F(G ) all of which factor w.r.t. the graph.

I.e., if C are a set of cliques of graph G , then we must have:

E (x) =
∑

c∈C
Ec(xc) (30)

The problem of structure learning in graphical models is to find the
graph G based on data.

This can be viewed as a discrete optimization problem on the
potential (undirected) edges of the graph V × V .
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Intro Basics Applications

Graphical Models: Learning Tree Distributions

Goal: find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V ,F ), i.e., pt ∈ F(T ,M).

This can be expressed as a discrete optimization problem:

minimize
pt∈F(G ,M)

D(p||pt)

subject to pt ∈ F(T ,M).

T = (V ,F ) is a tree

H

F G

C

ED

J
I

A B

K

H

F G

C

ED

J
I

A B

K

Discrete problem: choose the optimal set of edges A ⊆ E that
constitute tree (i.e., find a spanning tree of G of best quality).
Define f : 2E → R+ where f is a weighted cycle matroid rank function
(a type of submodular function), with weights
w(e) = w(u, v) = I (Xu; Xv ) for e ∈ E .
Then finding the maximum weight base of the matroid is solved by the
greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)
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Intro Basics Applications

Outline

1 Introduction

2 Basics

3 Submodular Applications in ML
Where is submodularity useful?
Traditional combinatorial problems
As a model of diversity, coverage, span, or information
As a model of cooperative costs, complexity, roughness, and
irregularity
As a parameter for an ML algorithm
Itself, as a target for learning
Surrogates for optimization
Economic applications
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Intro Basics Applications

Graphical Models and fast MAP Inference

Given distribution p(x) = 1
Z exp(−E (x)) where

E (x) =
∑

c∈C Ec(xc) and C are the cliques of a graph G = (V , E).

MAP inference problem is important in ML: compute

x∗ ∈ argmax
x∈{0,1}V

p(x) (31)

Easy when G a tree, exponential in k (tree-width of G ) in general.

NP-hard to find the tree-width.

Tree-width can be large even when degree is two (i.e.,
E (x) =

∑
e∈E Ee(xe) is a sum over edges).

Many approximate inference strategies utilize additional
factorization assumptions to make inference tractable (e.g.,
mean-field, variational inference, expectation propagation, etc).

However, what if we could do MAP inference in polynomial time
regardless of the tree-width, and without even knowing the
tree-width?
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Intro Basics Applications

Degree two (edge) graphical models

Given G restrict p ∈ F(G ,R(f)) such that we can write the global
energy E (x) as a sum of unary and pairwise potentials:

E (x) =
∑

v∈V (G)

ev (xv ) +
∑

(i ,j)∈E(G)

eij(xi , xj) (32)

ev (xv ) and eij(xi , xj) are like local energy potentials.
Since log p(x) = −E (x) + const., the smaller ev (xv ) or eij(xi , xj)
become, the higher the probability becomes.
When G is a 2D grid graph, we have
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E (x) =
∑

v∈V (G)

ev (xv ) +
∑

(i ,j)∈E(G)

eij(xi , xj) (32)

ev (xv ) and eij(xi , xj) are like local energy potentials.
Since log p(x) = −E (x) + const., the smaller ev (xv ) or eij(xi , xj)
become, the higher the probability becomes.
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Intro Basics Applications

Auxiliary (s, t)-graph

We can create auxiliary graph that involves two new terminal nodes
s and t (source and sink) and connect each of s and t to all of the
original nodes.

I.e.,Ga = (V ∪ {s, t},E + ∪v∈V ((s, v) ∪ (v , t))).
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Transformation from graphical model to auxiliary graph

Original Graph: E (x) =
∑

v∈V (G) ev (xv ) +
∑

(i ,j)∈E(G) eij(xi , xj)
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Transformation from graphical model to auxiliary graph

Augmented graph-cut graph.
The edge weights of graph are derived
from {ev}v∈V and {eij}(i ,j)∈E(G)

t

s
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Transformation from graphical model to auxiliary graph

Augmented graph-cut graph
with indicated cut corresponding
to particular vector x̄ ∈ {0, 1}n.
Each cut x̄ has a score
corresponding to p(x̄)

t

s
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Intro Basics Applications

Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ ∈ {0, 1}n.

If weights are set correctly in the cut graph, and if edge functions eij
satisfy certain properties, then graph-cut score corresponding to x̄
can be made equivalent to E (x) = log p(x̄) + const..

If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow!

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

Edge weight assignments:

For (s, v) with v ∈ V (G ), set edge
ws,v = (ev (1)− ev (0))1(ev (1) > ev (0))

For (v , t) with v ∈ V (G ), set edge
wv ,t = (ev (0)− ev (1))1(ev (0) ≥ ev (1))

For original edge (i , j) ∈ E , i , j ∈ V , set weight
wi ,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0).
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Intro Basics Applications

Submodular potentials

Edge functions must be submodular (equivalently “associative”,
“attractive”, “regular”, “Potts”, or “ferromagnetic”) for this to
work, i.e., for all (i , j) ∈ E (G ), we must have that:

eij(0, 1) + eij(1, 0) ≥ eij(1, 1) + eij(0, 0) (33)

This means: on average, preservation is preferred over change.
As a set function, this is the same as:

f (X ) =
∑

{i ,j}∈E(G)

fi ,j(X ∩ {i , j}) (34)

which is submodular if each of the fi ,j ’s are submodular!
Probability form p(x) ∝∏ψ, so
ψij(1, 0)ψij(0, 1) ≤ ψij(0, 0)ψij(1, 1): geometric mean of factor
scores higher when neighboring pixels have the same value - a
reasonable assumption about natural scenes and signals.
Weights wij in s, t-graph above are always non-negative, so
graph-cut solvable.
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Intro Basics Applications

On log-supermodular vs. log-submodular distributions

Log-supermodular distributions.

log Pr(x) = f (x) + const. = −E (x) + const. (35)

where f is supermodular (E (x) is submodular). MAP (or
high-probable) assignments should be “regular”, “homogeneous”,
“smooth”, “simple”. E.g., attractive potentials in computer vision,
ferromagnetic Potts models statistical physics.

Log-submodular distributions:

log Pr(x) = f (x) + const. (36)

where f is submodular. MAP or high-probable assignments should
be “diverse”, or “complex”, or “covering”, like in determinantal
point processes.
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Intro Basics Applications

Submodular potentials in GMs: Image Segmentation

an image needing to be segmented.
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Submodular potentials in GMs: Image Segmentation

labeled data, some pixels being marked foreground (red) and others
marked background (blue) to train the unaries {ev (xv )}v∈V .
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Intro Basics Applications

Submodular potentials in GMs: Image Segmentation

Set of a graph over the image, graph shows binary pixel labels.
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Submodular potentials in GMs: Image Segmentation

Run graph-cut to segment the image, foreground in red, background
in white.
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Submodular potentials in GMs: Image Segmentation

the foreground is removed from the background.
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Shrinking bias in graph cut image segmentation

What does graph-cut based
image segmentation do with
elongated structures (top) or
contrast gradients (bottom)?
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Shrinking bias in graph cut image segmentation
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Shrinking bias in image segmentation

An image needing to be segmented

Clear high-contrast boundaries
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Shrinking bias in image segmentation

Graph-cut (MRF with submodular edge potentials) works well.
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Shrinking bias in image segmentation

Now with contrast gradient (less clear segment as we move up).

The “elongated structure” also poses a challenge.
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Shrinking bias in image segmentation

Unary potentials {ev (xv )}v∈V prefer a different segmentation.

Edge weights are the same regardless of where they are
wi ,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0) ≥ 0.
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Shrinking bias in image segmentation

And the shrinking bias occurs, truncating the segmentation since it
results in lower energy.
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Shrinking bias in image segmentation

With “typed” edges, we can have cut cost be sum of edge color
weights, not sum of edge weights.

Submodularity to the rescue: balls & urns.
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Addressing shrinking bias with edge submodularity

Standard graph cut, uses a modular function w : 2E → R+ defined
on the edges to measure cut costs. Graph cut node function is
submodular.

fw (X ) = w
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(37)

Instead, we can use a submodular function g : 2E → R+ defined on
the edges to express cooperative costs.

fg (X ) = g
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(38)

Seen as a node function, fg : 2V → R+ is not submodular, but it
uses submodularity internally to solve the shrinking bias problem.

⇒ cooperative-cut (Jegelka & Bilmes, 2011).
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Intro Basics Applications

Graph-cut vs. cooperative-cut comparisons

Graph Cut Cooperative Cut

(Jegelka&Bilmes,’11). There are fast algorithms for solving as well (as
we’ll see tomorrow).
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Outline

1 Introduction

2 Basics

3 Submodular Applications in ML
Where is submodularity useful?
Traditional combinatorial problems
As a model of diversity, coverage, span, or information
As a model of cooperative costs, complexity, roughness, and
irregularity
As a parameter for an ML algorithm
Itself, as a target for learning
Surrogates for optimization
Economic applications
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Intro Basics Applications

A submodular function as a parameter

In some cases, it may be useful to view a submodular function
f : 2V → R as a input “parameter” to a machine learning algorithm.

Machine Learning
Problem or Instance

Data

f : 2V → R+ Output

A given submodular function f ∈ S ⊆ R2n can be seen as a vector in
a 2n-dimensional compact cone.
S is a submodular cone since submodularity is closed under
non-negative (conic) combinations.
2n-dimensional since for certain f ∈ S, there exists fε ∈ R2n having
no zero elements with f + fε ∈ S.
We next see how f parameterizes problems in ML, and then address
learning.
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Intro Basics Applications

Supervised And Unsupervised Machine Learning

Given training data D = {(xi , yi )}mi=1 with (xi , yi ) ∈ Rn × R,
perform the following risk minimization problem:

min
w∈Rn

1

m

m∑

i=1

`(yi ,w
ᵀxi ) + λΩ(w), (39)

where `(·) is a loss function (e.g., squared error) and Ω(w) is a norm.

When data has multiple responses (xi , yi ) ∈ Rn × Rk , learning
becomes:

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

`(yk
i , (wk)

ᵀ
xi ) + λΩ(wk), (40)

When data has multiple responses only that are observed, (yi ) ∈ Rk

we get dictionary learning (Krause & Guestrin, Das & Kempe):

min
x1,...,xm

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

`(yk
i , (wk)

ᵀ
xi ) + λΩ(wk), (41)

J. Bilmes Submodularity page 60 / 162



Intro Basics Applications

Supervised And Unsupervised Machine Learning

Given training data D = {(xi , yi )}mi=1 with (xi , yi ) ∈ Rn × R,
perform the following risk minimization problem:

min
w∈Rn

1

m

m∑

i=1

`(yi ,w
ᵀxi ) + λΩ(w), (39)

where `(·) is a loss function (e.g., squared error) and Ω(w) is a norm.
When data has multiple responses (xi , yi ) ∈ Rn × Rk , learning
becomes:

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

`(yk
i , (wk)

ᵀ
xi ) + λΩ(wk), (40)

When data has multiple responses only that are observed, (yi ) ∈ Rk

we get dictionary learning (Krause & Guestrin, Das & Kempe):

min
x1,...,xm

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

`(yk
i , (wk)

ᵀ
xi ) + λΩ(wk), (41)

J. Bilmes Submodularity page 60 / 162



Intro Basics Applications

Supervised And Unsupervised Machine Learning

Given training data D = {(xi , yi )}mi=1 with (xi , yi ) ∈ Rn × R,
perform the following risk minimization problem:

min
w∈Rn

1

m

m∑

i=1

`(yi ,w
ᵀxi ) + λΩ(w), (39)

where `(·) is a loss function (e.g., squared error) and Ω(w) is a norm.
When data has multiple responses (xi , yi ) ∈ Rn × Rk , learning
becomes:

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

`(yk
i , (wk)

ᵀ
xi ) + λΩ(wk), (40)

When data has multiple responses only that are observed, (yi ) ∈ Rk

we get dictionary learning (Krause & Guestrin, Das & Kempe):

min
x1,...,xm

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

`(yk
i , (wk)

ᵀ
xi ) + λΩ(wk), (41)

J. Bilmes Submodularity page 60 / 162



Intro Basics Applications

Norms, sparse norms, and computer vision

Common norms include p-norm Ω(w) = ‖w‖p =
(∑p

i=1 wp
i

)1/p

1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

Ω(w) =
N∑

i=2

|wi − wi−1| (42)

Points of difference should be “sparse” (frequently zero).

(Rodriguez,

2009)
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Intro Basics Applications

Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Given submodular function f : 2V → R+, f (supp(w)) measures the
“complexity” of the non-zero pattern of w ; can have more non-zero
values if they cooperate (via f ) with other non-zero values.
f (supp(w)) is hard to optimize, but it’s convex envelope f̃ (|w |)
(i.e., largest convex under-estimator of f (supp(w))) is obtained via
the Lovász-extension f̃ of f (Bolton et al. 2008, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via
the greedy algorithm: sort wσ1 ≥ wσ2 ≥ · · · ≥ wσn , then

f̃ (w) =
n∑

i=1

wσi (f (σ1, . . . , σi )− f (σ1, . . . , σi−1)) (43)

Ex: total variation is the Lovász-extension of graph cut
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Intro Basics Applications

Submodular Generalized Dependence
there is a notion of “independence” , i.e., A⊥⊥B:

f (A ∪ B) = f (A) + f (B), (44)

and a notion of “conditional independence” , i.e., A⊥⊥B|C :

f (A ∪ B ∪ C ) + f (C ) = f (A ∪ C ) + f (B ∪ C ) (45)

and a notion of “dependence” (conditioning reduces valuation):

f (A|B) , f (A ∪ B)− f (B) < f (A), (46)

and a notion of “conditional mutual information”

If (A; B|C ) , f (A ∪ C ) + f (B ∪ C )− f (A ∪ B ∪ C )− f (C ) ≥ 0

and two notions of “information amongst a collection of sets”:

If (S1; S2; . . . ; Sk) =
k∑

i=1

f (Sk)− f (S1 ∪ S2 ∪ · · · ∪ Sk) (47)

I ′f (S1; S2; . . . ; Sk) =
∑

A⊆{1,2,...,k}
(−1)|A|+1f (

⋃

j∈A
Sj) (48)
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Intro Basics Applications

Submodular Parameterized Clustering

Given a submodular function f : 2V → R, form the combinatorial
dependence function If (A; B) = f (A) + f (B)− f (A ∪ B).

Consider clustering algorithm: First find partition
A∗1 ∈ argminA⊆V If (A; V \ A).

Then partition the partitions: A∗11 ∈ argminA⊆A∗
1

If (A; A∗1 \ A) and
A∗12 ∈ argminA⊆V \A∗

1
If (A; (V \ A∗1) \ A)

Recursively partition the partitions, we end up with a partition
V = V1 ∪ V2 ∪ · · · ∪ Vk that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a
partition no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .
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Intro Basics Applications

Active Transductive Semi-Supervised Learning

Batch/Offline active learning: Given a set V of unlabeled data
items, learner chooses subset L ⊆ V of items to be labeled

Nature reveals labels yL ∈ {0, 1}L, learner predicts labels ŷ ∈ {0, 1}V

+
-

+
+

+

-
- -+

-

-

++

Learner suffers loss ‖ŷ − y‖1, here ‖ŷ − y‖1 = 2.

+ +
+

-
- -+

-
-

++

+ +
+

-
- -+

-
+

+-
Predicted Actual
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Intro Basics Applications

Choosing labels: how to select L

Consider the following objective

Ψ(L) = min
T⊆V \L:T 6=∅

Γ(T )

|T | (49)

where Γ(T ) = f (T ) + f (V \ T )− f (V ) is an arbitrary symmetric
submodular function (e.g., graph cut value between T and V \ T ).

Small Ψ(L) means an adversary can separate away many (|T | is big)
combinatorially “independent” (Γ(T ) is small) points from L.

This suggests choosing (bounded cost) L that maximizes Ψ(L).
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Intro Basics Applications

Choosing labels: how to select L

Given labels L, how to complete the labels?

We form a labeling ŷ ∈ {0, 1}V such that ŷL = yL (i.e., we agree
with the known labels).

Γ(T ) measures label smoothness, how much combinatorial
“information” between labels T and complement V \ T (e.g., in
graph-cut case, says label change should be across small cuts).

Hence, choose labels to minimize Γ(Y (ŷ)) such that ŷL = yL.

This is submodular function minimization on function
g : 2V \L → R+ where for A ⊆ V \ L,

g(A) = Γ(A ∪ {v ∈ L : yL(v) = 1}) (50)

In graph cut case, this is standard min-cut (Blum & Chawla 2001)
approach to semi-supervised learning.
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Generalized Error Bound

Theorem (Guillory & Bilmes, ’11)

For any symmetric submodular Γ(S), assume ŷ minimizes Γ(Y (ŷ))
subject to ŷL = yL. Then

‖ŷ − y‖1 ≤ 2
Γ(Y (y))

Ψ(L)
(51)

where y ∈ {0, 1}V are the true labels.

All is defined in terms of the symmetric submodular function Γ
(need not be graph cut), where:

Ψ(S) = min
T⊆V \S :T 6=∅

Γ(T )

|T | (52)

Γ(T ) = f (S) + f (V \ S)− f (V ) is determined by arbitrary
submodular function f , giving different error bound for each.
Joint algorithm is “parameterized” by a submodular function f .
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Discrete Submodular Divergences

A convex function parameterizes a Bregmann divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared l2, etc.

Given a (not nec. differentiable) convex function φ and a
sub-gradient map Hφ, the generalized Bregmann divergence is
defined as:

d
Hφ
φ (x , y) = φ(x)− φ(y)− 〈Hφ(y), x − y〉,∀x , y ∈ dom(φ) (53)

A submodular function parameterizes a discrete submodular
Bregmann divergence (Iyer & Bilmes, 2012).

Example, lower-bound form:

dHf
f (X ,Y ) = f (X )− f (Y )− 〈Hf (Y ), 1X − 1Y 〉 (54)

where Hf (Y ) is a sub-gradient map.

Submodular Bregmann divergences also definable in terms of
supergradients.

General: Hamming, Recall, Precision, Cond. MI, Sq. Hamming, etc.
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Intro Basics Applications

Outline

1 Introduction

2 Basics

3 Submodular Applications in ML
Where is submodularity useful?
Traditional combinatorial problems
As a model of diversity, coverage, span, or information
As a model of cooperative costs, complexity, roughness, and
irregularity
As a parameter for an ML algorithm
Itself, as a target for learning
Surrogates for optimization
Economic applications
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Learning Submodular Functions

Learning submodular functions is hard

Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f̂
such that f̂ (S) ≤ f (S) ≤ g(n)f̂ (S) where g : N→ R?”

Many
results, including that even with adaptive queries and monotone
functions, can’t do better than Ω(

√
n/ log n).

Balcan & Harvey (2011): submodular function learning problem
from a learning theory perspective, given a distribution on subsets.
Negative result is that can’t approximate in this setting to within a
constant factor.

But can we learn a subclass, perhaps non-negative weighted
mixtures of submodular components?
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Intro Basics Applications

Structured Prediction in Machine Learning

Given: a finite set of training pairs D =
{

(x(i), y(i))
}
i

where

x(i) ∈ X , y(i) ∈ Y.

f : X × Y → RM is a (fixed) vector of functions, and w ∈ RM is a
vector of parameters to learn.

Score function: s(x, y) = wᵀf(x, y) =
∑

i wi fi (x, y).

Decision making (inference) for a given x̄ is based on:

ŷ ∈ hw(x̄) = argmax
y∈Y

s(x̄, y) = argmax
y∈Y

wᵀf(x̄, y) (55)

Goal of learning: optimize w so that such decision making is “good”

Let ` : Y × Y → R+ be a loss function. I.e., `y(ŷ) is cost of
deciding ŷ when truth is y.

Empirical risk minimization: adjust w so that
∑

i `y(hw(x(i))) is
small subject to other conditions (e.g., regularization).
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Structured Prediction: Approach with inference

Constraints specified in inference form:

minimize
w,ξt

1

T

∑

t

ξt +
λ

2
‖w‖2 (56)

subject to w>ft(y(t)) ≥ max
y∈Yt

(
w>ft(y) + `t(y)

)
− ξt , ∀t (57)

ξt ≥ 0,∀t. (58)

Exponential set of constraints reduced to an embedded optimization
problem, “inference.”
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Learning Submodular Mixtures: Unconstrained Form

Unconstrained form uses a generalized hinge-loss (Taskar 2004),
which is amenable to sub-gradient descent optimization:

min
w≥0

1

T

∑

t

[
max
y∈Yt

(
w>ft(y) + `t(y)

)
−w>ft(y(t))

]
+
λ

2
‖w‖2 (59)

Note, w ≥ 0 critical to preserve submodularity.
To compute a subgradient, must solve the following embedded
optimization problem (“loss augmented inference”):

max
y∈Yt

(
w>ft(y) + `t(y)

)
(60)

The problem is convex in w, and w>ft(y) is submodular
(polymatroidal in fact), but what about `t(y)?
Often one uses Hamming loss (in general structured prediction
problems) which is submodular (modular in fact).
If loss `t(y), more generally, is submodular, then Eq. (60) can be
solved at least approximately well.
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Structured Prediction: Subgradient

Subgradient, evaluated at w, of the following

max
y∈Yt

(
w>ft(y) + `t(y)

)
−w>ft(y(t)) +

λ

2
‖w‖2 (61)

can be found by computing or approximating

y∗ ∈ argmax
y∈Yt

(
w>ft(y) + `t(y)

)
−w>ft(y(t)) (62)

and then finding subgradient of

w>ft(y∗) + `t(y∗)−w>ft(y(t)) +
λ

2
‖w‖2 (63)

which has the form

ft(y∗)− ft(y(t)) + λw. (64)
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Structured Prediction: Subgradient Learning

Algorithm 1: Subgradient descent learning

Input : S = {(x(t), y(t))}Tt=1 and a learning rate sequence {ηt}Tt=1.
w0 = 0;
for t = 1, · · · ,T do

Loss augmented inference: y∗t ∈ argmaxy∈Yt w>t−1ft(y) + `t(y);

Compute the subgradient: gt = λwt−1 + ft(y∗)− ft(y(t));
Update the weights: wt = wt−1 − ηtgt ;

Return : the averaged parameters 1
T

∑
t wt .
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Outline
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2 Basics

3 Submodular Applications in ML
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Submodular Relaxation

We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

If potentials are submodular, we can solve them.

When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

An alternative is submodular relaxation. I.e., given

Pr(x) =
1

Z
exp(−E (x)) (65)

where E (x) = Ef (x)− Eg (x) and both of Ef (x) and Eg (x) are
submodular.

Any function can be expressed as the difference between two
submodular functions.

Hence, rather than minimize E (x) (hard), we can minimize
Ef (x) ≥ E (x) (relatively easy), which is an upper bound.
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Intro Basics Applications

Outline

1 Introduction

2 Basics

3 Submodular Applications in ML
Where is submodularity useful?
Traditional combinatorial problems
As a model of diversity, coverage, span, or information
As a model of cooperative costs, complexity, roughness, and
irregularity
As a parameter for an ML algorithm
Itself, as a target for learning
Surrogates for optimization
Economic applications
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Intro Basics Applications

Ex. Submodular: Consumer Costs of Living

Consumer costs are very often submodular.

For example:

f ( ) ≥ f ( ) + f ( )f ( )+

Rearranging terms, we can see this as diminishing returns:

f ( ) f ( ) ≥ f ( ) f ( )

This is very common: The additional cost of a coke is, say, free if
you add it to fries and a hamburger, but when added just to an
order of fries, the coke is not free.
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Intro Basics Applications

Shared Fixed Costs

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:

v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ⊆ V , let f (A) be the cost of set of items A.

f ({v1}) = cost to drive to and from store, and cost to purchase
milk, say cd + cm.

f ({v2}) = cost to drive to and from store, and cost to purchase
honey, say cd + ch.

But f ({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is
a shared fixed cost.

Shared fixed costs are submodular: f (v1) + f (v2) ≥ f (v1, v2) + f (∅)
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Intro Basics Applications

Supply Side Economies of scale

What is a good model of the cost of manufacturing a set of items?

Let V be a set of possible items that a company might possibly wish
to manufacture, and let f (S) for S ⊆ V be the cost to that
company to manufacture subset S .

Ex: V might be colors of paint in a paint manufacturer: green, red,
blue, yellow, white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f (green, blue, yellow)− f (blue, yellow) <= f (green, blue)− f (blue)
(66)

So diminishing returns (a submodular function) would be a good
model.
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Intro Basics Applications

Demand side Economies of Scale: Network Externalities

consumers of a good derive positive value when size of the market
increases.

the value of a network to a user depends on the number of other
users in that network. External use benefits internal use.

This is called network externalities (Katz & Shapiro 1986), and is a
form of “demand” economies of scale

Given network externalities, a consumer in today’s market cares also
about the future success of the product and competing products.

If the good is durable (e.g., a car or phone) or there is human
capital investment (e.g., education in a skill), the total benefits
derived from a good will depend on the number of consumers who
adopt compatible products in the future.

So supermodularity would be a good model.
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Polymatroids Submodular Properties

Outline: Part 2

4 From Matroids to Polymatroids
Matrix Rank
Venn Diagrams
Matroids

5 Submodular Definitions, Examples, and Properties
Normalization
Submodular Definitions
Submodular Composition
More Examples
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Polymatroids Submodular Properties

Example: Rank function of a matrix

Given an n ×m matrix, thought of as m column vectors:

X =




1 2 3 4 m

| | | | |
x1 x2 x3 x4 . . . xm

| | | | |


 (67)

Let set V = {1, 2, . . . ,m} be the set of column vector indices.

For any subset of column vector indices A ⊆ V ,
let r(A) be the rank of the column vectors indexed by A.

Hence r : 2V → Z+ and r(A) is the dimensionality of the vector
space spanned by the set of vectors {xa}a∈A.

Intuitively, r(A) is the size of the largest set of independent vectors
contained within the set of vectors indexed by A.
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Polymatroids Submodular Properties

Example: Rank function of a matrix

Consider the following 4× 8 matrix, so V = {1, 2, 3, 4, 5, 6, 7, 8}.





1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5




=





1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |





Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C ) = 2.

r(A ∪ C ) = 3, r(B ∪ C ) = 3.

r(A ∪ Ar ) = 3, r(B ∪ Br ) = 3, r(A ∪ Br ) = 4, r(B ∪ Ar ) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C ) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5
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=





1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |




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Polymatroids Submodular Properties

Rank function of a matrix

Let A,B ⊆ V be two subsets of column indices.

The rank of the two sets unioned together A ∪ B is no more than
the sum of the two individual ranks.
In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence, r(A) can be viewed as an area.

r(A) + r(B) ≥ r(A ∪ B)

If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if ∃ common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.
Any function where the above inequality is true for all A,B ⊆ V is
called subadditive.
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Polymatroids Submodular Properties

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C ) + r(Ar )

Similarly, r(B) = r(C ) + r(Br ).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar ) + 2r(C ) + r(Br ). (68)

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar ) + r(C ) + r(Br ) (69)
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Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar ) + 2r(C ) + r(Br ). (68)

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar ) + r(C ) + r(Br ) (69)
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Rank functions of a matrix

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar ) + 2r(C ) + r(Br )

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar ) +r(C ) + r(Br )

Thus, we have subadditivity: r(A) + r(B) ≥ r(A ∪ B). Can we add
more to the r.h.s. and still have an inequality? Yes.
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Polymatroids Submodular Properties

Rank function of a matrix

Note, r(A ∩ B) ≤ r(C ). Why? Vectors indexed by A ∩ B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C ).

r(A ∩ B)≥r(C )

In short:

Common span (blue) is “more” (no less) than span of common
index (magenta).

More generally, common information (blue) is “more” (no less) than
information within common index (magenta).
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The Venn and Art of Submodularity

+r(A) + r(B) r(A ∪ B)

= r(Ar ) +r(C ) + r(Br )

≥
= r(A ∩ B)

r(A ∩ B)

= r(Ar ) + 2r(C ) + r(Br )

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
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Polymatroid function and its polyhedron.

Definition

A polymatroid function is a real-valued function f defined on subsets of
V which is normalized, non-decreasing, and submodular. That is:

1 f (∅) = 0 (normalized)

2 f (A) ≤ f (B) for any A ⊆ B ⊆ V (monotone non-decreasing)

3 f (A∪B) + f (A∩B) ≤ f (A) + f (B) for any A,B ⊆ V (submodular)

We can define the polyhedron P+
f associated with a polymatroid function

as follows

P+
f =

{
y ∈ RV

+ : y(A) ≤ f (A) for all A ⊆ V
}

(70)

=
{

y ∈ RV : y ≥ 0, y(A) ≤ f (A) for all A ⊆ V
}

(71)
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Chains of sets

Ground element V = {1, 2, . . . , n} set of integers w.l.o.g.

Given a permutation σ = (σ1, σ2, . . . , σn) of the integers.

From this we can form a chain of sets {Ci}i with
∅ = C0 ⊆ C1 ⊆ · · · ⊆ Cn = V formed as:

Ci = {σ1, σ2, . . . , σi}, for i = 1 . . . n (72)

σ(1) σ(2) σ(3) σ(4) σ(5) σ(6) σ(7) σ(8)

C1

C2

C3

...

Can also form a chain from a vector w ∈ RV sorted in descending
order. Choose σ so that w(σ1) ≥ w(σ2) ≥ · · · ≥ w(σn).
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Polymatroids Submodular Properties

Gain

We often wish to express the gain of an item j ∈ V in context A,
namely f (A ∪ {j})− f (A).

This is called the gain and is used so often, there are equally as
many ways to notate this. I.e., you might see:

f (A ∪ {j})− f (A)
∆
= ρj(A) (73)

∆
= ρA(j) (74)

∆
= ∇j f (A) (75)

∆
= f ({j}|A) (76)

∆
= f (j |A) (77)

We’ll use f (j |A). Also, f (A|B) = f (A ∪ B)− f (B).
Submodularity’s diminishing returns definition can be stated as
saying that f (j |A) is a monotone non-increasing function of A, since
f (j |A) ≥ f (j |B) whenever A ⊆ B (conditioning reduces valuation).
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Polymatroids Submodular Properties

Polymatroidal polyhedron and greedy

Suppose we wish to solve the following linear programming problem:

maximize
x∈RV

wᵀx

subject to x ∈
{

y ∈ RV
+ : y(A) ≤ f (A) for all A ⊆ V

}
(78)

or more simply put, max(wx : x ∈ Pf ).

Consider greedy solution: sort elements of V w.r.t. w so that
w.l.o.g. V = (v1, v2, . . . , vm) has w(v1) ≥ w(v2) ≥ · · · ≥ w(vm).
Next, form chain of sets based on w sorted descended, giving:

Vi
def
= {v1, v2, . . . vi} (79)

for i = 0 . . .m. Note V0 = ∅, and f (V0) = 0.
The greedy solution is the vector x ∈ RV

+ with element x(vi ) for
i = 1, . . . , n defined as:

x(vi ) = f (Vi )− f (Vi−1) = f (vi |Vi−1) (80)
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Polymatroids Submodular Properties

Polymatroidal polyhedron and greedy

We have the following very powerful result (which generalizes a
similar one that is true for matroids).

Theorem

Let f : 2V → R+ be a given set function, and P is a polytope in RV
+ of

the form P =
{

x ∈ RV
+ : x(A) ≤ f (A),∀A ⊆ V

}
.

Then the greedy solution to the problem max(wx : x ∈ P) is optimal ∀w
iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).
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Polymatroid extreme points

Greedy does more than this. In fact, we have:

Theorem

For a given ordering V = (v1, . . . , vm) of V and a given Vi and x
generated by Vi using the greedy procedure, then x is an extreme point
of Pf

Corollary

If x is an extreme point of Pf and B ⊆ V is given such that
{v ∈ V : x(v) 6= 0} ⊆ B ⊆ ∪(A : x(A) = f (A)), then x is generated
using greedy by some ordering of B.
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Intuition: why greedy works with polymatroids

Given w , the goal is
to find
x = (x(e1), x(e2))
that maximizes
xᵀw = x(e1)w(e1) +
x(e2)w(e2).

If w(e2) > w(e1)
the upper extreme
point indicated
maximizes xᵀw over
x ∈ P+

f .

If w(e2) < w(e1)
the lower extreme
point indicated
maximizes xᵀw over
x ∈ P+

f .

e1

e2

f(e1)

f(e1|e2)

f(e
2)

f(e
2|e

1)

45°

w(e 2
)>

w(e 1
)

w(e 2
)<

w(e 1
)

Maximal point in 
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P+
f

M
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al point in 

for w
 in this region.

P
+f

45°

J. Bilmes Submodularity page 98 / 162



Polymatroids Submodular Properties

Polymatroid with labeled edge lengths

e1
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e 3
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A polymatroid function’s polyhedron vs. a polymatroid.

Given these results, we can conclude that a polymatroid is really an
extremely natural polyhedral generalization of a matroid. This was
all realized by Jack Edmonds in the mid 1960s (and published in
1969 in his landmark paper “Submodular Functions, Matroids, and
Certain Polyhedra”).

Jack Edmonds NIPS talk, 2011 http://videolectures.net/

nipsworkshops2011_edmonds_polymatroids/
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Outline: Part 2

4 From Matroids to Polymatroids
Matrix Rank
Venn Diagrams
Matroids

5 Submodular Definitions, Examples, and Properties
Normalization
Submodular Definitions
Submodular Composition
More Examples
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Submodular (or Upper-SemiModular) Lattices

The name “Submodular” comes from lattice theory, and refers to a
property of the “height” function of an upper-semimodular lattice. Ex:
consider the following lattice over 7 elements.

x ∧ y

x y

x ∨ y

0

1

2

3

2 + 2 > 3 + 0

height

submodularity
h(x)+h(y) 
     > h(x∨y ) 
     + h(x∧y)

Such lattices require that for all
x , y , z ,

x y

z

x ∨ y

x y

⇒

The lattice is
upper-semimodular
(submodular), height function
is submodular on the lattice.

J. Bilmes Submodularity page 102 / 162



Polymatroids Submodular Properties

Submodular Definitions

Definition (submodular)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) (81)

General submodular function, f need not be monotone,
non-negative, nor normalized (i.e., f (∅) need not be = 0).
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Normalized Submodular Function

Given any submodular function f : 2V → R, form a normalized
variant f ′ : 2V → R, with

f ′(A) = f (A)− f (∅) (82)

Then f ′(∅) = 0.

This operation does not affect submodularity, or any minima or
maxima

It is often assumed that all submodular functions are so normalized.
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Submodular Polymatroidal Decomposition

Given any arbitrary submodular function f : 2V → R, consider the
identity

f (A) = f (A)−m(A)︸ ︷︷ ︸
f̄ (A)

+m(A) = f̄ (A) + m(A) (83)

for a modular function m : 2V → R, where

m(a) = f (a|V \ {a}) (84)

Then f̄ (A) is polymatroidal since f̄ (∅) = 0 and for any a and A

f̄ (a|A) = f (a|A)− f (a|V \ {a}) ≥ 0 (85)
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Totally Normalized

f̄ is called the totally normalized version of f

polytope of f̄ and f is the same shape, just shifted.

Pf =
{

x ∈ RV : x(A) ≤ f (A),∀A ⊆ V
}

(86)

=
{

x ∈ RV : x(A) ≤ f̄ (A) + m(A),∀A ⊆ V
}

(87)

m is like a unary score, f̄ is where things interact . All of the real
structure is in f̄

Hence, any submodular function is a sum of polymatroid and
modular.
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structure is in f̄

Hence, any submodular function is a sum of polymatroid and
modular.
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Polymatroids Submodular Properties

Telescoping Summation

Given a chain set of sets A1 ⊆ A2 ⊆ · · · ⊆ Ar

Then the telescoping summation property of the gains is as follows:

r−1∑

i=1

f (Ai+1|Ai ) =
r∑

i=2

f (Ai )−
r−1∑

i=1

f (Ai ) = f (Ar )− f (A1) (88)
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Polymatroids Submodular Properties

Submodular Definitions

Theorem

Given function f : 2V → R, then

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) for all A,B ⊆ V (SC)

if and only if

f (v |X ) ≥ f (v |Y ) for all X ⊆ Y ⊆ V and v /∈ B (DR)

Proof.

(SC)⇒(DR): Set A← X ∪ {v}, B ← Y . Then A ∪ B = B ∪ {v} and
A ∩ B = X and f (A)− f (A ∩ B) ≥ f (A ∪ B)− f (B) implies (DR).

(DR)⇒(SC): Order A \ B = {v1, v2, . . . , vr} arbitrarily. Then

f (vi |A ∩ B ∪ {v1, v2, . . . , vi−1}) ≥ f (v1|B ∪ {v1, v2, . . . , vi−1}), i ∈ [r − 1]

Applying telescoping summation to both sides, we get:

f (A)− f (A ∩ B) ≥ f (A ∪ B)− f (B)
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Polymatroids Submodular Properties

Many (Equivalent) Definitions of Submodularity

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V (89)

f (j |S) ≥ f (j |T ), ∀S ⊆ T ⊆ V , with j ∈ V \ T (90)

f (C |S) ≥ f (C |T ),∀S ⊆ T ⊆ V , with C ⊆ V \ T (91)

f (j |S) ≥ f (j |S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (92)

f (A ∪ B|A ∩ B) ≤ f (A|A ∩ B) + f (B|A ∩ B), ∀A,B ⊆ V (93)

f (T ) ≤ f (S) +
∑

j∈T\S
f (j |S)−

∑

j∈S\T
f (j |S ∪ T − {j}), ∀S ,T ⊆ V (94)

f (T ) ≤ f (S) +
∑

j∈T\S
f (j |S), ∀S ⊆ T ⊆ V (95)

f (T ) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}) +

∑

j∈T\S
f (j |S ∩ T ) ∀S ,T ⊆ V

(96)

f (T ) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}), ∀T ⊆ S ⊆ V (97)
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Polymatroids Submodular Properties

Basic ops: Sums, Restrictions, Conditioning

Given submodular f1, f2, . . . , fk each ∈ 2V → R, then conic
combinations are submodular. I.e.,

f (A) =
k∑

i=1

αi fi (A) (98)

where αi ≥ 0.

Restrictions: f (A) = g(A ∩ C ) is submodular whenever g is, for all
C .

Conditioning: f (A) = g(A ∪ C )− f (C ) = f (A|C ) is submodular
whenever g is for all C .
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Polymatroids Submodular Properties

The “or” of two polymatroid functions

Given two polymatroid functions f and g , suppose feasible A are
defined as {A : f (A) ≥ αf or g(A) ≥ αg} for real αf , αg .

This is identical to:
{

A : f̄ (A) = αf or ḡ(A) = αg

}
where

f̄ (A) = min(f (A), αf ) and ḡ(A) = min(f (A), αg )

Define: h(A) = f̄ (A)ḡ(V ) + f̄ (V )ḡ(A)− f̄ (A)ḡ(A).

Theorem (Guillory & Bilmes, 2011)

h(A) so defined is polymatroidal.

Theorem

h(A) = αf αg if and only if f̄ (A) = αf or ḡ(A) = αg

Therefore, h can be used as a submodular surrogate for the “or” of
multiple submodular functions.
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Polymatroids Submodular Properties

Composition and Submodular Functions

Convex/Concave have many nice properties of composition (see
Boyd & Vandenberghe, “Convex Optimization”)

A submodular function f : 2V → R has a different type of input and
output, so composing two submodular functions directly makes no
sense.

However, we have a number of forms of composition results that
preserve submodularity, which we turn to next:
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Polymatroids Submodular Properties

Grouping elements, set cover, and bipartite neighborhoods

Given submodular f : 2V → R and a grouping of
V = V1 ∪ V2 ∪ · · · ∪ Vk into k possibly overlapping clusters.

Define new function g : 2[k] → R where ∀D ⊆ [k] = {1, 2, . . . , k},
g(D) = f (

⋃

d∈D
Vd) (99)

Then g is submodular if either f is monotone non-decreasing or the
sets {Vi} are disjoint.

Ex: Bipartite neighborhoods: Let Γ : 2V → R be the neighbor
function in a bipartite graph G = (V ,U,E ,w). V is set of “left”
nodes, U is set of right nodes, E ⊆ V × U are edges, and
w : 2E → R is a modular function on edges.

Neighbors defined as Γ(X ) = {u ∈ U : |X × {u} ∩ E | ≥ 1} for
X ⊆ V .

Then f (Γ(X )) is submodular. Special case: set cover.

In fact, all integral polymatroid functions can be obtained in g
above for f a matroid rank function and {Vd} appropriately chosen.
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Polymatroids Submodular Properties

Concave composed with polymatroid

We also have the following composition property with concave functions:

Theorem

Given functions f : 2V → R and g : R→ R, the composition
h = f ◦ g : 2V → R (i.e., h(S) = g(f (S))) is nondecreasing submodular,
if g is non-decreasing concave and f is nondecreasing submodular.
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Polymatroids Submodular Properties

Concave composed with non-negative modular

Theorem

Given a ground set V . The following two are equivalent:

1 For all modular functions m : 2V → R+, then f : 2V → R defined as
f (A) = g(m(A)) is submodular

2 g : R+ → R is concave.

If g is non-decreasing concave, then f is polymatroidal.

Sums of concave over modular functions are submodular

f (A) =
K∑

i=1

gi (mi (A)) (100)

Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).

However, Vondrak showed that a graphic matroid rank function over
K4 can’t be represented in this fashion.
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Polymatroids Submodular Properties

Weighted Matroid Rank Functions

We saw matroid rank is submodular. Given matroid (V , I),

f (B) = max {|A| : A ⊆ B and A ∈ I} (101)

Weighted matroid rank functions. Given matroid (V , I), and
non-negative modular function m : 2V → R+,

f (B) = max {m(A) : A ⊆ B and A ∈ I} (102)

is also submodular.

Take a 1-partition matroid with limit k, we get:

f (B) = max {m(A) : A ⊆ B and |A| ≤ k} (103)

Take a 1-partition matroid with limit 1, we get the max function:

f (B) = max
b∈B

m(b) (104)
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Polymatroids Submodular Properties

Facility Location

Given a set of k matroids (V , Ii ) and k modular weight functions
mi , the following is submodular:

f (A) =
k∑

i=1

αi max {mi (A) : A ⊆ B and A ∈ Ii} (105)

Take all αi = 1, all matroids 1-partition matroids, and set
wij = mi (j), and k = |V | for some weighted graph G = (V ,E ,w),
we get the uncapacitated facility location function:

f (A) =
∑

i∈V
max
a∈A

wai (106)
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Polymatroids Submodular Properties

Information and Complexity functions

Given a set V of items, we might wish to measure the “information”
or “complexity” in a subset A ⊂ V .

Matroid rank r(A) can measure the “information” or “complexity”
via the dimensionality spanned by vectors with indices A.

Unit increment r(v |A) ∈ {0, 1} so no partial independence.

Entropy of a set of random variables {Xv}v∈V , where

f (A) = H(XA) = H(
⋃

a∈A
Xa) = −

∑

xA

Pr(xA) log Pr(xA) (107)

can measure partial independence.

Entropy is submodular due to non-negativity of conditional mutual
information. Given A,B,C ⊆ V ,

I (XA\B ; XB\A|XA∩B)

= H(XA) + H(XB)− H(XA∪B)− H(XA∩B) ≥ 0 (108)
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Polymatroids Submodular Properties

Submodular Generalized Dependence
there is a notion of “independence” , i.e., A⊥⊥B:

f (A ∪ B) = f (A) + f (B), (44)

and a notion of “conditional independence” , i.e., A⊥⊥B|C :

f (A ∪ B ∪ C ) + f (C ) = f (A ∪ C ) + f (B ∪ C ) (45)

and a notion of “dependence” (conditioning reduces valuation):

f (A|B) , f (A ∪ B)− f (B) < f (A), (46)

and a notion of “conditional mutual information”

If (A; B|C ) , f (A ∪ C ) + f (B ∪ C )− f (A ∪ B ∪ C )− f (C ) ≥ 0

and two notions of “information amongst a collection of sets”:

If (S1; S2; . . . ; Sk) =
k∑

i=1

f (Sk)− f (S1 ∪ S2 ∪ · · · ∪ Sk) (47)

I ′f (S1; S2; . . . ; Sk) =
∑

A⊆{1,2,...,k}
(−1)|A|+1f (

⋃

j∈A
Sj) (48)
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Polymatroids Submodular Properties

Gaussian entropy, and the log-determinant function

Definition (differential entropy h(X ))

h(X ) = −
∫

S
f (x) log f (x)dx (109)

When x ∼ N (µ,Σ) is multivariate Gaussian, the (differential)
entropy of the r.v. X is given by

h(X ) = log
√
|2πeΣ| = log

√
(2πe)n|Σ| (110)

and in particular, for a variable subset A and a constant γ,

f (A) = h(XA) = log
√

(2πe)|A||ΣA| = γ|A|+ 1

2
log |ΣA| (111)

Application of Jensen’s inequality shows that
I (XA\B ; XB\A|XA∩B) = h(XA) + h(XB)− h(XA∪B)− h(XA∩B) ≥ 0.
Hence differential entropy is submodular, and thus so is the logdet
function.
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Polymatroids Submodular Properties

Are all polymatroid functions entropy functions?

No, entropy functions must also satisfy the following:

Theorem (Yeung)

For any four discrete random variables {X ,Y ,Z ,U}, then

I (X ; Y ) = I (X ; Y |Z ) = 0 (112)

implies that

I (X ; Y |Z ,U) ≤ I (Z ; U|X ,Y ) + I (X ; Y |U) (113)

where I (·; ·|·) is the standard Shannon mutual information function.

This is not required for all polymatroid-based conditional mutual
information functions If (·; ·|·).
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Polymatroids Submodular Properties

Containment, Gaussian Entropy, and DPPs

Submodular functions ⊃ Polymatroid functions ⊃ Entropy functions
⊃ Gaussian Entropy functions = DPPs.

DPPs (Kulesza & Taskar) are a point process where
Pr(Y = Y ) ∝ det(LY ) for some positive-definite matrix L, so DPPs
are log-submodular, as we saw.

Thanks to the properties of matrix algebra (e.g., determinants),
DPPs are computationally extremely attractive and are now widely
used in ML.
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used in ML.
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Convex Functions and Tight Subgradients

b

fb(b) = f(b)
fb(a) ≤ f(a)

x

f(x) fb(x)

A convex function f has a subgradient at any in-domain point b,
namely there exists fb such that

f (x)− f (b) ≥ 〈fb, x − b〉,∀x . (114)

We have that f (x) is convex, fb(x) is affine, and is a tight
subgradient (tight at b, affine lower bound on f (x)).
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there exists f b such that
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Trivial additive upper/lower bounds

Any submodular function has trivial additive upper and lower
bounds. That is for all A ⊆ V ,

mf (A) ≤ f (A) ≤ mf (A) (116)

where

mf (A) =
∑

a∈A
f (a) (117)

mf (A) =
∑

a∈A
f (a|V \ {a}) (118)

mf ∈ RV and mf ∈ RV are both modular (or additive) functions.

A “semigradient” is customized, and at least at one point is tight.
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Submodular Subgradients

For submodular function f , the subdifferential (all subgradients tight
at X ⊆ V ) can be defined as:

∂f (X ) = {x ∈ RV : ∀Y ⊆ V , x(Y )− x(X ) ≤ f (Y )− f (X )} (119)

This partitions RV :
x1

x2

∂f(∅) ∂f({v1})

∂f({v2})
∂f({v1, v2})

(0, 0)

Extreme points are easy to get via Edmonds’s greedy algorithm:

Theorem (Fujishige 2005, Theorem 6.11)

A point y ∈ RV is an extreme point of ∂f (X ),
iff there exists a maximal chain ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn with X = Sj

for some j, such that y(Si \ Si−1) = y(Si )− y(Si−1) = f (Si )− f (Si−1).
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The Submodular Subgradients (Fujishige 2005)

For an arbitrary Y ⊆ V

Let σ be a permutation of V and define Sσi = {σ(1), σ(2), . . . , σ(i)}
as σ’s chain where Sσk = Y where |Y | = k .

We can define a subgradient hf
Y corresponding to f as:

hf
Y ,σ(σ(i)) =

{
f (Sσ1 ) if i = 1

f (Sσi )− f (Sσi−1) otherwise
.

We get a tight modular lower bound of f as follows:

hf
Y ,σ(X ) ,

∑

x∈X
hf
Y ,σ(x) ≤ f (X ),∀X ⊆ V .

Note, tight at Y means hf
Y ,σ(Y ) = f (Y ).
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Convexity and Tight Sub- and Super-gradients?

Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

If a continuous function has both a sub- and super-gradient at a
point, then the function must be affine.

What about discrete set functions?
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The Submodular Supergradients

Can a submodular function also have a supergradient? We saw that
in the continuous case, simultaneous sub/super gradients meant
linear.

(Nemhauser, Wolsey, & Fisher 1978) established the following iff
conditions for submodularity (if either hold, f is submodular):

f (Y ) ≤ f (X )−
∑

j∈X\Y
f (j |X\j) +

∑

j∈Y \X
f (j |X ∩ Y ),

f (Y ) ≤ f (X )−
∑

j∈X\Y
f (j |(X∪Y )\j) +

∑

j∈Y \X
f (j |X )

Recall that f (A|B) , f (A∪B)− f (B) is the gain of adding A in the
context of B.
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Submodular and Supergradients

Using submodularity further, these can be relaxed to produce two
tight modular upper bounds (Jegelka & Bilmes, 2011, Iyer & Bilmes
2013):

f (Y ) ≤ mf
X ,1(Y ) , f (X )−

∑

j∈X\Y
f (j |X\j) +

∑

j∈Y \X
f (j |∅),

f (Y ) ≤ mf
X ,2(Y ) , f (X )−

∑

j∈X\Y
f (j |V \j) +

∑

j∈Y \X
f (j |X ).

Hence, this yields three tight (at set X ) modular upper bounds
mf

X ,1,m
f
X ,2 for any submodular function f .
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Optimizing difference of submodular functions

Theorem

Given an arbitrary set function f , it can be expressed as a difference
f = g − h between two polymatroid functions, where both g and h are
polymatroidal.

The semi-gradients above offer a majorization/maximization
framework to minimize any function that is naturally expressed as
such a difference.

E.g., to minimize f = g − h, starting with a candidate solution X ,
repeatedly choose a modular supergradient for g and modular
subgradient for h, and perform modular minimization (easy). (see
Iyer & Bilmes, 2012).

Similar strategy used for other combinatorial constraints (.e.,
cooperative cut, submodular on edges, see Jegelka & Bilmes 2011)

Opens the doors to first-order methods for discrete optimization.
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Continuous Extensions of Discrete Set Functions

Any function f : 2V → R (equivalently f : {0, 1}V → R) can be
extended to a continuous function f̃ : [0, 1]V → R.

In fact, any such discrete function defined on the vertices of the n-D
hypercube {0, 1}n has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

x0 1 x0 1x0 1 x0 1x0 1x0 1

f̃ : [0, 1] → R
Convex Extensions

f̃ : [0, 1] → R
Concave Extensions

f : {0, 1}V → R
Discrete Function

Since there are an exponential number of vertices {0, 1}n, important
questions regarding such extensions is:

1 When are they computationally feasible to obtain or estimate?
2 When do they have nice mathematical properties?
3 When are they useful for something practical?
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A continuous extension of f

Given a submodular function f , a w ∈ RV , define chain
Vi = {v1, v2, . . . , vi} based on w sorted in decreasing order. Then
Edmonds’s greedy algorithm gives us:

f̃ (w)

= max(wx : x ∈ Pf ) (120)

=
m∑

i=1

w(vi )f (vi |Vi−1) (121)

=
m∑

i=1

w(vi )(f (Vi )− f (Vi−1)) (122)

= w(vm)f (Vm) +
m−1∑

i=1

(w(vi )− w(vi+1))f (Vi ) (123)
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A continuous extension of f

Definition of the continuous extension, once again:

f̃ (w) = max(wx : x ∈ Pf ) (124)

Therefore, if f is a submodular function, we can write

f̃ (w)

= w(vm)f (Vm) +
m−1∑

i=1

(w(vi )− w(vi+1))f (Vi ) (125)

=
m∑

i=1

λi f (Vi ) (126)

where λm = w(vm) and otherwise λi = w(vi )− w(vi+1), where the
elements are sorted according to w as before.

From convex analysis, we know f̃ (w) = max(wx : x ∈ P) is always
convex in w for any set P ⊆ RV , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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Therefore, if f is a submodular function, we can write

f̃ (w) = w(vm)f (Vm) +
m−1∑

i=1

(w(vi )− w(vi+1))f (Vi ) (125)

=
m∑

i=1

λi f (Vi ) (126)

where λm = w(vm) and otherwise λi = w(vi )− w(vi+1), where the
elements are sorted according to w as before.

From convex analysis, we know f̃ (w) = max(wx : x ∈ P) is always
convex in w for any set P ⊆ RV , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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An extension of f

But, for any f : 2V → R, even non-submodular f , we can define an
extension in this way, with

f̃ (w) =
m∑

i=1

λi f (Vi ) (127)

with the Vi = {v1, . . . , vi}’s defined based on sorted descending
order of w as in w(v1) ≥ w(v2) ≥ · · · ≥ w(vm), and where

for i ∈ {1, . . . ,m}, λi =

{
w(vi )− w(vi+1) if i < m

w(vm) if i = m
(128)

so that w =
∑m

i=1 λi1Vi

Note that w =
∑m

i=1 λi1Vi
is an interpolation of certain vertices of

the hypercube, and that f̃ (w) =
∑m

i=1 λi f (Vi ) is the corresponding
interpolation of the values of f at sets corresponding to each
hypercube vertex.
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Lovász Extension, Submodularity and Convexity

Lovász proved the following important theorem.

Theorem

A function f : 2V → R is submodular iff its its continuous extension
defined above as f̃ (w) =

∑m
i=1 λi f (Vi ) with w =

∑m
i=1 λi1Vi

is a convex
function in RV .
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Minimizing f̃ vs. minimizing f

Theorem

Let f be submodular and f̃ be its Lovász extension. Then
min {f (A)|A ⊆ V } = minw∈{0,1}V f̃ (w) = minw∈[0,1]V f̃ (w).

Let w∗ ∈ argmin
{

f̃ (w)|w ∈ [0, 1]V
}

and let

A∗ ∈ argmin {f (A)|A ⊆ V }.

Define chain {V ∗i } based on descending sort of w∗. Then by greedy
evaluation of L.E. we have

f̃ (w∗) =
∑

i

λ∗i f (V ∗i ) = f (A∗) = min {f (A)|A ⊆ V } (129)

Then we can show that, for each i s.t. λi > 0,

f (V ∗i ) = f (A∗) (130)

So such {V ∗i } are also minimizers.
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Duality: convex minimization of L.E. and min-norm alg.

Let f be a submodular function with f̃ it’s Lovász extension. Then
the following two problems are duals:

minimize
w∈RV

f̃ (w) +
1

2
‖w‖2

2 (131)
maximize − ‖x‖2

2

subject to x ∈ Bf

(132a)

(132b)

where Bf = Pf ∩
{

x ∈ RV : x(V ) = f (V )
}

is the base polytope of
submodular function f , and ‖x‖2

2 =
∑

e∈V x(e)2 is the squared
2-norm.

Minimum-norm point algorithm (Fujishige-1991, Fujishige-2005,
Fujishige-2011, Bach-2013) is essentially an active-set procedure for
quadratic programming, and uses Edmonds’s greedy algorithm to
make it efficient.

Unknown worst-case running time, although in practice it usually
performs quite well.
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Other applications of Lovász Extension

“fast” submodular function minimization, as mentioned above.

Structured sparse-encouraging convex norms (Bach-2011),
semi-supervised learning, image denoising (as mentioned yesterday).

Non-linear measures (Denneberg), non-linear aggregation functions
(Grabisch et. al), and fuzzy set theory.

Note, many of the critical properties of the Lovász extension were
given by Jack Edmonds in the 1960s. Choquet proposed an identical
integral in 1954, and G. Vitali proposed a similar integral in 1925!
G.Vitali, Sulla definizione di integrale delle funzioni di una variabile, Annali

di Matematica Serie IV, Tomo I,(1925), 111-121
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Submodular Concave Extension

Finding a concave extension (the concave envelope, smallest concave
upper bound) of a submodular function is NP-hard (Vondrak).

However, a useful surrogate is the multi-linear extension.

Definition

For a set function f : 2V → R, define its multilinear extension
F : [0, 1]V → R by

F (x) =
∑

S⊆V
f (S)

∏

i∈S
xi
∏

j∈V \S
(1− xj) (133)

Not concave, but still provides useful approximations for many
constrained maximization algorithms (e.g., multiple matroid and/or
knapsack constraints) via the continuous greedy algorithm followed
by rounding.

Often has to be approximated.
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Outline: Part 3

6 Discrete Semimodular Semigradients

7 Continuous Extensions
Lovász Extension
Concave Extension

8 Like Concave or Convex?

9 Optimization

10 Reading
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Submodular: Concave? Convex? Neither? Both?

Are submodular functions more like convex or more like concave
functions?
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Submodular is like Concave

Convex 1: Like convex functions, submodular functions can be
minimized efficiently (polynomial time).

Convex 2: The Lovász extension of a discrete set function is convex
iff the set function is submodular.
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Submodular is like Concave

Convex 3: Frank’s discrete separation theorem: Let f : 2V → R be
a submodular function and g : 2V → R be a supermodular function
such that for all A ⊆ V ,

g(A) ≤ f (A) (134)

Then there exists modular function x ∈ RV such that for all A ⊆ V :

g(A) ≤ x(A) ≤ f (A) (135)

Compare to convex/concave case.

g(x)

x

f(x) m(x)
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Submodular is like Concave

Convex 4: Set of minimizers of a convex function is a convex set.
Set of minimizers of a submodular function is a lattice. I.e., if
A,B ∈ argminA⊆V f (A) then A ∪ B ∈ argminA⊆V f (A) and
A ∩ B ∈ argminA⊆V f (A)

Convex 5: Submodular functions have subdifferentials and
subgradients tight at any point.
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Submodularity and Concave

Concave 1: A function is submodular if for all X ⊆ V and j , k ∈ V

f (X + j) + f (X + k) ≥ f (X + j + k) + f (X ) (136)

With the gain defined as ∇j(X ) = f (X + j)− f (X ), seen as a form
of discrete gradient, this trivially becomes a second-order condition,
akin to concave functions: A function is submodular if for all X ⊆ V
and j , k ∈ V , we have:

∇j∇k f (X ) ≤ 0 (137)

Concave 2: Recall, Theorem 16: composition h = f ◦ g : 2V → R
(i.e., h(S) = g(f (S))) is nondecreasing submodular, if g is
non-decreasing concave and f is nondecreasing submodular.
Concave 3: Submodular functions have superdifferentials and
supergradients tight at any point.
Concave 4: Concave maximization solved via local gradient ascent.
Submodular maximization is (approximately) solvable via greedy
(coordinate-ascent-like) algorithms.
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Submodularity and neither Concave nor Convex

Neither 1: Submodular functions have simultaneous sub- and
super-gradients, tight at any point.

Neither 2: Concave functions are closed under min, while
submodular functions are not.

Neither 3: Convex functions are closed under max, while
submodular functions are not.

Neither 4: Convex functions can’t, in general, be efficiently or
approximately maximized, while submodular functions can be.

Neither 5: Convex functions have local optimality conditions of the
form ∇x f (x) = 0. Analogous submodular function semi-gradient
condition m(X ) = 0 offers no such guarantee (for neither
maximization nor minimization) — although there are other forms
of local guarantees.
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Submodular Optimization Results Summary

Maximization Minimization

Unconstrained

In general, NP-hard, greedy
gives 1− 1/e approximation
for polymatroid cardinality
constrained, improved with
curvature.

Polynomial time but ineffi-
cient O(n5γ + n6). Special
cases (graph representable,
sums of concave over mod-
ular) much faster, min-norm
empirically often works well.

Constrained

NP-hard. For some con-
straints (matroid, knap-
sack), approximable with
greedy (or approximate con-
cave relaxations). Curvature
dependence for combi-
natorial and submodular
constraints.

In general, NP-hard even to
approximate, but for many
submodular functions still
approximable. Curvature
dependence for combinato-
rial and submodular con-
straints.
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SFM Summary (modified from S. Iwata’s slides)

General Submodular Function Minimization 

 

Iwata, Fleischer, Fujishige (2000) Schrijver (2000) 

Iwata (2003) 

Fleischer, Iwata (2000) 

Orlin (2007) 

Iwata (2002) 

Fully Combinatorial 

Grötschel, Lovász, Schrijver (1981, 1988)

Ellipsoid Method 

minimum norm point
algorithm

Cunningham (1985) 

Fujishige (1980/1991)

Bixby,Cunningham,Topkis (1984) 

Edmonds (1965/1970) 

Bach (2012/13) 

Iwata, Orlin (2009) 

Wolfe (1976)/von Hohenbalken (1975)
gen. convex methods
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Theoretical Results: Constrained Submodular Min

minimize f (S) : S ∈ S (138)

Constraint set S might either be cuts, paths, matchings, cardinality
constraints, etc.

Minimization algorithms should have multiplicative approximation
guarantee, i.e,. f (S) ≤ αf (S∗) where S∗ is optimal solution, α ≥ 1.
In general, how good are the algorithms? Depends on the constraint:

Constraint: MMin EA Lower bound
trees/matchings n

√
m n

cuts m
√

m
√

m

paths n
√

m n2/3

cardinality k
√

n
√

n
Goel et al (09), Goemans et al (2009), Jegelka-Bilmes (11) . . .

Worst case polynomial upper/lower bounds.
Other forms of constraints are “easy” (e.g., certain lattices,
odd/even sets (see McCormick’s SFM tutorial paper).
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Submodular Maximization: Unconstrained

In general, NP-hard. Bound take form f (S) ≥ αf (S∗), α ≤ 1.

The greedy algorithm for monotone submodular maximization:

Algorithm 2: The Greedy Algorithm

Set S0 ← ∅ ;
for i ← 0 . . . |V | − 1 do

Choose vi as follows: vi =
{

argmaxv∈V \Si f (Si ∪ {v})
}

;

Set Si+1 ← Si ∪ {vi} ;

has a strong guarantee:

Theorem

Given a polymatroid function f , the above greedy algorithm returns sets
Si such that for each i we have f (Si ) ≥ (1− 1/e) max|S |≤i f (S).
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Submodular Max, Constrained

Monotone Maximization
Constraint Approximation Hardness Technique

|S | ≤ k 1− 1/e 1− 1/e greedy

matroid 1− 1/e 1− 1/e multilinear ext.

O(1) knapsacks 1− 1/e 1− 1/e multilinear ext.

k matroids k + ε k/ log k local search
k matroids and O(1)
knapsacks

O(k) k/ log k multilinear ext.

Nonmonotone Maximization
Constraint Approximation Hardness Technique

Unconstrained 1/2 1/2 combinatorial

matroid 1/e 0.48 multilinear ext.

O(1) knapsacks 1/e 0.49 multilinear ext.

k matroids k + O(1) k/ log k local search
k matroids and O(1)
knapsacks

O(k) k/ log k multilinear ext.

, compiled by J. Vondrak
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Constrained Submodular Minimization

Bounds can be improved if we use a functions “curvature”

Curvature of a monotone submodular function:

κf (X ) , 1−min
j

f (j |X\j)
f (j)

. (139)

The solutions X̂ then have guarantees in terms of curvature κf :

0 ≤ κf , κf (V ) ≤ 1 (140)

Curvature dependent constrained maximization bounds:
Constraints Method Approximation bound Lower bound

Cardinality Greedy 1
κf

(1− e−κf ) 1
κf

(1− e−κf )

Matroid Greedy 1/(1 + κf ) 1
κf

(1− e−κf )

Knapsack Greedy 1− 1/e 1− 1/e

Improve curvature independent bounds when κf < 1.
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Curvature Dependent Bounds for Constraint Minimization

Minimization bounds take the form:

f (X̂ ) ≤ |X ∗|
1 + (|X ∗| − 1)(1− κf (X ∗))

f (X ∗) ≤ 1

1− κf (X ∗)
f (X ∗)

Lower curvature ⇒ Better guarantees!

Constraint Semigradient Curvature-Ind. Lower bound

Card. LB k
1+(k−1)(1−κf ) θ(n1/2) Ω̃(

√
n

1+(
√
n−1)(1−κf )

)

Spanning Tree n
1+(n−1)(1−κf ) θ(n) Ω̃( n

1+(n−1)(1−κf ) )

Matchings n
2+(n−2)(1−κf ) θ(n) Ω̃( n

1+(n−1)(1−κf ) )

s-t path n
1+(n−1)(1−κf ) θ(n2/3) Ω̃( n2/3

1+(n2/3−1)(1−κf )
)

s-t cut m
1+(m−1)(1−κf ) θ(n2/3) Ω̃( n2/3

1+(n2/3−1)(1−κf )
)

s-t cut m
1+(m−1)(1−κf ) θ(

√
n) Ω̃(

√
n

1+(
√
n−1)(1−κf )

)

Summary of results for constrained minimization (Iyer, Jegelka, Bilmes, 2013).
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Outline: Part 3

6 Discrete Semimodular Semigradients

7 Continuous Extensions
Lovász Extension
Concave Extension

8 Like Concave or Convex?

9 Optimization

10 Reading
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Classic References

Jack Edmonds’s paper “Submodular Functions, Matroids, and
Certain Polyhedra” from 1970.

Nemhauser, Wolsey, Fisher, “A Analysis of Approximations for
Maximizing Submodular Set Functions-I”, 1978

Lovász’s paper, “Submodular functions and convexity”, from 1983.
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Classic Books

Fujishige, “Submodular Functions and Optimization”, 2005

Narayanan, “Submodular Functions and Electrical Networks”, 1997

Welsh, “Matroid Theory”, 1975.

Oxley, “Matroid Theory”, 1992 (and 2011).

Lawler, “Combinatorial Optimization: Networks and Matroids”,
1976.

Schrijver, “Combinatorial Optimization”, 2003

Gruenbaum, “Convex Polytopes, 2nd Ed”, 2003.
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Recent online material with an ML slant

My class, most proofs for above are given. http://j.ee.

washington.edu/~bilmes/classes/ee596b_spring_2014/.
All lectures being placed on youtube!

Andreas Krause’s web page http://submodularity.org.
Stefanie Jegelka and Andreas Krause’s ICML 2013 tutorial
http://techtalks.tv/talks/

submodularity-in-machine-learning-new-directions-part-i/

58125/

Francis Bach’s updated 2013 text.
http://hal.archives-ouvertes.fr/docs/00/87/06/09/PDF/

submodular_fot_revised_hal.pdf

Tom McCormick’s overview paper on submodular minimization
http://people.commerce.ubc.ca/faculty/mccormick/

sfmchap8a.pdf

Georgia Tech’s 2012 workshop on submodularity: http:

//www.arc.gatech.edu/events/arc-submodularity-workshop
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The End: Thank you!

Submodularity

Greedily choose your data sets
1− 1/e guarantee!

Minimize your functions in
polynomial time!

Draw beautiful polyhedra!
Solve exponentialy large
linear programs in polynomial
time!

Paul  E.  Matroid
Moniton Submodularanian
Wonmy Neuswon Overee 

+

f (A) + f (B)

f (A ∪ B)

≥
f (A ∩ B)

with a
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