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Intro

Goals of the Tutorial

3 p . f(A)+f(B) > f(AuB) + f(AnB)
HRu 00 @ @

@ Get an intuitive sense for submodular functions, should be able to
apply them.

@ Learn to recognize submodularity, or recognize when it might be
useful.

@ Learn to realize why submodularity can be useful in machine
learning. Why is it worth your time to study it.
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Submodularity

e Definition: given a finite ground set V, a function f : 2¥ = R is
said to be submodular if

F(A)+f(B) > f(AUB) + f(ANB), YA BCV (1)
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lead to great mathematical and practical richness.
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@ The definition is the tip of the iceberg. This simple definition can
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important parts of the iceberg in 4.5 hours and in doing so give you
all strong intuition and sense of applicability in ML.
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o Definition: given a finite ground set V/, a function f : 2¥ - R is
said to be submodular if

F(A)+f(B) > f(AUB) + f(ANB), YA BCV (1)

@ The definition is the tip of the iceberg. This simple definition can
lead to great mathematical and practical richness.

@ Goals of tutorial: will be very simple, an attempt to cover some
important parts of the iceberg in 4.5 hours and in doing so give you
all strong intuition and sense of applicability in ML.

@ The tutorial itself is the tip of the iceberg!
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Overall Outline of Tutorial

@ Part 1 (now): basics and applications

@ Part 2 (later this afternoon): Theory (from matroids to
polymatroids), and other submodular properties

@ Part 3 (tomorrow): Algorithms and optimization
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Intro
(NNL RN

Outline of Part 1: Basics and Applications

@ Introduction

© Basics

© Submodular Applications in ML
@ Where is submodularity useful?
@ Traditional combinatorial problems
@ As a model of diversity, coverage, span, or information
@ As a model of cooperative costs, complexity, roughness, and
irregularity
@ As a parameter for an ML algorithm
@ Itself, as a target for learning
@ Surrogates for optimization
@ Economic applications
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Intro
(NNAR NI

Outline of Part 2: Theory

@ From Matroids to Polymatroids
@ Matrix Rank
@ Venn Diagrams
@ Matroids

e Submodular Definitions, Examples, and Properties
@ Normalization
@ Submodular Definitions
@ Submodular Composition
@ More Examples
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Intro
(NNANR}

Outline of Part 3: Algorithms

@ Discrete Semimodular Semigradients

@ Continuous Extensions
@ Lovdasz Extension
@ Concave Extension

@ Like Concave or Convex?
© Optimization

@ Reading
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Basics

Outline: Part 1

© Basics
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Basics
[NERNNR

Sets and set functions

We are given a finite “ground” set of objects:
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Also given a set function f : 2¥ — R that valuates subsets A C V.

Ex: (V)=
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Basics

Sets and set functions

Subset A C V of objects:

;

Also given a set function f : 2¥ — R that valuates subsets A C V.
Ex: f(A)=1
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Basics
[NERNNR

Sets and set functions

Subset B C V of objects:

& ¥

;

Vs
Also given a set function f : 2¥ — R that valuates subsets A C V.
Ex: f(B) =6
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Basics
[LERNRR

Two Equivalent Submodular Definitions

Definition (submodular)

A function f : 2¥ — R is submodular if for any A, B C V, we have that:

f(A)+f(B) > f(AUB)+ f(ANB) (2)

An alternate and equivalent definition is:

Definition (submodular (diminishing returns))

A function f : 2Y — R is submodular if for any AC B C V, and
v € V'\ B, we have that:

f(Au{v}) — f(A) = f(BU{v}) — f(B) (3)

This means that the incremental “value”, “gain”, or “cost” of v
decreases (diminishes) as the context in which v is considered grows
from A to B.
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Basics
[RLRNRR

Two Equivalent Supermodular Definitions

Definition (submodular)

A function f : 2¥ — R is supermodular if for any A, B C V, we have
that:

f(A)+f(B) < f(AUB)+ f(ANB) (4)

An alternate and equivalent definition is:

Definition (supermodular (improving returns))

A function f :2¥Y = R is supermodular if forany AC B C V, and
v € V'\ B, we have that:

F(AU{v}) = f(A) < f(BU{v}) - f(B) (5)

This means that the incremental “value”, “gain”, or “cost” of v increases
(improves) as the context in which v is considered grows from A to B.
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Sets and vectors

@ Any set A C V can be represented as a binary vector x € {0, l}v.
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@ Any set A C V can be represented as a binary vector x € {0, l}v.

@ The characteristic vector of a set is given by 14 € {0,1}" where for
all v e V, we have:

0 else

lA(v):{l if veA (6)
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Sets and vectors

@ Any set A C V can be represented as a binary vector x € {0, l}v.

@ The characteristic vector of a set is given by 14 € {0, l}v where for
all v e V, we have:

lA(v):{l if veA (6)

0 else

o If V={1,2,...,20} and A= {1,3,5,...,19}, then
1, =(1,0,1,0,...)".

J. Bilmes Submodularity page 12 / 162



Basics
[ARE NRR

Sets and vectors

@ Any set A C V can be represented as a binary vector x € {0, l}v.

@ The characteristic vector of a set is given by 14 € {0, l}v where for
all v e V, we have:

lA(v):{l if veA (6)

0 else

o If V={1,2,...,20} and A= {1,3,5,...,19}, then
14=(1,0,1,0,...)7.

@ It is sometimes useful to go back and forth. Given X C V then
x(X) 2 1x and X(x) = {v € V : x(v) = 1}.
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[ARE NRR

Sets and vectors

@ Any set A C V can be represented as a binary vector x € {0, l}v.

@ The characteristic vector of a set is given by 14 € {0, l}v where for
all v e V, we have:

lA(v):{l if veA (6)

0 else

o If V={1,2,...,20} and A= {1,3,5,...,19}, then
1,=(1,0,1,0,...)".

@ It is sometimes useful to go back and forth. Given X C V then
x(X) 2 1x and X(x) = {v e V:x(v) = 1}.

o f(x):{0,1}Y = R is a pseudo-Boolean function. A submodular
function is a special case.
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Basics
[ERRE AR

Modular functions, and vectors in RY

@ Any set function m: 2V s R whose valuations, for A C V, take form

m(A) = m(a) (7)

acA

is called modular and normalized (meaning m()) = 0).
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acA

is called modular and normalized (meaning m(()) = 0).
@ Any normalized modular function is identical to a vector:

meRY. (8)

@ Hence, the characteristic vector 1, of a set is modular.
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@ Any set function m: 2V s R whose valuations, for A C V, take form
m(A) = m(a) (7)
acA
is called modular and normalized (meaning m(()) = 0).
@ Any normalized modular function is identical to a vector:

meRY. (8)

@ Hence, the characteristic vector 1, of a set is modular.
@ Modular functions are often called additive or linear.

@ Modular functions are submodular since
m(A) +m(B) > m(AU B)+ m(AN B).
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[ERRE AR

Modular functions, and vectors in RY

@ Any set function m: 2V s R whose valuations, for A C V, take form
m(A) = m(a) (7)
acA

is called modular and normalized (meaning m(()) = 0).
@ Any normalized modular function is identical to a vector:

meRY. (8)

@ Hence, the characteristic vector 1, of a set is modular.
@ Modular functions are often called additive or linear.
@ Modular functions are submodular since
m(A) +m(B) > m(AU B)+ m(AN B).
@ Modular functions are also supermodular since
m(A) + m(B) < m(AU B) + m(AnN B).
o If f is both submodular and supermodular, then it is modular.
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Discrete Optimization

@ We are given a finite set of objects V' of size n = |V/|.
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Discrete Optimization

e We are given a finite set of objects V of size n = |V/|.
@ There are 2" such subsets (denoted 2") of the form A C V.

@ We have a function f : 2¥ — R that judges the quality (or value, or
cost, or etc.) of each subset. f(A) = some real number.
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Discrete Optimization

We are given a finite set of objects V of size n = |V/|.
There are 2" such subsets (denoted 2") of the form A C V.

We have a function f : 2" — R that judges the quality (or value, or
cost, or etc.) of each subset. f(A) = some real number.

(]

@ Unconstrained minimization & maximization:
in f(X f(X 1
niadcoN (%) WERS ) (10)

Without knowing anything about f, it takes 2" queries to be able to
offer any quality assurance on a candidate solution. Otherwise,
solution can be unboundedly poor.
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Discrete Optimization

We are given a finite set of objects V of size n = |V/|.
@ There are 2" such subsets (denoted 2") of the form A C V.

@ We have a function f : 2¥ — R that judges the quality (or value, or
cost, or etc.) of each subset. f(A) = some real number.

@ Unconstrained minimization & maximization:

iy 610<) (9) WERS ) (10)

@ Without knowing anything about f, it takes 2" queries to be able to
offer any quality assurance on a candidate solution. Otherwise,
solution can be unboundedly poor.

@ When f is submodular, Eq. (9) is polytime, and Eq. (10) is
constant-factor approximable.
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Constrained Discrete Optimization

e Often, we are interested only in a subset of the set of possible
subsets, namely 8§ C 2V
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e Example: only sets having bounded size § = {S C V : |S| < k} or
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@ Example: the sets might need to correspond to a combinatorially

feasible object (i.e., feasible 8 might be trees, matchings, paths,
vertex covers, or cuts).
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within a budget {S C V : Y s w(s) < b}.

@ Example: the sets might need to correspond to a combinatorially
feasible object (i.e., feasible § might be trees, matchings, paths,
vertex covers, or cuts).

@ Ex: 8 might be a function of some g (e.g., sub-level sets of g,
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subsets, namely 8§ C 2V

e Example: only sets having bounded size § = {S C V : |S| < k} or
within a budget {S C V : Y s w(s) < b}.

@ Example: the sets might need to correspond to a combinatorially
feasible object (i.e., feasible § might be trees, matchings, paths,
vertex covers, or cuts).

e Ex: 8 might be a function of some g (e.g., sub-level sets of g,
§={SCV:g(S) <a}, sup-level sets § = {S C V : g(S) > a}).
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maximize f(S) minimize f(S)
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Constrained Discrete Optimization

e Often, we are interested only in a subset of the set of possible
subsets, namely 8§ C 2V

e Example: only sets having bounded size § = {S C V : |S| < k} or
within a budget {S C V : Y s w(s) < b}.

@ Example: the sets might need to correspond to a combinatorially
feasible object (i.e., feasible § might be trees, matchings, paths,
vertex covers, or cuts).

e Ex: 8 might be a function of some g (e.g., sub-level sets of g,
§={SCV:g(S) <a}, sup-level sets § = {S C V : g(S) > a}).

o Constrained discrete optimization problems:

maximize f(S) minimize f(S)
scav sc2Y
subjectto  Se€8 (11) subjectto  Se€8 (12)

e Fortunately, when f (and g) are submodular, solving these problems
can often be done with guarantees (and often efficiently)!
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© Submodular Applications in ML
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Where is submodularity useful in ML?

@ As a model of a physical process:
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Applications
1

Where is submodularity useful in ML?

@ As a model of a physical process:
e What a submodular function is good for modeling depends on if we
wish to maximize or wish to minimize it.
e Submodular functions naturally model aspects like:
o diversity, coverage, span, and information in maximization problems,
e and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

@ A submodular function can act as a parameter for a machine
learning strategy (active/semi-supervised learning, discrete
divergence, convex norms for use in regularization).

@ lItself, as an object or function to learn, based on data.

@ As a surrogate or relaxation strategy for optimization

e An alternate to factorization or decomposition based simplification
(as one finds in a graphical model).

e Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
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Outline

© Submodular Applications in ML

@ Traditional combinatorial problems
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Applications
(A RERNN

SET CoVER and MAXIMUM COVERAGE

@ We are given a finite set V of n elements and a set of subsets
V={Vi,Vo,..., Vi,} of msubsets of V, so that V; C V and
Uivi=V.
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@ We are given a finite set V of n elements and a set of subsets
V={Vi,Vo,..., Vn} of msubsets of V, so that V; C V and
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V={Vi,Vo,..., Vn} of msubsets of V, so that V; C V and
Uivi=V.

@ The goal of minimum SET COVER is to choose the smallest subset
AC [m]£{1,...,m} such that J,cq Vo= V.
@ Maximum k cover: The goal in MAXIMUM COVERAGE is, given an

integer k < m, select k subsets, say {a1, az,...,ax} with a; € [m]
such that |[JX; V4| is maximized.
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SET CoVER and MAXIMUM COVERAGE

@ We are given a finite set V of n elements and a set of subsets
V={Vi,Vo,..., Vn} of msubsets of V, so that V; C V and
Uivi=V.

@ The goal of minimum SET COVER is to choose the smallest subset
AC [m] £ {1,...,m} such that [J,c, Vo = V.

@ Maximum k cover: The goal in MAXIMUM COVERAGE is, given an
integer k < m, select k subsets, say {a1, az,...,ax} with a; € [m]
such that |[JX_; V5| is maximized.

@ Both SET COVER and MAXIMUM COVERAGE are well known to be
NP-hard, but have a fast greedy approximation algorithm.

@ The set cover function f(A) = [J,ca Val is submodular!
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Applications
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Area of the union of areas indexed by A

@ Let V be a set of indices, and each v € V indexes a given sub-area
of some region.

o Let area(v) be the area corresponding to item v.

o Let f(S) = Uscs area(s) be the union of the areas indexed by
elements in A.

@ Then f(S) is submodular.
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Applications
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Area of the union of areas indexed by A

Union of areas of elements of A is given by:

f(A) = f({a1, a2, a3, a4 })
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Applications
(NRL AR

Area of the union of areas indexed by A

Area of A along with with v:

f(AU{v}) = f({a1,a2,a3,a2} U {v})
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Applications

Area of the union of areas indexed by A

Y
L 4

Gain (value) of v in context of A:

F(AU{v}) — F(A) = f({v})

We get full value f({v}) in this case since the area of v has no overlap
with that of A.
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Applications
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Area of the union of areas indexed by A

Area of A once again.

f(A) = f({a1, a2, a3, a4 })
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Area of the union of areas indexed by A

Union of areas of elements of B O A, where v is not included:

f(B) where v ¢ B and where AC B
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Area of the union of areas indexed by A

Area of B now also including v:

f(BU{v})
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Area of the union of areas indexed by A

y

Incremental value of v in the context of B D A.
f(BU{v}) —f(B) <f({v}) =f(AU{v}) - f(A)

So benefit of v in the context of A is greater than the benefit of v in the
context of B D A.
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Example Submodular: Number of Colors of Balls in Urns

@ Consider an urn containing colored balls. Given a set S of balls,
f(S) counts the number of distinct colors.
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Example Submodular: Number of Colors of Balls in Urns

o Consider an urn containing colored balls. Given a set S of balls,

f(S) counts the number of distinct colors.
f‘ r(‘
[
2°

Initial value: 2 (colors in urn). Initial value: 3 (colors in urn).
New value with added blue ball: 3 New value with added blue ball: 3
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Example Submodular: Number of Colors of Balls in Urns

o Consider an urn containing colored balls. Given a set S of balls,

f(S) counts the number of distinct colors.
f‘ r(‘
[
2°

Initial value: 2 (colors in urn). Initial value: 3 (colors in urn).
New value with added blue ball: 3 New value with added blue ball: 3

@ Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).
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Example Submodular: Number of Colors of Balls in Urns

o Consider an urn containing colored balls. Given a set S of balls,

f(S) counts the number of distinct colors.
f‘ r(‘
[
2°

Initial value: 2 (colors in urn). Initial value: 3 (colors in urn).
New value with added blue ball: 3 New value with added blue ball: 3

@ Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

@ Thus, f is submodular.
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Vertex and Edge Covers

Definition (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V,E) is
aset S C V(G) of vertices such that every edge in G is incident to at
least one vertex in S.
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Vertex and Edge Covers

Definition (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V,E) is
aset S C V(G) of vertices such that every edge in G is incident to at
least one vertex in S.

@ Let /(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S C V subject to /(S) = |E|.
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Vertex and Edge Covers

Definition (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V,E) is
aset S C V(G) of vertices such that every edge in G is incident to at
least one vertex in S.

@ Let /(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S C V subject to /(S) = |E|.
e /(S) is submodular.
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Vertex and Edge Covers

Definition (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V,E) is
aset S C V(G) of vertices such that every edge in G is incident to at
least one vertex in S.

@ Let /(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S C V subject to /(S) = |E|.
e /(S) is submodular.

Definition (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V,E) is
a set F C E(G) of edges such that every vertex in G is incident to at
least one edge in F.
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Vertex and Edge Covers

Definition (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V,E) is
aset S C V(G) of vertices such that every edge in G is incident to at
least one vertex in S.

@ Let /(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S C V subject to /(S) = |E|.
e /(S) is submodular.

Definition (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V,E) is
a set F C E(G) of edges such that every vertex in G is incident to at
least one edge in F.

@ Let |V|(F) be the number of vertices incident to edge set F. Then
we wish to find the smallest set F C E subject to |V|(F) = |V/].
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Vertex and Edge Covers

Definition (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V,E) is
aset S C V(G) of vertices such that every edge in G is incident to at
least one vertex in S.

@ Let /(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S C V subject to /(S) = |E|.
e /(S) is submodular.

Definition (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V,E) is
a set F C E(G) of edges such that every vertex in G is incident to at
least one edge in F.

o Let |V|(F) be the number of vertices incident to edge set F. Then
we wish to find the smallest set F C E subject to |V|(F) = |V/|.
o Let |V|(F) is submodular.
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Graph Cut Problems

e Given a graph G = (V,E), let f : 2 — R be the cut function,
namely for any given set of nodes X C V/, f(X) measures the
number of edges between nodes X and V' \ X.

F(X)=|{(u,v) e E:ueX,ve V\X} (13)
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Graph Cut Problems

o Given a graph G = (V,E), let f : 2 — R, be the cut function,
namely for any given set of nodes X C V/, f(X) measures the
number of edges between nodes X and V' \ X.

F(X)=|{(u,v) e E:ue X,ve V\X} (13)

e MINIMUM cuUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.
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Graph Cut Problems

o Given a graph G = (V,E), let f : 2 — R, be the cut function,
namely for any given set of nodes X C V/, f(X) measures the
number of edges between nodes X and V' \ X.

F(X)=|{(u,v) e E:ue X,ve V\X} (13)
e MiNIMUM cuUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V' \ S.

e MAXIMUM cUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.
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Graph Cut Problems

o Given a graph G = (V,E), let f : 2 — R, be the cut function,
namely for any given set of nodes X C V/, f(X) measures the
number of edges between nodes X and V' \ X.

F(X)=|{(u,v) e E:ue X,ve V\X} (13)

e MiNIMUM cuUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.
e MaxiMuM cuT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V' \ S.
@ Weighted versions, we have a non-negative modular function
w : 2F — R defined on the edges that give cut costs.

f(X):W({(u,v)eE:uex,ve V\X}) (14)
= > w(e) (15)

ec{(u,v)eE:ueX,veV\X}
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Graph Cut Problems

o Given a graph G = (V,E), let f : 2 — R, be the cut function,
namely for any given set of nodes X C V/, f(X) measures the
number of edges between nodes X and V' \ X.

F(X)=|{(u,v) e E:ue X,ve V\X} (13)

e MiNIMUM cuUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V' \ S.
e MaxiMuM cuT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V' \ S.
@ Weighted versions, we have a non-negative modular function
w : 2F — R defined on the edges that give cut costs.

f(X):W({(u, VEE ueEX,ve V\X}) (14)
= > w(e) (15)
ec{(u,v)EE:ueX,ve V\X}

@ Both functions (Equations (13) and (14)) are submodular.
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Outline

© Submodular Applications in ML

@ As a model of diversity, coverage, span, or information

J. Bilmes Submodularity page 25 / 162



Applications
IRt

Extractive Document Summarization

@ The figure below represents the sentences of a document
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Extractive Document Summarization

@ We extract sentences (green) as a summary of the full document
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Extractive Document Summarization

@ We extract sentences (green) as a summary of the full document

C

@ The summary on the left is a subset of the summary on the right.
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Extractive Document Summarization

@ We extract sentences (green) as a summary of the full document

C

@ The summary on the left is a subset of the summary on the right.
e Consider adding a new (blue) sentence to each of the two
summaries.
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Extractive Document Summarization

@ We extract sentences (green) as a summary of the full document

C

@ The summary on the left is a subset of the summary on the right.

e Consider adding a new (blue) sentence to each of the two
summaries.

e The marginal (incremental) benefit of adding the new (blue)
sentence to the smaller (left) summary is no more than the marginal
benefit of adding the new sentence to the larger (right) summary.
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Extractive Document Summarization

@ We extract sentences (green) as a summary of the full document

C

@ The summary on the left is a subset of the summary on the right.

e Consider adding a new (blue) sentence to each of the two
summaries.

e The marginal (incremental) benefit of adding the new (blue)
sentence to the smaller (left) summary is no more than the marginal
benefit of adding the new sentence to the larger (right) summary.

@ diminishing returns < submodularity
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Image Summarization

= —— e e,

The three best summaries exhibit diversity. The three worst summaries

exhibit redundancy.
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Feature Selection in Pattern Classification

@ Let Y be a random variable we wish to infer as best as possible, based
on at most n measurements (X1, Xz, ..., X,) = Xy (or features) in a
probability model Pr(Y, X1, Xa, ..., Xp).
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Feature Selection in Pattern Classification

@ Let Y be a random variable we wish to infer as best as possible, based
on at most n measurements (X1, Xo, ..., X,) = Xy (or features) in a
probability model Pr(Y, X1, X2, ..., Xp).

@ It is too costly to use them all, and we wish to choose a good subset
A C V of features to use that are within budget |A| < k.
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Feature Selection in Pattern Classification

@ Let Y be a random variable we wish to infer as best as possible, based
on at most n measurements (X1, Xo, ..., X,) = Xy (or features) in a
probability model Pr(Y, X1, X2, ..., Xp).

@ It is too costly to use them all, and we wish to choose a good subset
A C V of features to use that are within budget |A| < k.

@ The mutual information function f(A) = I(Y; Xa) where

1(Y:Xa) = > Prly, xa Iogm = H(Y) — H(Y|X4) (16)
Y XA

= H(Xa) — H(XalY) = H(Xa) + H(Y) — H(Xa,Y) (17)

measures how well features A are for predicting Y (entropy reduction,
reduction of uncertainty of Y)
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Feature Selection in Pattern Classification

@ The mutual information function f(A) = I(Y; Xa) where

(Y3 X2) = 3 Priy.sa)log 5 05 A H(y) — H(YIXa) (19)

i r(y) Pr(xa)
= H(Xa) — H(XalY) = H(Xa) + H(Y) — H(Xa,Y)  (19)

measures how well X, does for predicting Y, entropy reduction, reduction
of uncertainty of Y, or information gain (Krause & Guestrin) of Xa.
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Feature Selection in Pattern Classification

@ The mutual information function f(A) = I(Y; Xa) where

1075 ) = 3 Prlysa) o8 Vs = H(Y) — H(YIXa) - (16)

= H(Xa) — H(XalY) = H(Xa) + H(Y) — H(Xa,Y)  (19)

measures how well X, does for predicting Y, entropy reduction, reduction
of uncertainty of Y/, or information gain (Krause & Guestrin) of Xa.

@ Goal is to find a subset A of size k that has high information gain.
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Feature Selection in Pattern Classification

@ The mutual information function f(A) = I(Y; Xa) where
1075 ) = 3 Prlysa) o8 Vs = H(Y) — H(YIXa) - (16)
= H(Xa) — H(XalY) = H(Xa) + H(Y) — H(Xa,Y)  (19)

measures how well X, does for predicting Y, entropy reduction, reduction
of uncertainty of Y/, or information gain (Krause & Guestrin) of Xa.

@ Goal is to find a subset A of size k that has hlgh information gain.

@ When XallXg|Y for all

A, B (the Naive Bayes as-
sumpt|on), f(A) is sub- ® @@@@@@@

modular
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Feature Selection in Pattern Classification

@ The mutual information function f(A) = I(Y; Xa) where

I(Y;Xa) =) Pr(y,xa)log m = H(Y)— H(Y|Xa) (18)

= H(Xa) — H(XalY) = H(Xa) + H(Y) — H(Xa,Y)  (19)

measures how well X, does for predicting Y, entropy reduction, reduction
of uncertainty of Y/, or information gain (Krause & Guestrin) of Xa.

@ Goal is to find a subset A of size k that has hlgh information gain.
@ When XallXg|Y for all

A, B (the Naive Bayes as-

sumpt|on), f(A) is sub-

modular
® If not, f(A) is naturally ex-

pressed as a difference of

two submodular functions.

@@@@@@@
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Data Subset Selection

@ Suppose we are given a data set D = {x;}'_; of n data items

V ={vi,va,...,v,} and we wish to choose a subset A C V of
items that is good in some way.
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Data Subset Selection

@ Suppose we are given a data set D = {x;};_, of n data items
V ={wv,vs,...,vp} and we wish to choose a subset A C V of
items that is good in some way.

@ Suppose moreoever each data item v € V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.
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Data Subset Selection

@ Suppose we are given a data set D = {x;};_, of n data items
V ={wv,vs,...,vp} and we wish to choose a subset A C V of
items that is good in some way.

@ Suppose moreoever each data item v € V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.

@ Thatis, for u € U and v € V, let m,(v) represent the "degree of
u-ness” possesed by data item v. Then m, € RK forall u e U.
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Data Subset Selection

@ Suppose we are given a data set D = {x;};_, of n data items
V ={wv,vs,...,vp} and we wish to choose a subset A C V of
items that is good in some way.

@ Suppose moreoever each data item v € V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.

@ Thatis, for u € U and v € V, let m,(v) represent the “degree of
u-ness’ possesed by data item v. Then m, € RK forall u e U.

@ Example: U could be a set of colors, and for an image v € V,
my(v) could represent the number of pixels that are of color u.
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Data Subset Selection

@ Suppose we are given a data set D = {x;};_, of n data items
V ={wv,vs,...,vp} and we wish to choose a subset A C V of
items that is good in some way.

@ Suppose moreoever each data item v € V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.

@ Thatis, for u € U and v € V, let m,(v) represent the “degree of
u-ness’ possesed by data item v. Then m, € RK forall u e U.

@ Example: U could be a set of colors, and for an image v € V,
my(v) could represent the number of pixels that are of color u.

@ Example: U might be a set of textual features (e.g., ngrams), and
my(v) is the number of ngrams of type u in sentence v. E.g., if a
document consists of the sentence

Whenever | go to New York City, | visit the New York City museum.

then myne(s) = 1 while Mnew York City(s) = 2.
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Data Subset Selection

@ For X C V, define my(X) = > cx mu(x), so my(X) is a modular
function representing the “degree of u-ness” in subset X.
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Data Subset Selection

e For X C V, define my(X) = > cx mu(x), so my(X) is a modular
function representing the “degree of u-ness” in subset X.
@ Since m,(X) is modular, it does not have a diminishing returns

property. l.e., as we add to X, the degree of u-ness grows additively.
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Data Subset Selection

e For X C V, define my(X) = > cx mu(x), so my(X) is a modular
function representing the “degree of u-ness” in subset X.

@ Since m,(X) is modular, it does not have a diminishing returns
property. l.e., as we add to X, the degree of u-ness grows additively.

e With g non-decreasing concave, g(m,(X)) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B O A having more u-ness).
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Data Subset Selection

e For X C V, define my(X) = > cx mu(x), so my(X) is a modular
function representing the “degree of u-ness” in subset X.

@ Since m,(X) is modular, it does not have a diminishing returns
property. l.e., as we add to X, the degree of u-ness grows additively.

e With g non-decreasing concave, g(m,(X)) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B O A having more u-ness). That is

g(mu(A + V)) _ g(mu(A)) > g(mu(B + V)) _ g(mu(B)) (20)
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Data Subset Selection

e For X C V, define my(X) = > cx mu(x), so my(X) is a modular
function representing the “degree of u-ness” in subset X.

@ Since m,(X) is modular, it does not have a diminishing returns
property. l.e., as we add to X, the degree of u-ness grows additively.

e With g non-decreasing concave, g(m,(X)) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B O A having more u-ness). That is

g(mu(A+v)) —g(mu(A)) > g(mu(B + v)) — g(my(B)) (20)
o Consider the following class of feature functions f : 2¥ — R,

f(X) = Zaug(mu(X)) (21)

uel
where g is a non-decreasing concave, and «, > 0 is a feature
importance weight. Thus, f is submodular.
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Data Subset Selection

e For X C V, define my(X) = > cx mu(x), so my(X) is a modular
function representing the “degree of u-ness” in subset X.

@ Since m,(X) is modular, it does not have a diminishing returns
property. l.e., as we add to X, the degree of u-ness grows additively.

e With g non-decreasing concave, g(m,(X)) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B O A having more u-ness). That is

g(my(A+v)) — g(my(A)) > g(my(B + v)) — g(mu(B)) (20)

o Consider the following class of feature functions f : 2¥ — R,

f(X) = Z Oéug(mu()O) (21)
uel
where g is a non-decreasing concave, and «, > 0 is a feature
importance weight. Thus, f is submodular.
e f(X) measures X's ability to represent set of features U as measured by
my(X), with diminishing returns function g, and importance weights «,.
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Data Subset Selection, KL-divergence

o Let p= {py},cy (i-e., pu < ) be a probability distribution over
features (i.e., >, py =1 and p, > 0 for all u € V).
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Data Subset Selection, KL-divergence

o Let p= {py},cy (i-e., pu < ) be a probability distribution over
features (i.e., >, pu =1 and p, > 0 for all u € U).
@ Next, normalize the modular weights for each feature:
u(X u(X
(X)) mx)
ZUGU mU(X) m(X)
where m(X) £ Y, ., mu(X).
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Data Subset Selection, KL-divergence

o Let p= {py},cy (i-e., pu < ) be a probability distribution over
features (i.e., >, pu =1 and p, > 0 for all u € U).

@ Next, normalize the modular weights for each feature:

my(X) N my(X)

2 ueumu(X)  m(X)
where m(X) £ 3., my(X).

@ Then m,(X) can also be seen as a distribution since m,(X) > 0 and
>, mu(X)=1forany X C V.

mu(X) = (22)
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Data Subset Selection, KL-divergence

o Let p= {py},cy (i-e., pu < ) be a probability distribution over
features (i.e., >, pu =1 and p, > 0 for all u € U).
@ Next, normalize the modular weights for each feature:
my(X) N my(X)
>ueumu(X)  m(X)

where m(X) £ 3., my(X).

e Then m,(X) can also be seen as a distribution since m,(X) > 0 and
doumu(X)=1forany X C V.

@ Consider the KL—divergence between these two distributions:

mu(X) = (22)

D(pI{u(X)}) = 3 _ pulog pu— 3 pulog(mu(X (23)
uelU uelU
=Y pulogpu— Y _ pulog(mu(X)) + log(m(X))
uelU uel
= —H(p) + Iog m(X) - Z Pu |Og(mu(X)) (24)
uelU
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Data Subset Selection, KL-divergence

@ The objective once again, treating entropy H(p) as a constant,

D(p|[{mu(X)}) = const. + log m(X) — 3 p, log(m,(X))  (25)

uelU
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Data Subset Selection, KL-divergence

@ The objective once again, treating entropy H(p) as a constant,
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@ But seen as a function of X, both logm(X) and >, pulog m,(X)
are submodular functions.
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@ The objective once again, treating entropy H(p) as a constant,

D(p|{my(X)}) = const. +log m(X) = _ pulog(mu(X)) (25)
uelU

@ But seen as a function of X, both logm(X) and }_ ., pu log m,(X)
are submodular functions.

@ Hence the KL-divergence, seen as a function of X, i.e.,
f(X) = D(p||[{mu(X)}) is quite naturally represented as a difference
of submodular functions.
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Data Subset Selection, KL-divergence

@ The objective once again, treating entropy H(p) as a constant,

D(p|{mu(X)}) = const. +log m(X) = > _ pulog(mu(X)) (25)
uclU
@ But seen as a function of X, both logm(X) and }_ ., pu log m,(X)
are submodular functions.
@ Hence the KL-divergence, seen as a function of X, i.e.,
f(X) = D(p||[{mu(X)}) is quite naturally represented as a difference
of submodular functions.
@ Alternatively, if we define

g(X) £ log m(X) — D(pl[{mu(X)}) = D> _ pulog(my(X)) (26)
uelU

we have a submodular function g that represents a combination of
its quantity of X via its features (i.e., log m(X)) and its feature
distribution closeness to some distribution p (i.e., D(p|[{mu(X)})).
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Sensor Placement

@ Information gain applicable not only in pattern recognition, but in
the sensor coverage problem as well, where Y is whatever question
we wish to ask about an environment.
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@ Information gain applicable not only in pattern recognition, but in
the sensor coverage problem as well, where Y is whatever question
we wish to ask about an environment.

@ Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).
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we wish to ask about an environment.

@ Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).

@ We have a function f(A) that measures the “coverage” of any given
set A of sensor placement decisions. Then f(V) is maximum
possible coverage.
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@ Information gain applicable not only in pattern recognition, but in
the sensor coverage problem as well, where Y is whatever question
we wish to ask about an environment.

@ Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).

@ We have a function f(A) that measures the “coverage” of any given
set A of sensor placement decisions. Then f(V) is maximum
possible coverage.

@ One possible goal: choose smallest set A such that f(A) > af(V)
with 0 < o < 1.
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@ Information gain applicable not only in pattern recognition, but in
the sensor coverage problem as well, where Y is whatever question
we wish to ask about an environment.

@ Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).

@ We have a function f(A) that measures the “coverage” of any given
set A of sensor placement decisions. Then f(V) is maximum
possible coverage.

@ One possible goal: choose smallest set A such that f(A) > af(V)
with 0 < a < 1.

@ Another possible goal: choose size at most k set A such that f(A) is
maximized.
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Sensor Placement

@ Information gain applicable not only in pattern recognition, but in
the sensor coverage problem as well, where Y is whatever question
we wish to ask about an environment.

@ Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).

@ We have a function f(A) that measures the “coverage” of any given
set A of sensor placement decisions. Then f(V) is maximum
possible coverage.

@ One possible goal: choose smallest set A such that f(A) > af(V)
with 0 < a < 1.

@ Another possible goal: choose size at most k set A such that f(A) is
maximized.

@ Environment could be a floor of a building, water network,
monitored ecological preservation.
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Sensor Placement within Buildings

@ An example of a room layout. Should be possible to determine
temperature at all points in the room. Sensors cannot sense beyond
wall (thick black line) boundaries.

B I
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Sensor Placement within Buildings

e Example sensor placement using small range cheap sensors (located
at red dots).
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Sensor Placement within Buildings

@ Example sensor placement using longer range expensive sensors
(located at red dots).
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Sensor Placement within Buildings

e Example sensor placement using mixed range sensors (located at red
dots).
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Applications

Social Networks

(from Newman, 2004). Clockwise from top
left: 1) predator-prey interactions, 2) sci-
entific collaborations, 3) sexual contact, 4)
school friendships.

Z
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The value of a friend

@ Let V be a group of individuals. How valuable to you is a given
friend v € V7
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@ Let V be a group of individuals. How valuable to you is a given
friend v € V7

@ It depends on how many friends you have.
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@ It depends on how many friends you have.

@ Given a group of friends S C V, you can valuate them with a set
function f(S).
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The value of a friend

@ Let V be a group of individuals. How valuable to you is a given
friend v € V7

It depends on how many friends you have.

Given a group of friends S C V, you can valuate them with a set
function f(S).

Let f(S) be the value of the set of friends S.

Submodular model: a friend is less valuable the more friends you
have.
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The value of a friend

@ Let V be a group of individuals. How valuable to you is a given
friend v € V7

@ It depends on how many friends you have.

@ Given a group of friends S C V, you can valuate them with a set
function f(S).

o Let f(S) be the value of the set of friends S.

@ Submodular model: a friend is less valuable the more friends you
have.

@ Supermodular model: a friend is more valuable the more friends you

have (“I'd get by with a little help from my friends").
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The value of a friend

@ Let V be a group of individuals. How valuable to you is a given
friend v € V7

@ It depends on how many friends you have.

@ Given a group of friends S C V, you can valuate them with a set
function f(S).

o Let f(S) be the value of the set of friends S.

@ Submodular model: a friend is less valuable the more friends you
have.

@ Supermodular model: a friend is more valuable the more friends you
have (“I'd get by with a little help from my friends").

@ Which is a better model?
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Information Cascades, Diffusion Networks

@ How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

@ How to find the most influential sources, the ones that often set off
cascades, which are like large “waves” of information flow?

@ Example when there is one seed source shown below:

\
o

o
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Information Cascades, Diffusion Networks

@ How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

@ How to find the most influential sources, the ones that often set off
cascades, which are like large “waves” of information flow?

@ Example when there is one seed source shown below

Y \%é%
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Information Cascades, Diffusion Networks

@ How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

@ How to find the most influential sources, the ones that often set off
cascades, which are like large “waves” of information flow?

@ Example when there is one seed source shown be|0\.NZ
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A model of influence in social networks

@ Given a graph G = (V,E), each v € V corresponds to a person, to
each v we have an activation function f, : 2¥ — [0, 1] dependent
only on its neighbors. le., f,(A) = f,(ANT(v)).
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@ Given a graph G = (V,E), each v € V corresponds to a person, to
each v we have an activation function f, : 2¥ — [0, 1] dependent
only on its neighbors. le., f,(A) = f,(ANT(v)).

@ Goal - Viral Marketing: find a small subset S C V of individuals to
directly influence, and thus indirectly influence the greatest number
of possible other individuals (via the social network G).

J. Bilmes Submodularity page 40 / 162



Applications
(ARERNARRRNNEREN RRNN

A model of influence in social networks

@ Given a graph G = (V,E), each v € V corresponds to a person, to
each v we have an activation function f, : 2¥ — [0, 1] dependent
only on its neighbors. le., f,(A) = f,(ANT(v)).

@ Goal - Viral Marketing: find a small subset S C V of individuals to
directly influence, and thus indirectly influence the greatest number
of possible other individuals (via the social network G).

@ We define a function f : 2¥ — Z* that models the ultimate
influence of an initial set S of nodes based on the following iterative
process: At each step, a given set of nodes S are activated, and we
activate new nodes v € V' \ S if £,(S) > U[0, 1] (where U[0,1] is a
uniform random number between 0 and 1).
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A model of influence in social networks

e Given a graph G = (V,E), each v € V corresponds to a person, to
each v we have an activation function f, : 2¥ — [0, 1] dependent
only on its neighbors. le., f,(A) = f,(ANT(v)).

@ Goal - Viral Marketing: find a small subset S C V of individuals to
directly influence, and thus indirectly influence the greatest number
of possible other individuals (via the social network G).

@ We define a function f : 2¥ — Z* that models the ultimate
influence of an initial set S of nodes based on the following iterative
process: At each step, a given set of nodes S are activated, and we
activate new nodes v € V' \ S if £,(S) > U[0,1] (where U[0,1] is a
uniform random number between 0 and 1).

@ It can be shown that for many f, (including simple linear functions,
and where f, is submodular itself) that f is submodular (Kempe,
Kleinberg, Tardos 1993).
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Determinantal Point Processes (DPPs)

@ Sometimes we wish not only to valuate subsets A C V but to induce
probability distributions over all subsets.
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Determinantal Point Processes (DPPs)

@ Sometimes we wish not only to valuate subsets A C V but to induce
probability distributions over all subsets.

e We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b € A, we prefer a and b to be different).
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Determinantal Point Processes (DPPs)

@ Sometimes we wish not only to valuate subsets A C V but to induce
probability distributions over all subsets.

e We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b € A, we prefer a and b to be different).

Independent

(Kulesza
& Taskar,
2011)

@ A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.
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Determinantal Point Processes (DPPs)

@ Sometimes we wish not only to valuate subsets A C V but to induce
probability distributions over all subsets.

e We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b € A, we prefer a and b to be different).

Independent

(Kulesza
& Taskar,
2011)

@ A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.
@ More “diverse” or “complex” samples are given higher probability.

J. Bilmes

Submodularity

page 41 / 162
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DPPs and log-submodular probability distributions

e Given binary vectors x,y € {0,1}", y < x if y(v) < x(v),Vv € V.
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DPPs and log-submodular probability distributions

o Given binary vectors x,y € {0,1}V, y < x if y(v) < x(v),Vv € V.

@ Given a positive-definite n x n matrix M and a subset X C V/, let
My be a submatrix (which is | X| x |X]) with rows/columns
specified by X C V.
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DPPs and log-submodular probability distributions

o Given binary vectors x,y € {0,1}V, y < x if y(v) < x(v),Vv € V.

@ Given a positive-definite n x n matrix M and a subset X C V/, let
Mx be a submatrix (which is |X| x |X|) with rows/columns
specified by X C V.

@ Consider the following probability distribution on binary vectors:

Pr(X = x) = exp (Iog“%xj_xh)) (27)

where [ is n x n identity matrix, and X € {0,1}" is a random vector.
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DPPs and log-submodular probability distributions

o Given binary vectors x,y € {0,1}V, y < x if y(v) < x(v),Vv € V.

@ Given a positive-definite n x n matrix M and a subset X C V/, let
Mx be a submatrix (which is |X| x |X|) with rows/columns
specified by X C V.

@ Consider the following probability distribution on binary vectors:

Pr(X = x) = exp (Iog(,%ﬁﬁb) (27)

where | is n x n identity matrix, and X € {0, l}v is a random vector.
o Equivalently,

> Pr(X=x)=Pr(X>y)=exp (logOKv(y)l)) (28)
x€{0,1}V:x>y

where K = M(M + 1)t
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DPPs and log-submodular probability distributions

o Given binary vectors x,y € {0,1}V, y < x if y(v) < x(v),Vv € V.

@ Given a positive-definite n x n matrix M and a subset X C V/, let
Mx be a submatrix (which is |X| x |X|) with rows/columns
specified by X C V.

@ Consider the following probability distribution on binary vectors:

Pr(X = x) = exp (Iog(,%ﬁﬁb) (27)

where | is n x n identity matrix, and X € {0, l}v is a random vector.
o Equivalently,

Y Pr(X=x)=Pr(X>y) = exp (log(\Ky(y)D) (28)
x€{0,1}V:x>y
where K = M(M + )71

@ Given positive definite matrix M, function f : 2¥ — R with
f(A) = log|Ma| (the logdet function) is submodular.

J. Bilmes Submodularity page 42 / 162



Applications
(ARERNARRRNNARERNEN B

Graphical Model Structure Learning

@ A probability distribution on binary vectors p : {0,1}" — [0, 1]:

1

p(x) = 5 exp(~E(x)) (29)

where E(x) is the energy function.
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Graphical Model Structure Learning

o A probability distribution on binary vectors p : {0,1}Y — [0, 1]:

p(x) = 5 exp(~E(x)) (29)

where E(x) is the energy function.

@ A graphical model G = (V, &) represents a family of probability
distributions p € F(G) all of which factor w.r.t. the graph.
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o A probability distribution on binary vectors p : {0,1}Y — [0, 1]:

p(x) = 5 exp(~E(x)) (29)

where E(x) is the energy function.

@ A graphical model G = (V, &) represents a family of probability
distributions p € F(G) all of which factor w.r.t. the graph.

o l.e., if C are a set of cliques of graph G, then we must have:

E(x) = Y Eelx) (30)

ceC
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Graphical Model Structure Learning

o A probability distribution on binary vectors p : {0,1}Y — [0, 1]:

p(x) = 5 exp(~E(x)) (29)

where E(x) is the energy function.

@ A graphical model G = (V, &) represents a family of probability
distributions p € F(G) all of which factor w.r.t. the graph.

@ le., if C are a set of cliques of graph G, then we must have:

E(x) = Y Eelx) (30)

ceC

@ The problem of structure learning in graphical models is to find the
graph G based on data.
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Graphical Model Structure Learning

o A probability distribution on binary vectors p : {0,1}Y — [0, 1]:

p(x) = 5 exp(~E(x)) (29)

where E(x) is the energy function.

@ A graphical model G = (V, &) represents a family of probability
distributions p € F(G) all of which factor w.r.t. the graph.

@ le., if C are a set of cliques of graph G, then we must have:

E(x) = Y Eelx) (30)

ceC

@ The problem of structure learning in graphical models is to find the
graph G based on data.

@ This can be viewed as a discrete optimization problem on the
potential (undirected) edges of the graph V' x V.
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Graphical Models: Learning Tree Distributions

@ Goal: find the closest distribution p; to p subject to p; factoring w.r.t.
some tree T = (V,F), ie., pr € F(T,M).
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Graphical Models: Learning Tree Distributions

@ Goal: find the closest distribution p; to p subject to p; factoring w.r.t.
some tree T = (V,F), i.e., pr € F(T,M).
@ This can be expressed as a discrete optimization problem:

minimize D
minimize (pllpe)

subject to pt € F(T, M).
T=(V,F)is atree
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Graphical Models: Learning Tree Distributions

@ Goal: find the closest distribution p; to p subject to p; factoring w.r.t.
some tree T = (V,F), i.e., pr € F(T,M).
@ This can be expressed as a discrete optimization problem:

minimize D
pt€F(G,M) (PHPt)

subject to pe € F(T, M).
T=(V,F)is a tree

@ Discrete problem: choose the optimal set of edges A C E that
constitute tree (i.e., find a spanning tree of G of best quality).
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Graphical Models: Learning Tree Distributions

@ Goal: find the closest distribution p; to p subject to p; factoring w.r.t.
some tree T = (V,F), i.e., pr € F(T,M).
@ This can be expressed as a discrete optimization problem:

minimize D
pt€F(G,M) (PHPt)

subject to pe € F(T, M).
T=(V,F)is a tree

@ Discrete problem: choose the optimal set of edges A C E that
constitute tree (i.e., find a spanning tree of G of best quality).

e Define f : 2F — R, where f is a weighted cycle matroid rank function
(a type of submodular function), with weights
w(e) = w(u,v) = I(Xy; X,) for e € E.
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Graphical Models: Learning Tree Distributions

@ Goal: find the closest distribution p; to p subject to p; factoring w.r.t.
some tree T = (V,F), i.e., pr € F(T,M).
@ This can be expressed as a discrete optimization problem:

minimize D
pt€F(G,M) (PHPt)

subject to pe € F(T, M).
T=(V,F)is a tree

@ Discrete problem: choose the optimal set of edges A C E that
constitute tree (i.e., find a spanning tree of G of best quality).

o Define f : 2F — R, where f is a weighted cycle matroid rank function
(a type of submodular function), with weights
w(e) = w(u,v) = I(Xy; X,) for e € E.

@ Then finding the maximum weight base of the matroid is solved by the
greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)
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Outline

© Submodular Applications in ML

@ As a model of cooperative costs, complexity, roughness, and
irregularity
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Graphical Models and fast MAP Inference

e Given distribution p(x) = %exp(—E(X)) where
E(x) = > ccc Ec(xc) and C are the cliques of a graph G = (V,€).
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Graphical Models and fast MAP Inference

o Given distribution p(x) = % exp(—E(x)) where
E(x) = > cc Ec(xc) and C are the cliques of a graph G = (V,€).
@ MAP inference problem is important in ML: compute

x* € argmax p(x) (31)
XE{O,l}V
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@ MAP inference problem is important in ML: compute
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e Easy when G a tree, exponential in k (tree-width of G) in general.
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Graphical Models and fast MAP Inference

o Given distribution p(x) = % exp(—E(x)) where
E(x) = > cc Ec(xc) and C are the cliques of a graph G = (V,€).
@ MAP inference problem is important in ML: compute

x* € argmax p(x) (31)
XE{O,I}V

Easy when G a tree, exponential in k (tree-width of G) in general.
NP-hard to find the tree-width.

Tree-width can be large even when degree is two (i.e.,

E(x) = Y ece Ee(xe) is a sum over edges).
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Graphical Models and fast MAP Inference

o Given distribution p(x) = % exp(—E(x)) where
E(x) = > cc Ec(xc) and C are the cliques of a graph G = (V,€).
@ MAP inference problem is important in ML: compute

x* € argmax p(x) (31)
xe{0,1}V
e Easy when G a tree, exponential in k (tree-width of G) in general.
@ NP-hard to find the tree-width.
@ Tree-width can be large even when degree is two (i.e.,
E(x) = Y oce Ee(xe) is a sum over edges).
@ Many approximate inference strategies utilize additional
factorization assumptions to make inference tractable (e.g.,
mean-field, variational inference, expectation propagation, etc).
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Graphical Models and fast MAP Inference

o Given distribution p(x) = % exp(—E(x)) where
E(x) = > cc Ec(xc) and C are the cliques of a graph G = (V,€).
@ MAP inference problem is important in ML: compute

x* € argmax p(x) (31)
XE{O,I}V

e Easy when G a tree, exponential in k (tree-width of G) in general.

@ NP-hard to find the tree-width.

@ Tree-width can be large even when degree is two (i.e.,

E(x) = Y oce Ee(xe) is a sum over edges).

@ Many approximate inference strategies utilize additional
factorization assumptions to make inference tractable (e.g.,
mean-field, variational inference, expectation propagation, etc).

@ However, what if we could do MAP inference in polynomial time
regardless of the tree-width, and without even knowing the
tree-width?
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Applications
LRt

Degree two (edge) graphical models

@ Given G restrict p € F(G, R()) such that we can write the global
energy E(x) as a sum of unary and pairwise potentials:

Ex)= ) eb)+ > eilxx) (32)

veV(G) (iJ)€E(G)
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energy E(x) as a sum of unary and pairwise potentials:
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veV(G) (iJ)e€(G)

® e,(x,) and ejj(x;, x;) are like local energy potentials.
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e Given G restrict p € F(G, R()) such that we can write the global
energy E(x) as a sum of unary and pairwise potentials:

E)= Y ealw)+ > eilxix) (32)
veV(G) (iJ)e€(G)

e e,(x,) and ejj(x;, x;) are like local energy potentials.
@ Since log p(x) = —E(x) + const., the smaller e,(x,) or ej(x;, xj)
become, the higher the probability becomes.
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Applications

Degree two (edge) graphical models

e Given G restrict p € F(G, R()) such that we can write the global
energy E(x) as a sum of unary and pairwise potentials:

E= Y ala)t Y ebiy)  (3)
veV(G) (iJ)€€(G)
e e,(x,) and ejj(x;, x;) are like local energy potentials.
@ Since log p(x) = —E(x) + const., the smaller e,(x,) or ej(x;, xj)
become, the higher the probability becomes.
@ When G is a 2D grid graph, we have
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Applications
[RRN ANRRRRENE]

Auxiliary (s, t)-graph

@ We can create auxiliary graph that involves two new terminal nodes

s and t (source and sink) and connect each of s and t to all of the
original nodes.

o le, G, = (VU{s, t}, E+Uyev((s,v)U(v,t))).
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Applications
[RERR RRRRRRNE]

Transformation from graphical model to auxiliary graph

Original Graph: E(x) = >, cv(g) ev(xv) + 2(i j)ee(c) €i (%0, X))
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Applications

Transformation from graphical model to auxiliary graph

Augmented graph-cut graph.
The edge weights of graph are derived
from {e,},c\ and {eu}(w)eE(G) |
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Applications

Transformation from graphical model to auxiliary graph

Augmented graph-cut graph

with indicated cut corresponding
to particular vector x € {0,1}".
Each cut X has a score
corresponding to p(x)
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Applications

Transformation from graphical model to auxiliary graph

Augmented graph-cut graph

with indicated cut corresponding
to particular vector x € {0,1}".
Each cut X has a score
corresponding to p(x)
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Applications
[NERNN RRRRRNE]

Setting of the weights in the auxiliary cut graph

@ Any graph cut corresponds to a vector x € {0,1}".
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[NERNN RRRRRNE]

Setting of the weights in the auxiliary cut graph

@ Any graph cut corresponds to a vector x € {0,1}".

e If weights are set correctly in the cut graph, and if edge functions e;;
satisfy certain properties, then graph-cut score corresponding to X
can be made equivalent to E(x) = log p(Xx) + const..
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@ Any graph cut corresponds to a vector x € {0,1}".

o If weights are set correctly in the cut graph, and if edge functions e;;
satisfy certain properties, then graph-cut score corresponding to x
can be made equivalent to E(x) = log p(x) + const..

o If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow!
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o If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow!

@ Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model's tree-width!
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Setting of the weights in the auxiliary cut graph

@ Any graph cut corresponds to a vector x € {0,1}".

o If weights are set correctly in the cut graph, and if edge functions e;;
satisfy certain properties, then graph-cut score corresponding to x
can be made equivalent to E(x) = log p(x) + const..

o If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow!

@ Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

Edge weight assignments:
@ For (s,v) with v € V(G), set edge
ws,v = (ev(1) — e(0))1(ev (1) > &,(0))
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[NERNN RRRRRNE]

Setting of the weights in the auxiliary cut graph

@ Any graph cut corresponds to a vector x € {0,1}".

o If weights are set correctly in the cut graph, and if edge functions e;;
satisfy certain properties, then graph-cut score corresponding to x
can be made equivalent to E(x) = log p(X) + const..

o If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow!

@ Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

Edge weight assignments:
e For (s,v) with v € V(G), set edge
ws,v = (ev(1) — ev(0))1(ev(1) > v (0))
@ For (v,t) with v € V(G), set edge
wy,e = (ey(0) — ev(1))1(ev(0) = ey(1))
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Applications
[NERNN RRRRRNE]

Setting of the weights in the auxiliary cut graph

@ Any graph cut corresponds to a vector x € {0,1}".

o If weights are set correctly in the cut graph, and if edge functions e;;
satisfy certain properties, then graph-cut score corresponding to x
can be made equivalent to E(x) = log p(X) + const..

o If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow!

@ Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

Edge weight assignments:
e For (s,v) with v € V(G), set edge
ws,v = (ev(1) — ev(0))1(ev(1) > ev(0))
e For (v,t) with v € V(G), set edge
wv,e = (ev(0) — ev(1))1(ev(0) > ey(1))
e For original edge (i,j) € E, i,j € V, set weight
Wi j = e,-j(l, O) + e,-j(O, 1) — e,-j(l, 1) — e,-j(O, 0)
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Applications
[RERREE RRRRNE]

Submodular potentials

e Edge functions must be submodular (equivalently “associative”,
“attractive”, “regular”, “Potts”, or "ferromagnetic”) for this to
work, i.e., for all (i,j) € E(G), we must have that:

eij(0,1) + €;(1,0) > €;(1,1) + €;(0,0) (33)
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“attractive”, “regular’, “Potts”, or "ferromagnetic”) for this to
work, i.e., for all (i,j) € E(G), we must have that:

eij(0,1) + €;(1,0) > €;(1,1) + €;(0,0) (33)

@ This means: on average, preservation is preferred over change.
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Submodular potentials

e Edge functions must be submodular (equivalently “associative”,
“attractive”, “regular”, "Potts”, or “ferromagnetic”) for this to
work, i.e., for all (i,j) € E(G), we must have that:

eij(0,1) + €;(1,0) > €;(1,1) + €;(0,0) (33)

@ This means: on average, preservation is preferred over change.
@ As a set function, this is the same as:

FX)= > fi(Xn{ij}) (34)
{ij}e&(G)
which is submodular if each of the f;;'s are submodular!
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Submodular potentials

e Edge functions must be submodular (equivalently “associative”,
“attractive”, “regular”, "Potts”, or “ferromagnetic”) for this to
work, i.e., for all (i,j) € E(G), we must have that:

eij(0,1) + €;(1,0) > €;(1,1) + €;(0,0) (33)

@ This means: on average, preservation is preferred over change.
@ As a set function, this is the same as:

FX)= > fi(Xn{ij}) (34)
{ijre€(G)
which is submodular if each of the f;;'s are submodular!
@ Probability form p(x) o< [[ ¢, so
ij(1,0)1(0,1) < ;(0,0)1(1,1): geometric mean of factor
scores higher when neighboring pixels have the same value - a
reasonable assumption about natural scenes and signals.
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[RERREE RRRRNE]

Submodular potentials

e Edge functions must be submodular (equivalently “associative”,
“attractive”, “regular’, “Potts”, or "ferromagnetic”) for this to
work, i.e., for all (i,j) € E(G), we must have that:

eij(0,1) + €;(1,0) > €;(1,1) + €;(0,0) (33)

@ This means: on average, preservation is preferred over change.
@ As a set function, this is the same as:

FX)= > fi(Xn{ij}) (34)
{ijre€(G)
which is submodular if each of the f;;'s are submodular!
@ Probability form p(x) o< [[ ¢, so
ij(1,0)44(0,1) < ;(0,0)1;(1,1): geometric mean of factor
scores higher when neighboring pixels have the same value - a
reasonable assumption about natural scenes and signals.
e Weights wj; in s, t-graph above are always non-negative, so

graph-cut solvable.
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Applications
FErrrrimrrend

On log-supermodular vs. log-submodular distributions

@ Log-supermodular distributions.
log Pr(x) = f(x) + const. = —E(x) + const. (35)

where f is supermodular (E(x) is submodular). MAP (or
high-probable) assignments should be “regular”, “homogeneous”,
“smooth”, “simple”. E.g., attractive potentials in computer vision,
ferromagnetic Potts models statistical physics.
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On log-supermodular vs. log-submodular distributions

o Log-supermodular distributions.
log Pr(x) = f(x) 4 const. = —E(x) + const. (35)

where f is supermodular (E(x) is submodular). MAP (or
high-probable) assignments should be “regular”, “homogeneous”,
“smooth”, “simple”. E.g., attractive potentials in computer vision,
ferromagnetic Potts models statistical physics.

@ Log-submodular distributions:
log Pr(x) = f(x) + const. (36)

where f is submodular. MAP or high-probable assignments should
be “diverse”, or “complex”, or “covering”, like in determinantal
point processes.

J. Bilmes Submodularity page 52 / 162



Applications
[RERRRRRT ARR

Submodular potentials in GMs: Image Segmentation

@ an image needing to be segmented.
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Applications
[RERRRRRT ARR

Submodular potentials in GMs: Image Segmentation

@ labeled data, some pixels being marked foreground (red) and others
marked background (blue) to train the unaries {e,(x,)},cy -
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Applications
[RERRRRRT ARR

Submodular potentials in GMs: Image Segmentation

@ Set of a graph over the image, graph shows binary pixel labels.
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Applications

Submodular potentials in GMs: Image Segmentation

@ Run graph-cut to segment the image, foreground in red, background
in white.
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Applications
Lrrrrrrimetnd

Submodular potentials in GMs: Image Segmentation

@ the foreground is removed from the background.

«
E

J. Bilmes Submodularity page 53 / 162



Applications

Shrinking bias in graph cut image segmentation

What does graph-cut based
image segmentation do with
elongated structures (top) or
contrast gradients (bottom)?
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Shrinking bias in graph cut image segmentation
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Applications

Shrinking bias in image segmentation

@ An image needing to be segmented
@ Clear high-contrast boundaries
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Applications
Lrrrrrrrrrmnd

Shrinking bias in image segmentation

e Graph-cut (MRF with submodular edge potentials) works well.
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Applications

Shrinking bias in image segmentation

e Now with contrast gradient (less clear segment as we move up).

@ The “elongated structure” also poses a challenge.
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Applications
[RERRRRRERE NN

Shrinking bias in image segmentation

@ Unary potentials {e,(x,)} ¢\ prefer a different segmentation.

o Edge weights are the same regardless of where they are
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Applications
[RERRRRRERE NN

Shrinking bias in image segmentation

@ And the shrinking bias occurs, truncating the segmentation since it
results in lower energy.
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Applications

Shrinking bias in image segmentation

o With "typed” edges, we can have cut cost be sum of edge color
weights, not sum of edge weights.

@ Submodularity to the rescue: balls & urns.
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Applications
[RERRERRRREN ]

Addressing shrinking bias with edge submodularity

e Standard graph cut, uses a modular function w : 2F — R defined
on the edges to measure cut costs. Graph cut node function is
submodular.

fu(X) = w({(uv) € E:ue X,ve V\X}) (37)
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e Standard graph cut, uses a modular function w : 2F — R defined
on the edges to measure cut costs. Graph cut node function is
submodular.

(X)) =w({(uv) e ErueX,veVAXY)  (37)

@ Instead, we can use a submodular function g : 2F R, defined on
the edges to express cooperative costs.

f(X)=g({(uv) e E:ueX,veV\x}) (38)
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Addressing shrinking bias with edge submodularity

e Standard graph cut, uses a modular function w : 2F — R defined
on the edges to measure cut costs. Graph cut node function is
submodular.

(X)) =w({(uv) e ErueX,veVAXY)  (37)

o Instead, we can use a submodular function g : 2F — R defined on
the edges to express cooperative costs.

fg(X):g<{(u,v)6E:u€X,v€ V\X}) (38)

@ Seen as a node function, fg : 2V R is not submodular, but it
uses submodularity internally to solve the shrinking bias problem.
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Applications
[RERRERRRREN ]

Addressing shrinking bias with edge submodularity

e Standard graph cut, uses a modular function w : 2F — R defined
on the edges to measure cut costs. Graph cut node function is
submodular.

(X)) =w({(uv) e ErueX,veVAXY)  (37)

o Instead, we can use a submodular function g : 2F — R defined on
the edges to express cooperative costs.

fg(X):g<{(u,v)6E:u€X,v€ V\X}) (38)

@ Seen as a node function, f, : 2V R is not submodular, but it
uses submodularity internally to solve the shrinking bias problem.

@ = cooperative-cut (Jegelka & Bilmes, 2011).
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Applications

Graph-cut vs. cooperative-cut comparisons

Graph Cut
\ f
-~
~ 4\
| 7%
4 5
g i*'\.w Ay
r,\”( g .;.\"'/4 ','{"
[ 2N {

(Jegelka&Bilmes,"11). There are fast algorithms for solving as well (as
we'll see tomorrow).
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Applications
R

Outline

© Submodular Applications in ML

@ As a parameter for an ML algorithm
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Applications

A submodular function as a parameter

@ In some cases, it may be useful to view a submodular function
f:2Y — R as a input “parameter” to a machine learning algorithm.

J. Bilmes

Data

:

f:2V_>R+

Machine Learning
Problem or Instance

— Output
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A submodular function as a parameter

@ In some cases, it may be useful to view a submodular function
f:2Y — R as a input “parameter” to a machine learning algorithm.

Data

:

f:2V_>R+

Machine Learning
Problem or Instance

— Output

. . n .
@ A given submodular function f € S C R?" can be seen as a vector in
a 2"-dimensional compact cone.
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Applications
Terrrerenn

A submodular function as a parameter

@ In some cases, it may be useful to view a submodular function
f:2Y — R as a input “parameter” to a machine learning algorithm.

Data

2V 4R . .
d —Jr’ branlem or imtnce ——» Output

@ A given submodular function f € S C R2" can be seen as a vector in
a 2"-dimensional compact cone.

@ S is a submodular cone since submodularity is closed under
non-negative (conic) combinations.
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A submodular function as a parameter

@ In some cases, it may be useful to view a submodular function
f:2Y — R as a input “parameter” to a machine learning algorithm.

Data

2V 4R . .
d —Jr’ branlem or imtnce ——» Output

@ A given submodular function f € S C R2" can be seen as a vector in
a 2"-dimensional compact cone.

@ S is a submodular cone since submodularity is closed under
non-negative (conic) combinations.

@ 2"-dimensional since for certain f € S, there exists f. € R?" having
no zero elements with f + f, € S.
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Applications
Terrrerenn

A submodular function as a parameter

@ In some cases, it may be useful to view a submodular function
f:2Y — R as a input “parameter” to a machine learning algorithm.

Data

2V 4R . .
d —Jr’ branlem or imtnce ——» Output

@ A given submodular function f € S C R2" can be seen as a vector in
a 2"-dimensional compact cone.

@ S is a submodular cone since submodularity is closed under
non-negative (conic) combinations.

@ 2"-dimensional since for certain f € S, there exists f. € R?" having
no zero elements with f + f. € S.

@ We next see how f parameterizes problems in ML, and then address
learning.
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Applications
AR RRRRRNREN

Supervised And Unsupervised Machine Learning

e Given training data D = {(x;, y;)} "1 with (x;,y;) € R" x R,
perform the following risk minimization problem:

min —ZE Vi, wTxi) + AQ(w), (39)

weR™ m

where /() is a loss functlon (e.g., squared error) and Q(w) is a norm.
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Supervised And Unsupervised Machine Learning

e Given training data D = {(x;, y;)} "1 with (x;,y;) € R" x R,
perform the following risk minimization problem:

m

1
in — yi, wTx;) + AQ
i, 3010 WT) 4 A00), (39)
=
where £(-) is a loss function (e.g., squared error) and Q(w) is a norm.
@ When data has multiple responses (x;, y;) € R" x R¥, learning

becomes:
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Applications
AR RRRRRNREN

Supervised And Unsupervised Machine Learning

e Given training data D = {(x;, y;)} "1 with (x;,y;) € R" x R,
perform the following risk minimization problem:

— 1 AQ
ﬂ%’u@nmz Vi, wTxi) + AQ(w), (39)
where £(-) is a loss function (e.g., squared error) and Q(w) is a norm.
@ When data has multiple responses (x;, y;) € R” x R¥, learning
becomes:

" mv'ﬂeRnZ Zf v (Wh)Tx0) + AQ(wh), (40)

@ When data has multiple responses only that are observed, (y;) € R*
we get dictionary learning (Krause & Guestrin, Das & Kempe):

k m

. . 1
min  min Z: p- Z;f(y,-k, (W) x) + AQ(wh),  (41)
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Applications
(RN RRRRNRRNI

Norms, sparse norms, and computer vision

e Common norms include p-norm Q(w) = |lwl, = (37, WI.”)I/”

@ 1-norm promotes sparsity (prefer solutions with zero entries).
@ Image denoising, total variation is useful, norm takes form:
N
Qw) = |wi — w1 (42)
i=2
@ Points of difference should be “sparse” (frequently zero).
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Applications
[AERE RRRNREN

Submodular parameterization of a sparse convex norm

@ Prefer convex norms since they can be solved.
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Submodular parameterization of a sparse convex norm

@ Prefer convex norms since they can be solved.
e For w e RY, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) >0
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o For w e RY, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) >0

o Given submodular function f : 2¥ — R, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
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o For w e RY, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) >0

o Given submodular function f : 2¥ — R, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.

e f(supp(w)) is hard to optimize, but it's convex envelope (|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovasz-extension f of f (Bolton et al. 2008, Bach 2010).
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o Given submodular function f : 2¥ — R, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.

o f(supp(w)) is hard to optimize, but it's convex envelope 7(|w])
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovasz-extension f of f (Bolton et al. 2008, Bach 2010).

@ Submodular functions thus parameterize structured convex sparse
norms via the Lovdsz-extension!
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@ Prefer convex norms since they can be solved.

o For w e RY, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) >0

o Given submodular function f : 2¥ — R, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.

o f(supp(w)) is hard to optimize, but it's convex envelope 7(|w])
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovasz-extension f of f (Bolton et al. 2008, Bach 2010).

@ Submodular functions thus parameterize structured convex sparse
norms via the Lovasz-extension!

@ The Lovasz-extension (Lovasz '82, Edmonds '70) is easy to get via
the greedy algorithm: sort wy;, > Wy, > -+ > w,,, then

Fw) =) wo,(fon, ..., 00) = f(o1,...,0i1)) (43)
i=1
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@ Prefer convex norms since they can be solved.

o For w e RY, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) >0

o Given submodular function f : 2¥ — R, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.

o f(supp(w)) is hard to optimize, but it's convex envelope 7(|w])
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovasz-extension f of f (Bolton et al. 2008, Bach 2010).

@ Submodular functions thus parameterize structured convex sparse
norms via the Lovasz-extension!

@ The Lovasz-extension (Lovasz '82, Edmonds '70) is easy to get via
the greedy algorithm: sort wy;, > Wy, > -+ > w,,, then

?(W):ngf(f(al,...,a,')—f(Ul,---,Ui—l)) (43)
i=1

@ Ex: total variation is the Lovasz-extension of graph cut
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Submodular Generalized Dependence

@ there is a notion of “independence” , i.e., AILB:

f(AUB) =f(A)+ f(B), (44)
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Submodular Generalized Dependence

@ there is a notion of “independence” , i.e., AILB:

f(AUB) = f(A)+ f(B), (44)
@ and a notion of “conditional independence” | i.e., AL B|C:
f(AUBUC)+f(C)=f(AUC)+ f(BUC) (45)
@ and a notion of “dependence” (conditioning reduces valuation):
f(A|B) = f(AU B) — f(B) < f(A), (46)

@ and a notion of “conditional mutual information”

I¢(A;B|C) £ f(AUC)+ f(BUC) - f(AUBUC) —f(C) >0
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Submodular Generalized Dependence

@ there is a notion of “independence” , i.e., AILB:

f(AUB) = f(A)+ f(B), (44)
@ and a notion of “conditional independence” | i.e., AL B|C:
f(AUBUC)+f(C)=f(AUC)+ f(BUC) (45)
@ and a notion of “dependence” (conditioning reduces valuation):
f(A|B) = f(AU B) — f(B) < f(A), (46)

@ and a notion of “conditional mutual information”
I(A;BIC) £ f(AUC)+f(BUC)— f(AUBUC) —f(C)>0

@ and two notions of “information amongst a collection of sets”:
k
1¢(S1: 2.1 SK) =D _F(SK) — F(S1USU---US)  (47)

=1

H(S5 S-S0 = Y. (D) S) (48)
AC{1,2,...k} jeA
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Submodular Parameterized Clustering

@ Given a submodular function f : 2¥ — R, form the combinatorial
dependence function If(A; B) = f(A) 4+ f(B) — f(AU B).
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@ Given a submodular function f : 2¥ — R, form the combinatorial
dependence function I¢(A; B) = f(A) + f(B) — f(AU B).

@ Consider clustering algorithm: First find partition
Al € argmingcy If(A V\ A).
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dependence function I¢(A; B) = f(A) + f(B) — f(AU B).
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@ Given a submodular function f : 2¥ — R, form the combinatorial
dependence function I¢(A; B) = f(A) + f(B) — f(AU B).

@ Consider clustering algorithm: First find partition
Al € argmingcy (A V I\ A).

@ Then partition the partitions: Aj; € argminaca: Ir(A; A} \ A) and
A1, € argminacyas (A (V\ A7) \ A)

@ Recursively partition the partitions, we end up with a partition
V=ViUW,U---U V\ that clusters the data.
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Submodular Parameterized Clustering

@ Given a submodular function f : 2¥ — R, form the combinatorial
dependence function I¢(A; B) = f(A) + f(B) — f(AU B).

@ Consider clustering algorithm: First find partition
Al € argmingcy (A V I\ A).

@ Then partition the partitions: Aj; € argminaca: Ir(A; A} \ A) and

12 € argminac v a: I (A (V1 AD) \ A)

@ Recursively partition the partitions, we end up with a partition
V =ViUVW,U---U V that clusters the data.

@ Each minimization can be done using Queyranne's algorithm
(alternatively can construct a Gomory-Hu tree). This gives a

partition no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).
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Submodular Parameterized Clustering

@ Given a submodular function f : 2¥ — R, form the combinatorial
dependence function I¢(A; B) = f(A) + f(B) — f(AU B).

@ Consider clustering algorithm: First find partition
Al € argmingcy (A V I\ A).

@ Then partition the partitions: Aj; € argminaca: Ir(A; A} \ A) and

12 € argminac v a: I (A (V1 AD) \ A)

@ Recursively partition the partitions, we end up with a partition

V =ViUVW,U---U V that clusters the data.

@ Each minimization can be done using Queyranne's algorithm
(alternatively can construct a Gomory-Hu tree). This gives a
partition no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

@ Hence, family of clustering algorithms parameterized by f.
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Active Transductive Semi-Supervised Learning

@ Batch/Offline active learning: Given a set V of unlabeled data
items, learner chooses subset L C V of items to be labeled

R S
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@ Batch/Offline active learning: Given a set V of unlabeled data
items, learner chooses subset L C V of items to be labeled

R e

o Nature reveals labels y; € {0,1}", learner predicts labels § € {0,1}"
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Active Transductive Semi-Supervised Learning

@ Batch/Offline active learning: Given a set V of unlabeled data
items, learner chooses subset L C V of items to be labeled

R e

o Nature reveals labels y; € {0,1}", learner predicts labels § € {0,1}"

A el

@ Learner suffers loss ||y — y||1, here ||y — y||1 = 2.

e fge
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Choosing labels: how to select L

@ Consider the following objective

e M)
(L) = Tg\/rT\”Lr?T;é(Z) ﬁ (49)

where ['(T) = f(T)+ f(V\ T) — f(V) is an arbitrary symmetric
submodular function (e.g., graph cut value between T and V' \ T).
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Choosing labels: how to select L

@ Consider the following objective

. r(m)
V(L) = — 49
(L) Tg\/rT\]}_r?Tyé(Z) | T (49)
where ['(T) = f(T)+ f(V\ T) — f(V) is an arbitrary symmetric
submodular function (e.g., graph cut value between T and V' \ T).

@ Small W(L) means an adversary can separate away many (| T| is big)
combinatorially “independent” (I'(T) is small) points from L.

VAL
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@ Consider the following objective

(M)
V(L) = 49
()= TCV\L T#0 |T]| (49)
where ['(T) = f(T)+ f(V\ T) — f(V) is an arbitrary symmetric
submodular function (e.g., graph cut value between T and V' \ T).

@ Small V(L) means an adversary can separate away many (| T| is big)
combinatorially “independent” is small) points from L.
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Choosing labels: how to select L

@ Consider the following objective

(M)
V(L) = 49
()= TCV\L T#0 |T]| (49)
where ['(T) = f(T)+ f(V\ T) — f(V) is an arbitrary symmetric
submodular function (e.g., graph cut value between T and V' \ T).

@ Small V(L) means an adversary can separate away many (| T| is big)
combinatorially “independent” is small) points from L.

éi@%%%i%@'%

—1/8

e This suggests choosing (bounded cost) L that maximizes W(L
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@ Given labels L, how to complete the labels?
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@ Given labels L, how to complete the labels?

e We form a labeling y € {0, 1}V such that y; = y; (i.e., we agree
with the known labels).
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Choosing labels: how to select L

@ Given labels L, how to complete the labels?
e We form a labeling y € {0, 1}V such that y; = y; (i.e., we agree
with the known labels).

@ [(T) measures label smoothness, how much combinatorial
“information” between labels T and complement V' \ T (e.g., in
graph-cut case, says label change should be across small cuts).
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e We form a labeling y € {0, 1}V such that y; = y; (i.e., we agree
with the known labels).

@ I'(T) measures label smoothness, how much combinatorial
“information” between labels T and complement V' \ T (e.g., in
graph-cut case, says label change should be across small cuts).

@ Hence, choose labels to minimize I'(Y(y)) such that y, = y;.
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@ Given labels L, how to complete the labels?

e We form a labeling y € {0, 1}V such that y; = y; (i.e., we agree
with the known labels).

@ I'(T) measures label smoothness, how much combinatorial
“information” between labels T and complement V' \ T (e.g., in
graph-cut case, says label change should be across small cuts).

@ Hence, choose labels to minimize I'(Y(y)) such that y, = y;.

@ This is submodular function minimization on function
g VAL R4 where for AC V'\ L,

g(A) = T(AU{v e L:y(v) = 1}) (50)
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Choosing labels: how to select L

@ Given labels L, how to complete the labels?

e We form a labeling y € {0, 1}V such that y; = y; (i.e., we agree
with the known labels).

@ I'(T) measures label smoothness, how much combinatorial
“information” between labels T and complement V' \ T (e.g., in
graph-cut case, says label change should be across small cuts).

@ Hence, choose labels to minimize I'(Y(y)) such that y, = y;.

@ This is submodular function minimization on function
g VAL R4 where for AC V'\ L,

g(A)=T(AUfveLl:y(v)=1}) (50)

@ In graph cut case, this is standard min-cut (Blum & Chawla 2001)
approach to semi-supervised learning.
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Generalized Error Bound

Theorem (Guillory & Bilmes, '11)

For any symmetric submodular I'(S), assume § minimizes T (Y (y))
subject to y; = y;. Then

rY(y))

y— <2 1

17 - ylh < 2555 (51)
where y € {0,1}" are the true labels.

@ All is defined in terms of the symmetric submodular function I
(need not be graph cut), where:
r(7)
y(S) = — 52
(%) Tg\;rqlsr:]T;é@ |T| (52)

o [(T)=1f(S)+f(V\S)—f(V) is determined by arbitrary
submodular function f, giving different error bound for each.
@ Joint algorithm is “parameterized” by a submodular function f.
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Discrete Submodular Divergences

@ A convex function parameterizes a Bregmann divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared 12, etc.
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Discrete Submodular Divergences

@ A convex function parameterizes a Bregmann divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared 12, etc.

@ Given a (not nec. differentiable) convex function ¢ and a
sub-gradient map H,, the generalized Bregmann divergence is
defined as:

d}(x,y) = 6(x) — &y) — (Ho(y), x = y).Vx,y € dom(¢) (53)
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e Given a (not nec. differentiable) convex function ¢ and a
sub-gradient map H,4, the generalized Bregmann divergence is
defined as:

d}*(x,y) = ¢(x) — dy) — (Ho(y).x — y),¥x,y € dom(¢) (53)

@ A submodular function parameterizes a discrete submodular
Bregmann divergence (lyer & Bilmes, 2012).
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Discrete Submodular Divergences

@ A convex function parameterizes a Bregmann divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared 12, etc.

e Given a (not nec. differentiable) convex function ¢ and a
sub-gradient map H,4, the generalized Bregmann divergence is
defined as:

d}*(x,y) = ¢(x) — dy) — (Ho(y).x — y),¥x,y € dom(¢) (53)

@ A submodular function parameterizes a discrete submodular
Bregmann divergence (lyer & Bilmes, 2012).
@ Example, lower-bound form:

dP(X.Y) = F(X) = (V) = (He(V).1x — 1) (54)
where H¢(Y) is a sub-gradient map.
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Discrete Submodular Divergences

@ A convex function parameterizes a Bregmann divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared 12, etc.

e Given a (not nec. differentiable) convex function ¢ and a
sub-gradient map H,4, the generalized Bregmann divergence is
defined as:

d}*(x,y) = ¢(x) — dy) — (Ho(y).x — y),¥x,y € dom(¢) (53)

@ A submodular function parameterizes a discrete submodular
Bregmann divergence (lyer & Bilmes, 2012).
@ Example, lower-bound form:

di(X,Y) = F(X) = F(Y) = (He(Y), 1x — 1y)  (54)

where H¢(Y') is a sub-gradient map.
@ Submodular Bregmann divergences also definable in terms of
supergradients.
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Discrete Submodular Divergences

@ A convex function parameterizes a Bregmann divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared 12, etc.

e Given a (not nec. differentiable) convex function ¢ and a
sub-gradient map H,4, the generalized Bregmann divergence is
defined as:

d}*(x,y) = ¢(x) — dy) — (Ho(y).x — y),¥x,y € dom(¢) (53)

@ A submodular function parameterizes a discrete submodular
Bregmann divergence (lyer & Bilmes, 2012).
@ Example, lower-bound form:

di(X,Y) = F(X) = F(Y) = (He(Y), 1x — 1y)  (54)

where H¢(Y') is a sub-gradient map.

@ Submodular Bregmann divergences also definable in terms of
supergradients.

@ General: Hamming, Recall, Precision, Cond. MI, Sq. Hamming, etc.
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Outline

© Submodular Applications in ML

@ Itself, as a target for learning
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@ Learning submodular functions is hard

@ Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f
such that 7(S) < 7(S) < g(n)f(S) where g : N — R?"
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e Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a F
such that 7(S) < f(S) < g(n)f(S) where g : N — R?" Many
results, including that even with adaptive queries and monotone
functions, can't do better than Q(y/n/ log n).
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e Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a F
such that 7(S) < f(S) < g(n)f(S) where g : N — R?" Many
results, including that even with adaptive queries and monotone
functions, can't do better than Q(y/n/ log n).

@ Balcan & Harvey (2011): submodular function learning problem
from a learning theory perspective, given a distribution on subsets.
Negative result is that can't approximate in this setting to within a
constant factor.
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Learning Submodular Functions

@ Learning submodular functions is hard

e Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a F
such that 7(S) < f(S) < g(n)f(S) where g : N — R?" Many
results, including that even with adaptive queries and monotone
functions, can't do better than Q(y/n/ log n).

@ Balcan & Harvey (2011): submodular function learning problem
from a learning theory perspective, given a distribution on subsets.
Negative result is that can’t approximate in this setting to within a
constant factor.

@ But can we learn a subclass, perhaps non-negative weighted
mixtures of submodular components?
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Structured Prediction in Machine Learning

@ Given: a finite set of training pairs D = {(x(i),y(i))}l. where
x) e x, yi) ey
o f: X x)Y — RMis a (fixed) vector of functions, and w € RM is a
vector of parameters to learn.
@ Score function: s(x,y) = wTf(x,y) = > w;fi(x,y).
@ Decision making (inference) for a given X is based on:
¥ € hy(X) = argmaxs(x,y) = argmaxw'f(X,y) (55)
yey yey
@ Goal of learning: optimize w so that such decision making is “good”

@ Let /: Y x Y — R, be a loss function. l.e., £y(y) is cost of
deciding ¥ when truth is y.

o Empirical risk minimization: adjust w so that 3°; £y (hw(x())) is
small subject to other conditions (e.g., regularization).
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Structured Prediction: Approach with inference

@ Constraints specified in inference form:

o 1 -
mlr\})g:lze th:&+ > [|w| (56)
subject to  w ! f(y()) > max (wat(y) + &(y)) — &, vt (57)

yelt
£ > 0,Vt. (58)

@ Exponential set of constraints reduced to an embedded optimization
problem, “inference.”
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Learning Submodular Mixtures: Unconstrained Form

@ Unconstrained form uses a generalized hinge-loss (Taskar 2004),
which is amenable to sub-gradient descent optimization:

5:‘!372 [m (w'hely) + te(y)) - wat(y“))] + 5w (59)

@ Note, w > 0 critical to preserve submodularity.
@ To compute a subgradient, must solve the following embedded
optimization problem (“loss augmented inference”):

max (wFu(y) + 6e(y)) (60)

yelt

@ The problem is convex in w, and w' f;(y) is submodular
(polymatroidal in fact), but what about ¢:(y)?

e Often one uses Hamming loss (in general structured prediction
problems) which is submodular (modular in fact).

o If loss £+(y), more generally, is submodular, then Eq. (60) can be

solved at least approximately well.
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Structured Prediction: Subgradient

@ Subgradient, evaluated at w, of the following

A
max (wf(y) + (e(y)) —w R(y) + 5 IwI® (61)

can be found by computing or approximating

y* € argmax (w'fi(y) + (ely)) —wR(y®)  (62)
yeEV:

and then finding subgradient of
* * )\
w e (y") + Le(y") — w f(y() + > wl|? (63)

which has the form

fe(y") — fe(y) + Aw. (64)
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Structured Prediction: Subgradient Learning

Algorithm 1: Subgradient descent learning

Input : S = {(x(),y()}T . and a learning rate sequence {n;}]_;.

wo = 0;

fort=1,---,Tdo
Loss augmented inference: y; € argmaxycy, wz—_lft(y) + Ce(y);
Compute the subgradient: g; = Aw;_1 + f:(y*) — f:(y());
Update the weights: w; = wy_1 — 1:8¢;

Return : the averaged parameters % Do We.
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© Submodular Applications in ML

@ Surrogates for optimization
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Applications

Submodular Relaxation

@ We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).
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Submodular Relaxation

@ We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

o If potentials are submodular, we can solve them.

@ When potentials are not, we might resort to factorization (e.g., the

marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).
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Applications

Submodular Relaxation

@ We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

o If potentials are submodular, we can solve them.

@ When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

@ An alternative is submodular relaxation. l.e., given

Pr(x) = %exp(—E(x)) (65)

where E(x) = Ef(x) — Eg(x) and both of Ef(x) and Eg(x) are
submodular.
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Applications

Submodular Relaxation

@ We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

o If potentials are submodular, we can solve them.

@ When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

@ An alternative is submodular relaxation. l.e., given

Pr(x) = %exp(—E(x)) (65)
where E(x) = E¢(x) — Eg(x) and both of E¢(x) and E,(x) are

submodular.
@ Any function can be expressed as the difference between two
submodular functions.
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Applications

Submodular Relaxation

@ We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

o If potentials are submodular, we can solve them.

@ When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

@ An alternative is submodular relaxation. l.e., given

Pr(x) = %exp(—E(x)) (65)
where E(x) = E¢(x) — Eg(x) and both of E¢(x) and E,(x) are

submodular.

@ Any function can be expressed as the difference between two
submodular functions.

@ Hence, rather than minimize E(x) (hard), we can minimize
Ef(x) > E(x) (relatively easy), which is an upper bound.
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Applications

Outline

© Submodular Applications in ML

@ Economic applications
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Applications

Ex. Submodular: Consumer Costs of Living

@ Consumer costs are very often submodular.
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Ex. Submodular: Consumer Costs of Living

@ Consumer costs are very often submodular. For example:

ACHERT e > (kg 9)+f(m)
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Applications

Ex. Submodular: Consumer Costs of Living

@ Consumer costs are very often submodular. For example:

F(i §) + (i) = (g 5)+f(w)

@ Rearranging terms, we can see this as diminishing returns:

J. Bilmes Submodularity page 80 / 162



Ex. Submodular: Consumer Costs of Living

@ Consumer costs are very often submodular. For example:

iCHERIC e > (kg 3)+f(w)

@ Rearranging terms, we can see this as diminishing returns:
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Applications

Ex. Submodular: Consumer Costs of Living

@ Consumer costs are very often submodular. For example:

iCHERIC e > (kg 3)+f(w)

@ Rearranging terms, we can see this as diminishing returns:

(T —F(l) > i ) — i)

@ This is very common: The additional cost of a coke is, say, free if
you add it to fries and a hamburger, but when added just to an
order of fries, the coke is not free.
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Applications

Shared Fixed Costs

@ Costs often interact in the real world.
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Applications

Shared Fixed Costs

@ Costs often interact in the real world.

@ Ex: Let V = {vi, vo} be a set of actions with:
= "buy honey at the store”

“buy milk at the store” v, =
,a;«lt'm mm."m BB

Vi =

|

BUEEREE nﬂ

J. Bilmes Submodularity page 81 / 162



Applications

Shared Fixed Costs

@ Costs often interact in the real world.
o Ex: Let V ={v1, v} be a set of actions with:
vi = ‘"buy milk at the store” v, = ‘buy honey at the store”

@ For AC V, let f(A) be the cost of set of items A
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Applications

Shared Fixed Costs

@ Costs often interact in the real world.

o Ex: Let V ={v1, v} be a set of actions with:
vi = ‘“buy milk at the store” v, = “buy honey at the store”
J‘_Um o 0% |

(==
EEEEEEEEE =]

@ For AC V, let f(A) be the cost of set of items A:

f({v1}) = cost to drive to and from store, and cost to purchase
milk, say ¢4 + cm.
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Applications

Shared Fixed Costs

@ Costs often interact in the real world.

o Ex: Let V ={v1, v} be a set of actions with:
vi = ‘“buy milk at the store” v, = “buy honey at the store”
J‘_Um o 0% |

(==
EEEEEEEEE =]

@ For AC V, let f(A) be the cost of set of items A.
f({v1}) = cost to drive to and from store, and cost to purchase
milk, say ¢4 + cm.

@ f({v2}) = cost to drive to and from store, and cost to purchase
honey, say ¢4 + ¢h.
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Applications

Shared Fixed Costs

@ Costs often interact in the real world.

o Ex: Let V ={v1, v} be a set of actions with:
vi = ‘“buy milk at the store” v, = “buy honey at the store”
J‘_Um o 0% |

(==
EEEEEEEEE =]

@ For AC V, let f(A) be the cost of set of items A.
f({v1}) = cost to drive to and from store, and cost to purchase
milk, say ¢4 + cm.

o f({v2}) = cost to drive to and from store, and cost to purchase
honey, say cq + ¢h.

@ But f({v1,va}) = cg+ cm+ ch < 2¢cq + cm + cp since cq4 (driving) is
a shared fixed cost.
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Applications

Shared Fixed Costs

@ Costs often interact in the real world.
o Ex: Let V ={v1, v} be a set of actions with:
vi = ‘"buy milk at the store” v, = ‘buy honey at the store”

@ For AC V, let f(A) be the cost of set of items A

e f({v1}) = cost to drive to and from store, and cost to purchase
milk, say ¢4 + Cm.

o f({v2}) = cost to drive to and from store, and cost to purchase
honey, say cq + ¢h.

e But f({vi,w}) =cqg+ cm+ ch < 2¢cq + cm + cp since cg4 (driving) is
a shared fixed cost.

@ Shared fixed costs are submodular: f(vi) + f(v2) > f(vi, v2) + £(0)
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Applications

Supply Side Economies of scale

@ What is a good model of the cost of manufacturing a set of items?
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Applications

Supply Side Economies of scale

o What is a good model of the cost of manufacturing a set of items?

@ Let V be a set of possible items that a company might possibly wish
to manufacture, and let £(S) for S C V be the cost to that
company to manufacture subset S.
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Applications

Supply Side Economies of scale

o What is a good model of the cost of manufacturing a set of items?

@ Let V be a set of possible items that a company might possibly wish
to manufacture, and let f(S) for S C V be the cost to that
company to manufacture subset S.

@ Ex: V might be colors of paint in a paint manufacturer: green, red,
blue, yellow, white, etc.
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Applications

Supply Side Economies of scale

o What is a good model of the cost of manufacturing a set of items?

@ Let V be a set of possible items that a company might possibly wish
to manufacture, and let f(S) for S C V be the cost to that
company to manufacture subset S.

@ Ex: V might be colors of paint in a paint manufacturer: green, red,
blue, yellow, white, etc.

@ Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, ) — f(blue, ) <= f(green, blue) — f(blue)
(66)
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Applications

Supply Side Economies of scale

o What is a good model of the cost of manufacturing a set of items?

@ Let V be a set of possible items that a company might possibly wish
to manufacture, and let f(S) for S C V be the cost to that
company to manufacture subset S.

@ Ex: V might be colors of paint in a paint manufacturer: green, red,
blue, yellow, white, etc.

@ Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, ) — f(blue, ) <= f(green, blue) — f(blue)
(66)

So diminishing returns (a submodular function) would be a good
model.
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Applications
[N |

Demand side Economies of Scale: Network Externalities

@ consumers of a good derive positive value when size of the market
increases.
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Demand side Economies of Scale: Network Externalities

@ consumers of a good derive positive value when size of the market
increases.

@ the value of a network to a user depends on the number of other
users in that network. External use benefits internal use.
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Demand side Economies of Scale: Network Externalities

@ consumers of a good derive positive value when size of the market
increases.

@ the value of a network to a user depends on the number of other
users in that network. External use benefits internal use.

@ This is called network externalities (Katz & Shapiro 1986), and is a
form of “demand” economies of scale
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Demand side Economies of Scale: Network Externalities

@ consumers of a good derive positive value when size of the market
increases.

@ the value of a network to a user depends on the number of other
users in that network. External use benefits internal use.

@ This is called network externalities (Katz & Shapiro 1986), and is a
form of “demand” economies of scale

@ Given network externalities, a consumer in today's market cares also
about the future success of the product and competing products.
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Demand side Economies of Scale: Network Externalities

@ consumers of a good derive positive value when size of the market
increases.

@ the value of a network to a user depends on the number of other
users in that network. External use benefits internal use.

@ This is called network externalities (Katz & Shapiro 1986), and is a
form of “demand” economies of scale

@ Given network externalities, a consumer in today's market cares also
about the future success of the product and competing products.

@ If the good is durable (e.g., a car or phone) or there is human
capital investment (e.g., education in a skill), the total benefits
derived from a good will depend on the number of consumers who
adopt compatible products in the future.

J. Bilmes Submodularity page 83 / 162



Applications
[N |

Demand side Economies of Scale: Network Externalities

@ consumers of a good derive positive value when size of the market
increases.

@ the value of a network to a user depends on the number of other
users in that network. External use benefits internal use.

@ This is called network externalities (Katz & Shapiro 1986), and is a
form of “demand” economies of scale

@ Given network externalities, a consumer in today's market cares also
about the future success of the product and competing products.

o If the good is durable (e.g., a car or phone) or there is human
capital investment (e.g., education in a skill), the total benefits
derived from a good will depend on the number of consumers who
adopt compatible products in the future.

@ So supermodularity would be a good model.
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Polymatroids

Outline: Part 2

@ From Matroids to Polymatroids
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Polymatroids
L}

Example: Rank function of a matrix

@ Given an n X m matrix, thought of as m column vectors:

1 2 3 4 m
I |
X=|xx x» x3 x4 ... Xm (67)
N |
o Let set V ={1,2,..., m} be the set of column vector indices.

@ For any subset of column vector indices A C V,
let r(A) be the rank of the column vectors indexed by A.

@ Hence r: 2V — Z, and r(A) is the dimensionality of the vector
space spanned by the set of vectors {x,},c -

o Intuitively, r(A) is the size of the largest set of independent vectors
contained within the set of vectors indexed by A.
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Polymatroids
1

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
20 3 0 4 0 0 2 4| o | o |
3]0 000300 5| |7 BE A
4\2 0 0 0 0 0 O 5 o | o |
o Let A={1,2,3}, B={3,4,5}, C=1{6,7}, A, = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.
o r(AUC)=3,r(BUC)=3.
e r(AUA,)=3,r(BUB,)=3,r(AUB,) =4, r(BUA,) = 4.
o r(AUB)=4,r(AnB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
20 3 0 4 0 0 2 4| | | | | | | | |
3100003005 [(™ 78
4\2 0 0 0 0 0 0 5 | | | | | |
o Let A=1{1,2,3}, B=1{3,4,5}, C={6,7}, A, = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.
e r(AUC)=3,r(BUC)=3.
o r(AUA,)=3,r(BUB,)=3,r(AUB,) =4, r(BUA,) = 4.
e r(AUB)=4,r(ANnB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 31
20 3 0 4 0 0 2 4| | | | | | | | |
3100003005 (™78
4\2 0 0 0 0 0 0 5 | | | | | | | |
o Let A={1,2,3}, B={3,4,5}, C={6,7}, A, ={1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.
e r(AUC)=3,r(BUC)=3.
o r(AUA,)=3,r(BUB,)=3,r(AUB,) =4, r(BUA,) = 4.
e r(AUB)=4,r(ANnB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/{0 2 2 3 0 1 3 1
20 3 0 4 00 2 4| o | o |
3]0 000300 5| |7 FE A8
4\2 0 0 0 0 0 O 5 o | o |
o Let A={1,2,3}, B=1{3,4,5}, C={6,7}, A, ={1}, B, ={5}.
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e r(AUC)=3,r(BUC)=3.
o r(AUA,) =3, r(BUB,)=3,r(AUB,) =4, r(BUA,) = 4.
o r(AUB)=4,r(AnB)=1<r(C)=2.

J. Bilmes Submodularity page 86 / 162



Polymatroids
1

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
20 3 0 4 0 0 2 4| | | | | | | | |
310 0003005 (™78
4\2 0 0 0 0 0 0 5 | | | | | | | |
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@ Then r(A) =3, r(B) =3, r(C) =2.
e r(AUC)=3,r(BUC)=3.
o r(AUA,)=3,r(BUB,)=3,r(AUB,) =4, r(BUA,) = 4.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
20 3 0 4 0 0 2 4| | | | | | | | |
310000300 5| (™78
4\2 0 0 0 0 0 0 5 | | | | | | | |
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
200 304002 4| S R
310 000300 5| |7 IE
4\2 0 0 0 0 0 O 5 b | b |
o Let A={1,2,3}, B=1{3,4,5}, C={6,7}, A- = {1}, B, = {5}.
@ Then r(A)=3, r(B)=3, r(C)=2.
e r(AUC)=3,r(BUC)=3.
o r(AUA,)=3,r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
o r(AUB)=4,r(ANB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
200 304002 4| S R
3]0 000300 5| |7 FE A8
4\2 0 0 0 0 0 O 5 b | b |
o Let A={1,2,3}, B=1{3,4,5}, C={6,7}, A- = {1}, B, = {5}.
@ Then r(A) =3, r(B)=3, r(C)=2.
e r(AUC)=3,r(BUC)=3.
o r(AUA,)=3,r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
o r(AUB)=4,r(ANB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/{0 2 2 3 0 1 3 1
200 304002 4| S R
3]0 000300 5| |7 FE A8
4\2 0 0 0 0 0 O 5 b | b |
o Let A={1,2,3}, B=1{3,4,5}, C={6,7}, A- = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C)=2.
e r(AUC)=3,r(BUC)=3.
e r(AUA,)=3,r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
e r(AUB)=4,r(ANB)=1<r(C)=2.
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Polymatroids
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
20 3 0 4 0 0 2 4| o | o |
3]0 000300 5| | FE A8
4\2 0 0 0 0 O O 5 o | o |
o Let A={1,2,3}, B=1{3,4,5}, C={6,7}, A, = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.
o r(AUC)=3, r(BuC(C)=3.
o r(AUA,)=3,r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
o r(AUB)=4,r(ANB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/{0 2 2 3 0 1 3 1
20 3 0 4 0 0 2 4| o | o |
310000300 5| |7 FE A
4\2 0 0 0 0 0O O 5 o | o |
o Let A={1,2,3}, B=1{3,4,5}, C={6,7}, A, = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.
o r(AUC)=3, r(BUC)=3.
o r(AUA,)=3,r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
o r(AUB)=4,r(ANB)=1<r(C)=2.
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Polymatroids
1

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
210 30400 2 4| S R
3100003005 [(™ 78
4\2 0 0 0 0O 05 | | | | | | | |
o Let A={1,2,3}, B =1{3,4,5}, C={6,7}, A = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.
e r(AUC)=3,r(BUC)=3.
o r(AUA,) =3, r(BUB,)=3,r(AUB,)=4,r(BUA,) =4.
o r(AUB)=4,r(ANB)=1<r(C)=2.
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Polymatroids
1

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8

1/0 2 2 3 01 3 1
2losoaoo2al| (D0 T
3]0 000300 5| |7 FE A8
4\2 0 0 0 0 0 O 5 | | | | | | | |
o Let A={1,2,3}, B=1{3,4,5}, C={6,7}, A, = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.

e r(AUC)=3,r(BUC)=3.

o r(AUA,) =3, r(BUB,) =3, r(AU ):4,r(BUA,):
or(AUB):4,r(AﬂB)—1<r(C)
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
210 30400 2 4| S R
3100003005 |(™ 78
4\2 0 0 0 0O O 05 | | | | | | | |
o Let A={1,2,3}, B ={3,4,5}, C={6,7}, A = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.
e r(AUC)=3,r(BUC)=3.
o r(AUA,) =3, r(BUB,)=3, r(AUB,) =4, r(BUA,) =4.
e r(AUB)=4,r(ANB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
2losoaoo2al| (D0 LT T
310 000300 5| |7 7E A8
4\2 0 0 0 0 0 O 5 o | o |
o Let A={1,2,3}, B=1{3,4,5}, C={6,7}, A, = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.
e r(AUC)=3,r(BUC)=3.
o r(AUA,) =3, r(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
e r(AUB)=4,r(ANB)=1<r(C)=2.
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Polymatroids
1

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1{0 2 2 3 01 3 1
20 3 0 4 0 0 2 4| o | o |
310 000300 55| |7 F7IE A8
4\2 0 0 0 0 0 O 5 o | o |
o Let A={1,2,3}, B=1{3,4,5}, C={6,7}, A, = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.
e r(AUC)=3,r(BUC)=3.
o r(AUA,)=3,r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
o r(AUB) =4, r(AnB)=1<r(C)=2.
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1

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/{0 2 2 3 01 3 1
20 3 0 4 0 0 2 4| o | o |
310 000300 s5| (7072 s
4\2 0 0 0 0 0 O 5 o | o |
o Let A={1,2,3}, B=1{3,4,5}, C={6,7}, A, = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.
e r(AUC)=3,r(BUC)=3.
o r(AUA,)=3,r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
o r(AUB) =4, r(ANB)=1 <r(C)=2.
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Polymatroids
1

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/{0 2 2 3 0 1 3 1
20 3 0 4 00 2 4| o | o |
3]0 000300 5| |7 FE A8
4\2 0 0 0 0 0 O 5 o | o |
o Let A={1,2,3}, B=1{3,4,5}, C={6,7}, A, = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.
e r(AUC)=3,r(BUC)=3.
o r(AUA,)=3,r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
o r(AUB)=4,r(ANnB)=1 <r(C)=2.
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Polymatroids
1

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
2losoaoo2al (D0 T T
3]0 000300 5| |7 BE A
4\2 0 0 0 0 0 O 5 o | o |
o Let A={1,2,3}, B=1{3,4,5}, C={6,7}, A, = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.
o r(AUC)=3, r(BUC)=3.
o r(AUA,)=3,r(BUB,)=3, r(AUB,) =4, r(BUA,) = 4.
e r(AUB)=4, r(AnB)=1 <r(C)=2.

6= r(A)+r(B)>r(AUB)+r(ANB) =5
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Polymatroids
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Rank function of a matrix

@ Let A, B C V be two subsets of column indices.
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Polymatroids
[NERN

Rank function of a matrix

o Let A, B C V be two subsets of column indices.
@ The rank of the two sets unioned together AU B is no more than
the sum of the two individual ranks.

J. Bilmes Submodularity page 87 / 162



Polymatroids
[NERN

Rank function of a matrix

o Let A, B C V be two subsets of column indices.

@ The rank of the two sets unioned together AU B is no more than
the sum of the two individual ranks.

@ In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence, r(A) can be viewed as an area.
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Polymatroids

Rank function of a matrix

o Let A, B C V be two subsets of column indices.

@ The rank of the two sets unioned together AU B is no more than
the sum of the two individual ranks.

@ In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence r(A) can be viewed as an area.

r(A > r(AU B)

J. Bilmes Submodularity page 87 / 162




Polymatroids

Rank function of a matrix

o Let A, B C V be two subsets of column indices.

@ The rank of the two sets unioned together AU B is no more than
the sum of the two individual ranks.

@ In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence r(A) can be viewed as an area.

r(A > r(AU B)

@ If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if 3 common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.
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Polymatroids

Rank function of a matrix

o Let A, B C V be two subsets of column indices.

@ The rank of the two sets unioned together AU B is no more than
the sum of the two individual ranks.

@ In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence r(A) can be viewed as an area.

r(A > r(AU B)

@ If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if 3 common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.

@ Any function where the above inequality is true for all A,B C V is
called subadditive.
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.
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Polymatroids
(LENN]

Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning dimensions common to A and B.
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Polymatroids
(LENN]

Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

o Let C index vectors spanning dimensions common to A and B.

@ Let A, index vectors spanning dimensions spanned by A but not B.
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Polymatroids
(LENN]

Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

o Let C index vectors spanning dimensions common to A and B.
@ Let A, index vectors spanning dimensions spanned by A but not B.

@ Let B, index vectors spanning dimensions spanned by B but not A.
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(LENN]

Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) = r(C) + r(A)

e 6 o6 o
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let A, index vectors spanning dimensions spanned by A but not B.

Then, r(A) = r(C) + r(A)

°
°
@ Let B, index vectors spanning dimensions spanned by B but not A.
°
e Similarly, r(B) = r(C) + r(By).
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) = r(C) + r(A)

Similarly, r(B) = r(C) + r(By).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

e 6 6 6 o o

r(A)+ r(B) = r(A;) +2r(C) + r(By). (68)
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) = r(C) + r(A)

Similarly, r(B) = r(C) + r(By).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

e 6 6 6 o o

r(A) + r(B) = r(A) + 2r(C) + r(B,). (68)

But r(AU B) counts the dimensions spanned by C only once.
r(AUB) =r(A;) + r(C)+ r(B,) (69)
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Rank functions of a matrix

@ Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A)+r(B) =r(A)+2r(C) +
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Rank functions of a matrix

@ Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A)+r(B)=r(A)+2r(C)+r(B))

e But r(AU B) counts the dimensions spanned by C only once.

r(AUB) =r(A,) +r(C)+r(B,)
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Rank functions of a matrix

@ Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A)+r(B)=r(A)+2r(C)+r(B))

e But r(AU B) counts the dimensions spanned by C only once.

r(AUB) =r(A,) +r(C)+r(B,)

@ Thus, we have subadditivity: r(A) + r(B) > r(AU B). Can we add
more to the r.h.s. and still have an inequality? VYes.
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Rank function of a matrix

e Note, r(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C).

r(C) > r(ANB)

In short:
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Rank function of a matrix

e Note, r(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C).

r(C) > r(ANB)

In short:
e Common span (blue) is “more” (no less) than span of common
index (magenta).
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Polymatroids

Rank function of a matrix

e Note, r(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C).

r(C) > r(ANB)

In short:
e Common span (blue) is “more” (no less) than span of common
index (magenta).
@ More generally, common information (blue) is “more” (no less) than
information within common index (magenta).
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7

=r(A, )+2r




Polymatroids
[ NERRNRNN]

Polymatroid function and its polyhedron.

Definition

A polymatroid function is a real-valued function f defined on subsets of
V which is normalized, non-decreasing, and submodular. That is:

Q f(0) =0 (normalized)
@ f(A) < f(B) for any AC B C V (monotone non-decreasing)
Q@ f(AUB)+f(ANB) < f(A)+ f(B) for any A, B C V (submodular)

We can define the polyhedron P;r associated with a polymatroid function
as follows

Pt ={y e RY:y(A) < f(A) forall AC V} (70)

:{yeRV:yzo,y(A)g F(A) for all A C v} (71)
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Polymatroids
[LERNNANN]

Chains of sets

@ Ground element V ={1,2,..., n} set of integers w.l.0.g.

) )
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Polymatroids
[LERNNANN]

Chains of sets

e Ground element V = {1,2,..., n} set of integers w.l.o.g.
e Given a permutation o = (01,02, ...,0,) of the integers.
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Polymatroids
[LERNNANN]

Chains of sets

e Ground element V = {1,2,..., n} set of integers w.l.o.g.
e Given a permutation o = (01, 02,...,0,) of the integers.

@ From this we can form a chain of sets {C;}; with
=CCCGC---CC,=V formed as:

Ci={o1,02,...,0i}, fori=1...n (72)
Q Q Q Q @ @ 0(7\) 0(8\) Yy
s ! :
Ch L
B E— !
Cs E
Cs
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Polymatroids
[LERNNANN]

Chains of sets

e Ground element V = {1,2,..., n} set of integers w.l.o.g.
e Given a permutation o = (01, 02,...,0,) of the integers.

e From this we can form a chain of sets {C;}; with
l=CCCGC---CC,=V formed as:

Ci ={o1,02,...,0i}, fori=1...n (72)
PCODPDD®®
et ! i
C1 L
|_'_| H
Cy |
Cs

@ Can also form a chain from a vector w € RY sorted in descending
order. Choose o so that w(o1) > w(o2) > --- > w(oy).
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(NLRNNANN]

Gain

@ We often wish to express the gain of an item j € V in context A,
namely f(AU{j}) — f(A).
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Polymatroids
(NLRNNANN]

Gain

@ We often wish to express the gain of an item j € V in context A,
namely f(AU{j}) — f(A).

@ This is called the gain and is used so often, there are equally as
many ways to notate this. l.e., you might see:

F(AU{J}) — F(A) £ pi(A) (73)
£ pai) (74)
2 V,f(A) (75)
£ F({j}14) (76)
£ £(jlA) (77)
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Polymatroids
(NLRNNANN]

Gain

@ We often wish to express the gain of an item j € V in context A,
namely f(AU{j}) — f(A).

@ This is called the gain and is used so often, there are equally as
many ways to notate this. l.e., you might see:

F(AU{J}) — f(A) £ pi(A) (73)
£ pati) (74)
2 V,f(A) (75)
£ ({j}1A) (76)
£ £(jlA) (77)

o We'll use f(j|A). Also, f(A|B) = f(AU B) — f(B).
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Polymatroids
(NLRNNANN]

Gain

@ We often wish to express the gain of an item j € V in context A,
namely f(AU{j}) — f(A).

@ This is called the gain and is used so often, there are equally as
many ways to notate this. l.e., you might see:

F(AU{J}) — f(A) £ pi(A) (73)
£ pati) (74)
2 V,f(A) (75)
£ ({j}1A) (76)
£ £(jlA) (77)

o We'll use f(j|A). Also, f(A|B) =f(AUB)—f(B).

@ Submodularity’s diminishing returns definition can be stated as
saying that f(j|A) is a monotone non-increasing function of A, since
f(j|A) > f(j|B) whenever A C B (conditioning reduces valuation).
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Polymatroidal polyhedron and greedy

@ Suppose we wish to solve the following linear programming problem:

maximize wTx
xERV
subjectto  x € {y € RY : y(A) < f(A) for all AC V} (78)

or more simply put, max(wx : x € P¥).

J. Bilmes Submodularity page 95 / 162



Polymatroids
(ARE NNANN]

Polymatroidal polyhedron and greedy

@ Suppose we wish to solve the following linear programming problem:

maximize wTx
x€ERYV

subject to  x € {y eRY : y(A) < F(A) for all A C v} (78)
or more simply put, max(wx : x € Ps).

o Consider greedy solution: sort elements of V w.r.t. w so that
w.log V= (vi,va,..., V) has w(vy) > w(va) > -+ > w(vp).
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Polymatroids
(ARE NNANN]

Polymatroidal polyhedron and greedy

@ Suppose we wish to solve the following linear programming problem:

maximize wTx
x€ERYV

subject to  x € {y eRY : y(A) < F(A) for all A C v} (78)

or more simply put, max(wx : x € Ps).
o Consider greedy solution: sort elements of V w.r.t. w so that

w.log V= (vi,va,..., V) has w(vy) > w(va) > -+ > w(vp).
@ Next, form chain of sets based on w sorted descended, giving:
\/,'déf {Vl,V2,...V,'} (79)

for i=0...m. Note Vo =0, and (V) = 0.
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Polymatroids
(ARE NNANN]

Polymatroidal polyhedron and greedy

@ Suppose we wish to solve the following linear programming problem:

maximize wTx
x€ERYV

subject to  x € {y eRY : y(A) < F(A) for all A C v} (78)

or more simply put, max(wx : x € Ps).
o Consider greedy solution: sort elements of V w.r.t. w so that

w.log V= (vi,va,..., V) has w(vy) > w(va) > -+ > w(vp).
@ Next, form chain of sets based on w sorted descended, giving:
\/,'déf{V]_,Vz,...V,'} (79)

for i=0...m. Note Vo =0, and f(Vp) = 0.
@ The greedy solution is the vector x € RY with element x(v;) for
i=1,...,n defined as:
x(vi) = £(Vi) = £(Vi1) = F(vi| Vi1) (80)
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Polymatroidal polyhedron and greedy

@ We have the following very powerful result (which generalizes a
similar one that is true for matroids).

Let f : 2¥ — R, be a given set function, and P is a polytope in RK of
the form P = {x € RY : x(A) < f(A),VAC V}.

Then the greedy solution to the problem max(wx : x € P) is optimal Yw
iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).
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Polymatroid extreme points

Greedy does more than this. In fact, we have:

For a given ordering V= (vi,...,vpn) of V and a given V; and x
generated by V; using the greedy procedure, then x is an extreme point
of Pf

If x is an extreme point of Pr and B C V is given such that
{veV:x(v)#0} CBCUA: x(A) = f(A)), then x is generated
using greedy by some ordering of B.
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Intuition: why greedy works with polymatroids

o Given w, the goa| is MaXIma| pOint in PJ;}—
to find
for w in this region.
x = (x(er), x(e2)) 9

that maximizes e f ‘)
e e
Tw = x(en)w(e) + 2 M'

x(ex)w(ep). N

o If w(ex) > w(e) $\Q’\
the upper extreme ~/
27

point indicated N Q N N
<N o -
g $\ 45 %

.. T )
maximizes xTw over = .
Pt N —
X € & Q.
o If w(e) < w(er) \450 3‘*‘
the lower extreme b
point indicated fle.)
maximizes xTw over 1 1

X € P;r.
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Polymatroid with labeled edge lengths
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A polymatroid function's polyhedron vs. a polymatroid.

@ Given these results, we can conclude that a polymatroid is really an
extremely natural polyhedral generalization of a matroid. This was
all realized by Jack Edmonds in the mid 1960s (and published in
1969 in his landmark paper “Submodular Functions, Matroids, and
Certain Polyhedra™).

@ Jack Edmonds NIPS talk, 2011 http://videolectures.net/
nipsworkshops2011_edmonds_polymatroids/
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Outline: Part 2

e Submodular Definitions, Examples, and Properties
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Submodular Properties
1

Submodular (or Upper-SemiModular) Lattices

The name “Submodular” comes from lattice theory, and refers to a
property of the “height” function of an upper-semimodular lattice. Ex:
consider the following lattice over 7 elements.

TV height
y 9 @ Such lattices require that for all

submodularity X, ¥, 2,
h(x)+h(y)
x 2
y >h(zVy) <« s vy
e\ = A
. 2+2>3+40 N z 9

TAY @ The lattice is

upper-semimodular
(submodular), height function
is submodular on the lattice.

J. Bilmes Submodularity page 102 / 162



Submodular Properties
[NRRNI

Submodular Definitions

Definition (submodular)

A function f : 2Y — R is submodular if for any A, B C V, we have that:

f(A)+f(B) > f(AUB)+ f(ANB) (81)

@ General submodular function, f need not be monotone,
non-negative, nor normalized (i.e., f(()) need not be = 0).
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Submodular Properties
1l

Normalized Submodular Function

@ Given any submodular function f : 2V 5 R, form a normalized
variant ' : 2¥ — R, with

fi(A) = f(A) - £(0) (82)

@ Then /() = 0.

@ This operation does not affect submodularity, or any minima or
maxima

@ It is often assumed that all submodular functions are so normalized.
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Submodular Properties
(RN

Submodular Polymatroidal Decomposition

@ Given any arbitrary submodular function f : 2¥ — R, consider the
identity

f(A) = f(A) — m(A) +m(A) = f(A) + m(A) (83)
f(A)

for a modular function m: 2¥ — R, where

m(a) = f(a|V'\ {a}) (84)
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Submodular Properties
(RN

Submodular Polymatroidal Decomposition

@ Given any arbitrary submodular function f : 2¥ — R, consider the
identity

f(A) = f(A) — m(A) +m(A) = f(A) + m(A) (83)
f(A)

for a modular function m: 2Y — R, where
m(a) = f(alV'\ {a}) (84)
@ Then f(A) is polymatroidal since f()) = 0 and for any a and A

f(alA) = f(alA) — f(a]V\ {a}) > 0 (85)
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Submodular Properties
1

Totally Normalized

e f is called the totally normalized version of f
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Submodular Properties
1

Totally Normalized

e f is called the totally normalized version of f

@ polytope of f and f is the same shape, just shifted.
[ {x e RY : x(A) < f(A),VA C v} (86)

_ {X e RY : x(A) < F(A) + m(A),VA C v} (87)
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Submodular Properties
1

Totally Normalized

e f is called the totally normalized version of f

@ polytope of f and f is the same shape, just shifted.
[ {x e RY : x(A) < f(A),VA C v} (86)

= {xeRY : x(4) <F(A)+ m(A)YAC V}  (87)

@ mis like a unary score, f is where things interact . All of the real
structure is in f
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Submodular Properties
1

Totally Normalized

e f is called the totally normalized version of f

@ polytope of f and f is the same shape, just shifted.
[ {x e RY : x(A) < f(A),VA C v} (86)
- {x e RY : x(A) < F(A) + m(A),YA C v} (87)

@ m is like a unary score, f is where things interact . All of the real
structure is in f

@ Hence, any submodular function is a sum of polymatroid and
modular.
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Telescoping Summation

@ Given a chainset of sets Ay C A, C --- C A,
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Submodular Properties
(NN |

Telescoping Summation

@ Given a chain set of sets A1 C A, C --- C A,

@ Then the telescoping summation property of the gains is as follows:

r—1 r—1
> (AialA) Z FA) =D F(A) =f(A) - f(A) (88)
i=1 i=1
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Submodular Properties
Ll

Submodular Definitions

Given function f : 2Y — R, then
f(A)+f(B) > f(AUB)+f(ANB) forall A,B C V (SC)
if and only if
f(v|X) > f(v]Y) foral X CY CVandv ¢B (DR)
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Submodular Properties
Ll

Submodular Definitions

Given function f : 2Y — R, then
f(A)+f(B)>f(AUB)+ f(ANB) for all A,B C V (SC)
if and only if
f(v|X) > f(v]Y) foral X CY CVandv ¢B (DR)

(SC)=(DR): Set A+~ XU{v}, B+« Y. Then AUB=BU{v} and
ANB =X and f(A)—f(ANB) > f(AU B) — f(B) implies (DR).
(DR)=-(SC): Order A\ B = {v1, v2,..., v, } arbitrarily. Then
f(vil[ANBU{v1,va,...,vi—1}) > f(vi|BU{v1,va,...,vi_1}), i € [r —1]
Applying telescoping summation to both sides, we get:
f(A)—f(ANB) > f(AUB) —f(B)

OJ
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Submodular Properties
i

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B) > f(AUB) + f(ANB), YA, BC V (89)
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Submodular Properties
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Many (Equivalent) Definitions of Submodularity

f(A) +f(B)
fUlS)

f(AUB) + f(ANB), YA,BCV (89)

>
> f(j|T),VSCTCV, withje V\ T (90)
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Many (Equivalent) Definitions of Submodularity

f(A)+ f(B) > F(AUB) + f(ANB), YA,BC V (89)
F(jIS) > FGIT), VSC TCV, withj e V\ T (90)
F(C|S) > F(CIT),YSC TCV, with CCV\ T (91)
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Submodular Properties
i

Many (Equivalent) Definitions of Submodularity

fF(A)+ f(B) > f(AUB) + f(ANB), VA,BC V (89)
F(j1S) > f(i|T), VSC TCV, withj e V\ T (90)
F(C|S) > f(C|T),YSC TCV, with CCV\ T (91)
f(j1S) = F(ISU{k}), VS C Vwith je V\(SU{k})  (92)
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Submodular Properties
i

Many (Equivalent) Definitions of Submodularity

fF(A)+ f(B) > f(AUB) + f(ANB), VA,BC V (
F(jIS) > FGIT), VSC TCV, withj e V\ T (

F(C|S) > F(CIT),YSC TCV, with CCV\ T (91)
F(jIS) > (IS U{k}), VS C V withje V\(SU{k})  (
f(AUB|JANB) < f(AIANB) + f(BJANB), YA,BC V (

J. Bilmes Submodularity page 109 / 162



Submodular Properties
i

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B) > f(AUB) + f(ANB), YA, BC V (89)
fUIS) > f(|T),VSCTCV, withje V\T (90)

f(C|S) > f(C|T),ySCTCV, with CCV\T (91)

f(lS) = f(jISU{k}), ¥S C V with j € V\ (SU{k}) (92)
f(AUB|ANB) < f(AJANB) + f(BJ[ANB), YA, BC V (93)
FT)SFS)+ D> FUIS) = D FUISUT ={j}), VS, T C V (94)

JET\S JES\T
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Submodular Properties
i

Many (Equivalent) Definitions of Submodularity

f(A)+f(B) > f(AUB)+f(ANB), YA BCV (89)
fUIS) > f(|T),VSCTCV, withje V\T (90)
F(C|S) > F(C|T),¥SC TCV, with CCV\T (91)
F(jIS) > F(ISULK}), ¥SC Vwith je V\ (SU{k})  (92)
f(AUB|ANB) < f(AIANB) + f(BI[ANB), YA,BC V (93)
FT)<FS)+ Y, fUIS)— D FUISUT —{j}), VS, T C V (94)

JET\S JES\T
FT)<F(S)+ D f(IS). vSCTCV (95)

JET\S
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Submodular Properties
i

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B) > f(AUB) + f(ANB), VA, BC V (89)
F(1S) > F(j|T), VSC TCV, withj e V\ T (90)
F(C|S) > F(C|T),¥SC TCV, with CCV\T (91)
F(j|S) = F(jIS U {k}), VS C V with j € V\ (SU{k}) (92)
fF(AUB|ANB) < f(AIANB) + f(BIAN B), YA,BC V (93)
FTYSFS)+ D> FUIS) = D FUISUT —{j}), VS, TC V (94)
JET\S JES\T
FT)<FS)+ > f(IS), vSCTCV (95)
JET\S

FIT)<FS)— D FUIS\UN+ D FUISNT)VS, TCV

JES\T JET\S

(96)
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Submodular Properties
i

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B) > f(AUB) + f(ANB), YA, BC V (89)
fUIS) > f(|T),VSCTCV, withje V\T (90)
F(C|S) > F(C|T),YSC TCV, with CCV\T (91)
F(|S) = F(jISU{k}), VS C V with j € V\ (SU{k}) (92)
f(AUBJANB) < f(AIANB) 4 f(BJANB), YA, BC V (93)
FTYSFS)+ D> FUIS) = D FUISUT —{j}), VS, TC V (94)
JET\S JES\T

FT)<FS)+ > f(IS), vSCTCV (95)

JET\S
FT)<F(S) = D FUIS\LUD+ Y. FUISNT)VS, TCV

JES\T JET\S

(96)
F(T)<F(S)— Y FUIS\{j}), ¥TCScV (97)

JES\T
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Submodular Properties
[ERNRRN

Basic ops: Sums, Restrictions, Conditioning

@ Given submodular fi, o, ..., f, each € 2¥ — R, then conic
combinations are submodular. |l.e.,

k
F(A) = 3 aifi(A) (98)
i=1

where a; > 0.
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Submodular Properties
[ERNRRN

Basic ops: Sums, Restrictions, Conditioning

e Given submodular fi, 5, ..., f each € 2¥ — R, then conic
combinations are submodular. l.e.,

k
F(A) =) aifi(A) (98)
i=1

where a; > 0.

@ Restrictions: f(A) = g(AN C) is submodular whenever g is, for all
C.
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Submodular Properties
[ERNRRN

Basic ops: Sums, Restrictions, Conditioning

e Given submodular fi, 5, ..., f each € 2¥ — R, then conic
combinations are submodular. l.e.,

k
F(A) =) aifi(A) (98)
i=1

where a; > 0.

@ Restrictions: f(A) = g(AnN C) is submodular whenever g is, for all
C.

e Conditioning: f(A) = g(AU C) — f(C) = f(A|C) is submodular
whenever g is for all C.
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Submodular Properties
I

The “or" of two polymatroid functions

@ Given two polymatroid functions f and g, suppose feasible A are
defined as {A: f(A) > ar or g(A) > ag} for real ar, a,.
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Submodular Properties
I

The “or" of two polymatroid functions

@ Given two polymatroid functions f and g, suppose feasible A are
defined as {A: f(A) > ar or g(A) > ag} for real ar, ag.

o This is identical to: {A:f(A) = ar or g(A) = ag} where
f(A) = min(f(A), ar) and g(A) = min(f(A), ag)
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Submodular Properties
I

The “or" of two polymatroid functions

@ Given two polymatroid functions f and g, suppose feasible A are
defined as {A: f(A) > ar or g(A) > ag} for real ar, ag.

o This is identical to: {A: f(A) = ar or g(A) = ag } where
f(A) = min(f(A), ar) and g(A) = min(f(A), ag)

o Define: h(A) = f(A)g(V) + f(V)g(A) — F(A)g(A).
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Submodular Properties
I

The “or" of two polymatroid functions

@ Given two polymatroid functions f and g, suppose feasible A are
defined as {A: f(A) > ar or g(A) > ag} for real ar, ag.

o This is identical to: {A: f(A) = ar or g(A) = ag } where
f(A) = min(f(A), ar) and g(A) = min(f(A), ag)
o Define: h(A) = f(A)g(V) + F(V)&(A) — f(A)g(A).
Theorem (Guillory & Bilmes, 2011)
h(A) so defined is polymatroidal.
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Submodular Properties
I

The “or" of two polymatroid functions

@ Given two polymatroid functions f and g, suppose feasible A are
defined as {A: f(A) > ar or g(A) > ag} for real ar, ag.

o This is identical to: {A: f(A) = ar or g(A) = ag } where
f(A) = min(f(A), ar) and g(A) = min(f(A), ag)
o Define: h(A) = f(A)g(V) + F(V)&(A) — f(A)g(A).
Theorem (Guillory & Bilmes, 2011)
h(A) so defined is polymatroidal.

h(A) = aray if and only if ?(A) =ar or g(A) = ag
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Submodular Properties
I

The “or" of two polymatroid functions

@ Given two polymatroid functions f and g, suppose feasible A are
defined as {A: f(A) > ar or g(A) > ag} for real ar, ag.

o This is identical to: {A: f(A) = ar or g(A) = ag } where
f(A) = min(f(A), ar) and g(A) = min(f(A), ag)
o Define: h(A) = f(A)g(V) + F(V)&(A) — f(A)g(A).
Theorem (Guillory & Bilmes, 2011)
h(A) so defined is polymatroidal.

h(A) = aray if and only if ?(A) =ar or g(A) = ag

@ Therefore, h can be used as a submodular surrogate for the “or" of
multiple submodular functions.
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Submodular Properties
NI RNNR

Composition and Submodular Functions

e Convex/Concave have many nice properties of composition (see
Boyd & Vandenberghe, “Convex Optimization”)
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Submodular Properties
NI RNNR

Composition and Submodular Functions

e Convex/Concave have many nice properties of composition (see
Boyd & Vandenberghe, “Convex Optimization")

@ A submodular function f : 2¥ — R has a different type of input and
output, so composing two submodular functions directly makes no
sense.
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Submodular Properties
NI RNNR

Composition and Submodular Functions

e Convex/Concave have many nice properties of composition (see
Boyd & Vandenberghe, “Convex Optimization")

e A submodular function f : 2¥ — R has a different type of input and
output, so composing two submodular functions directly makes no
sense.

@ However, we have a number of forms of composition results that
preserve submodularity, which we turn to next:
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Submodular Properties
INNT AR

Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WViUV,U-. UV into k possibly overlapping clusters.
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Submodular Properties
INNT AR

Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WVUV,U-. UV into k possibly overlapping clusters.
e Define new function g : 2K — R where VD C [k] = {1,2,...,k},

g(D)=f(|J Va) (99)

deD
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Submodular Properties
INNT AR

Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WVUV,U-. UV into k possibly overlapping clusters.
o Define new function g : 2Kl — R where VD C [k] = {1,2,...,k},

g(D) = f(|J Va) (99)
deD

@ Then g is submodular if either f is monotone non-decreasing or the
sets {V;} are disjoint.
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Submodular Properties
INNT AR

Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WVUV,U-. UV into k possibly overlapping clusters.
o Define new function g : 2Kl — R where VD C [k] = {1,2,...,k},

g(D) = f(|J Va) (99)
deD

@ Then g is submodular if either f is monotone non-decreasing or the
sets {V;} are disjoint.

e Ex: Bipartite neighborhoods: Let I : 2 — R be the neighbor
function in a bipartite graph G = (V, U, E,w). V is set of “left”
nodes, U is set of right nodes, E C V x U are edges, and
w : 2 = R is a modular function on edges.
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Submodular Properties
INNT AR

Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WVUV,U-. UV into k possibly overlapping clusters.
o Define new function g : 2Kl — R where VD C [k] = {1,2,...,k},

g(D) = f(|J Va) (99)
deD

@ Then g is submodular if either f is monotone non-decreasing or the
sets {V;} are disjoint.

e Ex: Bipartite neighborhoods: Let I' : 2¥ — R be the neighbor
function in a bipartite graph G = (V, U, E,w). V is set of “left”
nodes, U is set of right nodes, E C V x U are edges, and
w : 2 = R is a modular function on edges.

@ Neighbors defined as I'(X) ={u e U: |X x {u} NE| > 1} for
XCV.
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Submodular Properties
INNT AR

Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WVUV,U-. UV into k possibly overlapping clusters.
o Define new function g : 2Kl — R where VD C [k] = {1,2,...,k},

g(D) = f(|J Va) (99)
deD

@ Then g is submodular if either f is monotone non-decreasing or the
sets {V;} are disjoint.

e Ex: Bipartite neighborhoods: Let I' : 2¥ — R be the neighbor
function in a bipartite graph G = (V, U, E,w). V is set of “left”
nodes, U is set of right nodes, E C V x U are edges, and
w : 2 = R is a modular function on edges.

@ Neighbors defined as I'(X) ={u e U : |X x {u} N E| > 1} for
X C V. Then f(I'(X)) is submodular. Special case: set cover.
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Submodular Properties
INNT AR

Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WVUV,U-. UV into k possibly overlapping clusters.
o Define new function g : 2Kl — R where VD C [k] = {1,2,...,k},

g(D) = f(|J Va) (99)
deD

@ Then g is submodular if either f is monotone non-decreasing or the
sets {V;} are disjoint.

e Ex: Bipartite neighborhoods: Let I' : 2¥ — R be the neighbor
function in a bipartite graph G = (V, U, E,w). V is set of “left”
nodes, U is set of right nodes, E C V x U are edges, and
w : 2 = R is a modular function on edges.

@ Neighbors defined as I'(X) ={u e U : |X x {u} N E| > 1} for
X C V. Then f(I'(X)) is submodular. Special case: set cover.

@ In fact, all integral polymatroid functions can be obtained in g
above for f a matroid rank function and {V,} appropriately chosen.
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Submodular Properties
INNRR AR

Concave composed with polymatroid

We also have the following composition property with concave functions:

Given functions f : 2¥ — R and g : R — R, the composition
h=fog:2¥ =R (ie, h(S) = g(f(S))) is nondecreasing submodular,
if g is non-decreasing concave and f is nondecreasing submodular.
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Submodular Properties
INNRNR Y

Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2¥ — R, then f : 2¥ — R defined as
f(A) = g(m(A)) is submodular

Q@ g: R, — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.
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Submodular Properties
INNRNR Y

Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2¥ — R, then f : 2¥ — R defined as
f(A) = g(m(A)) is submodular

Q@ g: R, — R is concave.

e If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
FA) = gi(mi(A)) (100)
=1
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Submodular Properties
INNRNR Y

Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:
@ For all modular functions m : 2¥ — R, then f : 2¥ — R defined as
f(A) = g(m(A)) is submodular
Q@ g: R, — R is concave.

e If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
FA) = gi(mi(A)) (100)
=1

@ Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).
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Submodular Properties
INNRNR Y

Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:
@ For all modular functions m : 2¥ — R, then f : 2¥ — R defined as
f(A) = g(m(A)) is submodular
Q@ g: R, — R is concave.

e If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
FA) = gi(mi(A)) (100)
=1

@ Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).

@ However, Vondrak showed that a graphic matroid rank function over
K4 can't be represented in this fashion.
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Submodular Properties
(NRRNNY ]

Weighted Matroid Rank Functions

@ We saw matroid rank is submodular. Given matroid (V,Z),

f(B) =max{|A|: AC Band A€ T} (101)
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Submodular Properties
(NRRNNY ]

Weighted Matroid Rank Functions

e We saw matroid rank is submodular. Given matroid (V,7),
f(B) =max{|]A|:AC Band Ac 7} (101)

@ Weighted matroid rank functions. Given matroid (V,Z), and
non-negative modular function m: 2¥ — R,

f(B) =max{m(A): AC Band Ac T} (102)

is also submodular.
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Submodular Properties
(NRRNNY ]

Weighted Matroid Rank Functions

e We saw matroid rank is submodular. Given matroid (V,7),
f(B) =max{|]A|:AC Band Ac 7} (101)

e Weighted matroid rank functions. Given matroid (V,Z), and
non-negative modular function m : 2V Ry,

f(B) = max{m(A): AC Band Ac 7} (102)

is also submodular.
@ Take a l-partition matroid with limit k, we get:

f(B) = max{m(A): AC B and |A| < k} (103)
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Submodular Properties
(NRRNNY ]

Weighted Matroid Rank Functions

e We saw matroid rank is submodular. Given matroid (V,7),
f(B) =max{|]A|:AC Band Ac 7} (101)

e Weighted matroid rank functions. Given matroid (V,Z), and
non-negative modular function m : 2V Ry,

f(B) = max{m(A): AC Band Ac 7} (102)

is also submodular.
@ Take a l-partition matroid with limit k, we get:

f(B) = max{m(A): AC B and |A| < k} (103)
@ Take a 1l-partition matroid with limit 1, we get the max function:

f(B) = max m(b) (104)
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Submodular Properties
[ NRRNN]

Facility Location

@ Given a set of k matroids (V,Z;) and k modular weight functions
mj, the following is submodular:

k
f(A)=> a;max{mi(A): AC Band A€ I} (105)
i=1
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Submodular Properties
[ NRRNN]

Facility Location

@ Given a set of k matroids (V,Z;) and k modular weight functions
m;, the following is submodular:

k
f(A)=> a;max{m;i(A): AC Band A€ I;} (105)
i=1

@ Take all a; =1, all matroids 1-partition matroids, and set
w;j = m;(j), and k = | V| for some weighted graph G = (V, E,w),
we get the uncapacitated facility location function:

F(A) = maxw,; (106)
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Submodular Properties
[LIRNN]

Information and Complexity functions

@ Given a set V of items, we might wish to measure the “information”
or “complexity” in a subset A C V.
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Submodular Properties
[LIRNN]

Information and Complexity functions

@ Given a set V of items, we might wish to measure the “information”
or “complexity” in a subset A C V.

@ Matroid rank r(A) can measure the “information” or “complexity”
via the dimensionality spanned by vectors with indices A.
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Submodular Properties
[LIRNN]

Information and Complexity functions

@ Given a set V of items, we might wish to measure the “information”
or “complexity” in a subset A C V.

@ Matroid rank r(A) can measure the “information” or “complexity”
via the dimensionality spanned by vectors with indices A.

@ Unit increment r(v|A) € {0,1} so no partial independence.
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Submodular Properties
[LIRNN]

Information and Complexity functions

@ Given a set V of items, we might wish to measure the “information”
or “complexity” in a subset A C V.

@ Matroid rank r(A) can measure the “information” or “complexity”
via the dimensionality spanned by vectors with indices A.

@ Unit increment r(v|A) € {0,1} so no partial independence.

@ Entropy of a set of random variables {X, } where

vev:

F(A) = H(Xa) = H(| ] Xa) = = > _Pr(xa)log Pr(xa)  (107)

acA XA

can measure partial independence.
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Submodular Properties
[LIRNN]

Information and Complexity functions

@ Given a set V of items, we might wish to measure the “information”
or “complexity” in a subset A C V.

@ Matroid rank r(A) can measure the “information” or “complexity”
via the dimensionality spanned by vectors with indices A.

@ Unit increment r(v|A) € {0,1} so no partial independence.

e Entropy of a set of random variables {X,}, .,/ where

F(A) = H(Xa) = H(| ] Xa) = = > _Pr(xa)log Pr(xa)  (107)
acA XA

can measure partial independence.

@ Entropy is submodular due to non-negativity of conditional mutual
information. Given A,B,C C V,

/(XA\B; XB\A|XAmB)
= H(XA) + H(XB) — H(XAug) — H(XAQB) >0 (108)
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Submodular Properties
RN

Submodular Generalized Dependence

@ there is a notion of “independence” , i.e., AILB:

f(AUB) = f(A)+ f(B), (44)
@ and a notion of “conditional independence” | i.e., AL B|C:
f(AUBUC)+f(C)=f(AUC)+ f(BUC) (45)
@ and a notion of “dependence” (conditioning reduces valuation):
f(A|B) = f(AU B) — f(B) < f(A), (46)

@ and a notion of “conditional mutual information”
I¢(A;B|C) £ f(AUC)+ f(BUC) - f(AUBUC) —f(C)>0
@ and two notions of “information amongst a collection of sets”:

k
11(S1: 2.1 SK) =D _F(SK) — F(S1USU---US) (47
i=1

(S5 S-S0 = Y. ()R S) (48)
AC{1,2,...k} jeA
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Submodular Properties
1

Gaussian entropy, and the log-determinant function

Definition (differential entropy h(X))

h(X) = — /5 f(x) log f(x)dx (109)

@ When x ~ N(u, X) is multivariate Gaussian, the (differential)
entropy of the r.v. X is given by

h(X) = log \/|2meX| = log \/(2me)"|Z| (110)

and in particular, for a variable subset A and a constant ~,

F(A) = h(Xa) = log \/(2ne) A [a] = 1|A| + 1 log|Ea]  (111)
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Submodular Properties
1

Gaussian entropy, and the log-determinant function

Definition (differential entropy h(X))

h(X) = — /s f(x) log f(x)dx (109)

@ When x ~ N (u, X) is multivariate Gaussian, the (differential)
entropy of the r.v. X is given by

h(X) = log \/|2meX| = log v/ (2me)" | Z| (110)

and in particular, for a variable subset A and a constant ~,

F(A) = h(Xa) = log \/ (2me) AIEal = ||+, log|Eal  (111)

@ Application of Jensen's inequality shows that
I(Xa\8: Xg\alXang) = h(Xa) + h(Xg) — h(Xaug) — h(Xang) > 0.
Hence differential entropy is submodular, and thus so is the logdet
function.
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Submodular Properties
1

Are all polymatroid functions entropy functions?
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Submodular Properties
1

Are all polymatroid functions entropy functions?

No, entropy functions must also satisfy the following:

Theorem (Yeung)

For any four discrete random variables {X,Y,Z, U}, then
I(X;Y)=1(X;Y|Z)=0 (112)
implies that

I(X; Y|Z,U) < I(Z; U|X, Y) + I(X; Y|U) (113)

where I(-;-|-) is the standard Shannon mutual information function.

@ This is not required for all polymatroid-based conditional mutual
information functions /¢ (+; -|-).
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Submodular Properties
[NNRN] ]

Containment, Gaussian Entropy, and DPPs

@ Submodular functions D Polymatroid functions D Entropy functions
D Gaussian Entropy functions = DPPs.
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Submodular Properties
[NNRN] ]

Containment, Gaussian Entropy, and DPPs

@ Submodular functions O Polymatroid functions O Entropy functions
D Gaussian Entropy functions = DPPs.

@ DPPs (Kulesza & Taskar) are a point process where
Pr(Y = Y) o det(Ly) for some positive-definite matrix L, so DPPs
are log-submodular, as we saw.
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Submodular Properties
[NNRN] ]

Containment, Gaussian Entropy, and DPPs

@ Submodular functions O Polymatroid functions O Entropy functions
D Gaussian Entropy functions = DPPs.

e DPPs (Kulesza & Taskar) are a point process where
Pr(Y = Y) o det(Ly) for some positive-definite matrix L, so DPPs
are log-submodular, as we saw.

@ Thanks to the properties of matrix algebra (e.g., determinants),

DPPs are computationally extremely attractive and are now widely
used in ML.
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Semigradients

Outline: Part 3

@ Discrete Semimodular Semigradients
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Semigradients

Convex Functions and Tight Subgradients

f,(b) = f(b)
f (@) < f(a)

N
e

b X

@ A convex function f has a subgradient at any in-domain point b,
namely there exists f;, such that

F(x) — F(b) > (fy, x — b), ¥x. (114)
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Semigradients

Concave Functions and Tight Supergradients

f,(b) = f(b)
f (@) < f(a)

N
e

b X

@ A convex function f has a subgradient at any in-domain point b,
namely there exists f;, such that

F(x) — £(b) > (fy, x — b),Vx. (114)

@ We have that f(x) is convex, fp(x) is affine, and is a tight
subgradient (tight at b, affine lower bound on f(x)).
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Semigradients
(L NANNRRY]

Convex Functions and Tight Subgradients

()
f°(b) = f(b)
/ fo) fa)=f@)
/|
T b X

@ A concave f has a supergradient at any in-domain point b, namely
there exists 2 such that

f(x) — f(b) < (f°,x — b), ¥x. (115)
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Semigradients
(L NANNRRY]

Concave Functions and Tight Supergradients

203
f°(b) = f(b)
/ fy ) =f(a)
/|
T b X

@ A concave f has a supergradient at any in-domain point b, namely
there exists 2 such that

f(x) — f(b) < (f°,x — b), ¥x. (115)

@ We have that f(x) is concave, f°(x) is affine, and is a tight
supergradient (tight at b, affine upper bound on f(x)).
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Semigradients
[NLRNNRRN]

Trivial additive upper/lower bounds

@ Any submodular function has trivial additive upper and lower
bounds. That is for all A C V,

m¢(A) < f(A) < m"(A) (116)
where
mf(A) = f(a) (117)
acA
ms(A) = f(alV\{a}) (118)
acA
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Semigradients
[NLRNNRRN]

Trivial additive upper/lower bounds

@ Any submodular function has trivial additive upper and lower
bounds. That is for all A C V,

m¢(A) < f(A) < m'(A) (116)
where
mf(A) =) f(a) (117)
acA
me(A) = f(alV\{a}) (118)
acA

o m’ € RY and ms € RY are both modular (or additive) functions.
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Semigradients
[NLRNNRRN]

Trivial additive upper/lower bounds

@ Any submodular function has trivial additive upper and lower
bounds. That is for all A C V,

m¢(A) < f(A) < m'(A) (116)
where
mf(A) =) f(a) (117)
acA
me(A) = f(alV\{a}) (118)
acA

o m" € RY and ms € RY are both modular (or additive) functions.

@ A “semigradient” is customized, and at least at one point is tight.
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Semigradients
[NNL NNRRN]

Submodular Subgradients

@ For submodular function f, the subdifferential (all subgradients tight
at X C V) can be defined as:

IF(X) = {x RV : VY C V,x(Y) — x(X) < f(Y) — £(X)} (119)
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Semigradients
[NNL NNRRN]

Submodular Subgradients

e For submodular function f, the subdifferential (all subgradients tight
at X C V) can be defined as:

IF(X) = {x RV : VY C V,x(Y) — x(X) < f(Y) — £(X)} (119)

A PP,

(0.0) T

0@ 9f({v1})

@ This partitions RY:
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Semigradients
[NNL NNRRN]

Submodular Subgradients

e For submodular function f, the subdifferential (all subgradients tight
at X C V) can be defined as:

IF(X) = {x RV : VY C V,x(Y) — x(X) < f(Y) — £(X)} (119)

A PP,

(0.0) T

0@ 9f({v1})

@ This partitions RY:

@ Extreme points are easy to get via Edmonds’s greedy algorithm:
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Semigradients
[NNL NNRRN]

Submodular Subgradients

e For submodular function f, the subdifferential (all subgradients tight
at X C V) can be defined as:

IF(X) = {x RV : VY C V,x(Y) — x(X) < f(Y) — £(X)} (119)

Ty

A PP,

(0,0) [

0@ 9f({v1})

@ This partitions RY:

@ Extreme points are easy to get via Edmonds's greedy algorithm:

Theorem (Fujishige 2005, Theorem 6.11)

A point y € RY is an extreme point of Of(X),
iff there exists a maximal chain ) = So C Sy C --- C S, with X = §;
for some j, such that y(S; \ Si—1) = y(Si) — y(Si—1) = f(Si) — f(Si—1).

J. Bilmes
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Semigradients
[NNANNRRN]

The Submodular Subgradients (Fujishige 2005)

@ For an arbitrary Y C V

o Let o be a permutation of V and define S7 = {o(1),0(2),...,0(i)}
as o's chain where S7 = Y where |Y| = k.

@ We can define a subgradient h@ corresponding to f as:

£(S9) if i =1
f(S7) — f(S7,) otherwise |

@ We get a tight modular lower bound of f as follows:

23 hY, (X),¥vX C V.

xeX

Note, tight at Y means h’;,J(Y) =f(Y).
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Semigradients
[NNANR AR

Convexity and Tight Sub- and Super-gradients?

@ Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?
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Semigradients
[NNANR AR

Convexity and Tight Sub- and Super-gradients?

@ Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

(X
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Semigradients
[NNANR AR

Convexity and Tight Sub- and Super-gradients?

@ Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

£2(x)
f,X)
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Semigradients
[NNANR AR

Convexity and Tight Sub- and Super-gradients?

@ Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

2
£o00

b X

@ If a continuous function has both a sub- and super-gradient at a
point, then the function must be affine.
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Semigradients
[NNANR AR

Convexity and Tight Sub- and Super-gradients?

@ Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

£2(x)
f,X)

b X

@ If a continuous function has both a sub- and super-gradient at a
point, then the function must be affine.

@ What about discrete set functions?
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Semigradients
[NNANNA NN

The Submodular Supergradients

@ Can a submodular function also have a supergradient? We saw that
in the continuous case, simultaneous sub/super gradients meant
linear.

o (Nemhauser, Wolsey, & Fisher 1978) established the following iff
conditions for submodularity (if either hold, f is submodular):

FY)<F(X) = > FUX\)+ > fUXnYy),

Jjex\y JEY\X
FY)<F(X) = > FUIXUYIN) + D FGIX)
jex\Y JEY\X

Recall that f(A|B) = f(AU B) — f(B) is the gain of adding A in the
context of B.
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Semigradients
[NNANNRAN]

Submodular and Supergradients

@ Using submodularity further, these can be relaxed to produce two
tight modular upper bounds (Jegelka & Bilmes, 2011, lyer & Bilmes
2013):

F(Y) < mba(Y) 2 F(X Z FUIX\) + Z F(j10),

JjEX\Y JjeEY\X
FY) < mka(Y)2F(X) =D FUIVAY+ D fUIX).
JEX\Y JEY\X

Hence, this yields three tight (at set X) modular upper bounds
m§< 1) m)f( 5 for any submodular function f.
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Semigradients
[NNANNARY ]

Optimizing difference of submodular functions

Given an arbitrary set function f, it can be expressed as a difference
f = g — h between two polymatroid functions, where both g and h are
polymatroidal.

@ The semi-gradients above offer a majorization/maximization
framework to minimize any function that is naturally expressed as
such a difference.

@ E.g., to minimize f = g — h, starting with a candidate solution X,
repeatedly choose a modular supergradient for g and modular
subgradient for h, and perform modular minimization (easy). (see
lyer & Bilmes, 2012).

@ Similar strategy used for other combinatorial constraints (.e.,
cooperative cut, submodular on edges, see Jegelka & Bilmes 2011)

@ Opens the doors to first-order methods for discrete optimization.
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Extensions

Outline: Part 3

@ Continuous Extensions
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Extensions
1

Continuous Extensions of Discrete Set Functions

e Any function f : 2V — R (equivalently f : {0,1}" — R) can be
extended to a continuous function f : [0,1]Y — R.
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Extensions
1

Continuous Extensions of Discrete Set Functions

o Any function f : 2V = R (equivalently f : {0, 1}Y = R) can be
extended to a continuous function f : [0,1]V — R.
@ In fact, any such discrete function defined on the vertices of the n-D

hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n =1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM
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Extensions
1

Continuous Extensions of Discrete Set Functions

o Any function f : 2V = R (equivalently f : {0, 1}Y = R) can be
extended to a continuous function f : [0,1]V — R.
@ In fact, any such discrete function defined on the vertices of the n-D

hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM

@ Since there are an exponential number of vertices {0,1}", important
questions regarding such extensions is:
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Extensions
1

Continuous Extensions of Discrete Set Functions

o Any function f : 2V = R (equivalently f : {0, 1}Y = R) can be
extended to a continuous function f : [0,1]V — R.

@ In fact, any such discrete function defined on the vertices of the n-D
hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM

@ Since there are an exponential number of vertices {0,1}", important
questions regarding such extensions is:

@ When are they computationally feasible to obtain or estimate?

J. Bilmes Submodularity page 134 / 162



Extensions
1

Continuous Extensions of Discrete Set Functions

o Any function f : 2V = R (equivalently f : {0, 1}Y = R) can be
extended to a continuous function f : [0,1]V — R.
@ In fact, any such discrete function defined on the vertices of the n-D

hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM

@ Since there are an exponential number of vertices {0,1}", important
questions regarding such extensions is:

@ When are they computationally feasible to obtain or estimate?
@ When do they have nice mathematical properties?
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Extensions
1

Continuous Extensions of Discrete Set Functions

o Any function f : 2V = R (equivalently f : {0, 1}Y = R) can be
extended to a continuous function f : [0,1]V — R.

@ In fact, any such discrete function defined on the vertices of the n-D
hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM

@ Since there are an exponential number of vertices {0,1}", important
questions regarding such extensions is:

@ When are they computationally feasible to obtain or estimate?
@ When do they have nice mathematical properties?
© When are they useful for something practical?
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Extensions
[EERERN

A continuous extension of f

@ Given a submodular function f, a w € RY, define chain
Vi = {v1,va,...,v;} based on w sorted in decreasing order. Then
Edmonds’s greedy algorithm gives us:

f(w)
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Extensions
[EERERN

A continuous extension of f

@ Given a submodular function f, a w € RY, define chain
Vi = {v1, va,...,v;} based on w sorted in decreasing order. Then
Edmonds’s greedy algorithm gives us:

f(w) = max(wx : x € Py) (120)
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Extensions
[EERERN

A continuous extension of f

@ Given a submodular function f, a w € RY, define chain
Vi = {v1, va,...,v;} based on w sorted in decreasing order. Then
Edmonds’s greedy algorithm gives us:

f(w) = max(wx : x € Py) (120)

m

=Y w(v)f(vilVi-1) (121)

i=1
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Extensions
[EERERN

A continuous extension of f

@ Given a submodular function f, a w € RY, define chain
Vi = {v1, va,...,v;} based on w sorted in decreasing order. Then
Edmonds’s greedy algorithm gives us:

f(w)=

3

ax(wx : x € Pr) (120)

w(vi)f (vl Vi-1) (121)

I
.MB

1

I
NE

w(vi)(f(Vi) = f(Vi-1)) (122)
1

J. Bilmes Submodularity page 135 / 162



Extensions
[EERERN

A continuous extension of f

@ Given a submodular function f, a w € RY, define chain
Vi = {v1, va,...,v;} based on w sorted in decreasing order. Then
Edmonds’s greedy algorithm gives us:

f(w) = max(wx : x € Py) (120)
=" w(vi)f(vi| Vio1) (121)
i=1
=D wv)(f(V}) = f(Vi-1)) (122)
i=1
m—1
= w(vm)f(Vin) + ) (w(vi) = w(vi)) (Vi) (123)
i=1
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Extensions
[NERNRR

A continuous extension of f

@ Definition of the continuous extension, once again:

f(w) = max(wx : x € P) (124)
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Extensions
[NERNRR

A continuous extension of f

@ Definition of the continuous extension, once again:
f(w) = max(wx : x € Pf) (124)

@ Therefore, if f is a submodular function, we can write

f(w)
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Extensions
[NERNRR

A continuous extension of f

@ Definition of the continuous extension, once again:
f(w) = max(wx : x € Pf) (124)

@ Therefore, if f is a submodular function, we can write

F(w) = w(vm)f(Vm) + Z w(vii1))F(Vi) (125)
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Extensions
[NERNRR

A continuous extension of f

@ Definition of the continuous extension, once again:
f(w) = max(wx : x € Pf) (124)

@ Therefore, if f is a submodular function, we can write

m—1
F(w) = w(vim)f (Vi) + D (w(vi) = w(viz1))F(V5) (125)
i=1

=S AV (126)
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Extensions
[NERNRR

A continuous extension of f

@ Definition of the continuous extension, once again:
f(w) = max(wx : x € Pf) (124)

@ Therefore, if f is a submodular function, we can write

m—1
F(w) = w(vim)f (Vi) + D (w(vi) = w(viz1))F(V5) (125)
i=1

=3 NV (126)
i=1

where A, = w(vi,) and otherwise \; = w(v;) — w(vj41), where the
elements are sorted according to w as before.
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Extensions
[NERNRR

A continuous extension of f

@ Definition of the continuous extension, once again:
f(w) = max(wx : x € Pf) (124)

@ Therefore, if f is a submodular function, we can write

m—1
F(w) = w(vm)f (Vi) + Y (w(vi) — w(viz))F(Vi) (125)
i=1

=3 NV (126)
i=1

where A, = w(vi,) and otherwise \; = w(v;) — w(vj41), where the
elements are sorted according to w as before.

@ From convex analysis, we know f(w) = max(wx : x € P) is always
convex in w for any set P C RV since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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Extensions
(NLRNRR!

An extension of f

e But, for any f : 2V 5 R, even non-submodular f, we can define an
extension in this way, with

m

Fw)=>_ Aif(Vi) (127)
i=1
with the V; = {w1,...,v;}'s defined based on sorted descending

order of w as in w(vy) > w(va) > -+ > w(vy,), and where

i) — w(vi if i
for e {L,....m). /\I_:{w(v) w(vipr) ifi<m (126)

w(vm) ifi=m

so that w =317, A1y,
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Extensions
(NLRNRR!

An extension of f

e But, for any f: 2V 3 R, even non-submodular f, we can define an
extension in this way, with

f(w) = zm:)\,-f(\/;) (127)
i=1

with the V; = {wv1,...,v;}'s defined based on sorted descending
order of w as in w(vy) > w(va) > -+ > w(vy,), and where
w(v;) —w(viz1) ifi<m (128)

w(vm) if i=m

fori e {1,...,m}, )\,-:{

so that w =", Aily,

@ Note that w = ) 7, \j1y, is an interpolation of certain vertices of
the hypercube, and that f(w) = ", \if(V;) is the corresponding
interpolation of the values of f at sets corresponding to each
hypercube vertex.
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Extensions
(NNL RN

Lovasz Extension, Submodularity and Convexity

Lovasz proved the following important theorem.

A function f : 2¥ — R is submodular iff its its continuous extension
defined above as f(w) = > \if (Vi) withw = > Aily. is a convex
function in RV
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Extensions
[NNRY AR

Minimizing f vs. minimizing f

Let f be submodular and f be its éova’sz extension. TNhen
min{f(A)|JAC V} = min,,c 013" f(w) = min,cpo v f(w).

@ Let w* € argmin {IN‘(W)|W e [o, l]V} and let
A* € argmin {f(A)|A C V}.
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Extensions
[NNRY AR

Minimizing f vs. minimizing f

Let f be submodular and f be its éova’sz extension. TNhen
min{f(A)|JAC V} = min,,c 013" f(w) = min,cpo v f(w).

o Let w* € argmin {?(W)|W e [o, 1]V} and let

A* € argmin {f(A)|A C V}.
@ Define chain {V/} based on descending sort of w*. Then by greedy
evaluation of L.E. we have

Fw") = Y NF(V7) = F(A") = min {f(A)JAC V}  (129)
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Extensions
[NNRY AR

Minimizing f vs. minimizing f

Let f be submodular and f be its éova’sz extension. TNhen
min{f(A)|JAC V} = min,,c 013" f(w) = min,cpo v f(w).

o Let w* € argmin {?(W)|W e [o, 1]V} and let
A* € argmin {f(A)|A C V}.

@ Define chain {V/} based on descending sort of w*. Then by greedy
evaluation of L.E. we have

F(w*) = Y NF(V7) = F(A") = min {f(A)JAC V}  (129)

@ Then we can show that, for each i s.t. \; > 0,
F(Vi') = F(AY) (130)
So such {V*} are also minimizers.
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Extensions
(NERNR N

Duality: convex minimization of L.E. and min-norm alg.

@ Let f be a submodular function with f it's Lovasz extension. Then
the following two problems are duals:

maximize —IxII3 (132a)
subject to x € Br  (132b)
where Bf = Pr N {x € RV : x(V) = f(V)} is the base polytope of
submodular function f, and ||x||3 = 3" .\ x(e)? is the squared
2-norm.

I 1 5
minimize f(w)+§||w||2 (131)

we

@ Minimum-norm point algorithm (Fujishige-1991, Fujishige-2005,
Fujishige-2011, Bach-2013) is essentially an active-set procedure for
quadratic programming, and uses Edmonds’s greedy algorithm to
make it efficient.

@ Unknown worst-case running time, although in practice it usually
performs quite well.
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Extensions
(NRRNRY |

Other applications of Lovasz Extension

@ “fast” submodular function minimization, as mentioned above.

@ Structured sparse-encouraging convex norms (Bach-2011),
semi-supervised learning, image denoising (as mentioned yesterday).

@ Non-linear measures (Denneberg), non-linear aggregation functions
(Grabisch et. al), and fuzzy set theory.

@ Note, many of the critical properties of the Lovadsz extension were
given by Jack Edmonds in the 1960s. Choquet proposed an identical
integral in 1954, and G. Vitali proposed a similar integral in 1925!
G.Vitali, Sulla definizione di integrale delle funzioni di una variabile, Annali
di Matematica Serie 1V, Tomo [,(1925), 111-121
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Extensions
1

Submodular Concave Extension

e Finding a concave extension (the concave envelope, smallest concave
upper bound) of a submodular function is NP-hard (Vondrak).
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Extensions
1

Submodular Concave Extension

e Finding a concave extension (the concave envelope, smallest concave
upper bound) of a submodular function is NP-hard (Vondrak).

@ However, a useful surrogate is the multi-linear extension.

For a set function f : 2¥ — R, define its multilinear extension
F:[0,1]Y — R by

F)=>_fS]Ix I @ —x) (133)

scv i€S  jeV\S
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Extensions
1

Submodular Concave Extension

e Finding a concave extension (the concave envelope, smallest concave
upper bound) of a submodular function is NP-hard (Vondrak).

@ However, a useful surrogate is the multi-linear extension.

For a set function f : 2¥ — R, define its multilinear extension
F:[0,1]Y — R by

F)=>_fS]Ix I @ —x) (133)

scv €S jeV\S

@ Not concave, but still provides useful approximations for many
constrained maximization algorithms (e.g., multiple matroid and/or
knapsack constraints) via the continuous greedy algorithm followed
by rounding.
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Extensions
1

Submodular Concave Extension

e Finding a concave extension (the concave envelope, smallest concave
upper bound) of a submodular function is NP-hard (Vondrak).

@ However, a useful surrogate is the multi-linear extension.

For a set function f : 2¥ — R, define its multilinear extension
F:[0,1]Y — R by

F)=>_fS]Ix I @ —x) (133)

scv i€S  jeV\S

@ Not concave, but still provides useful approximations for many
constrained maximization algorithms (e.g., multiple matroid and/or
knapsack constraints) via the continuous greedy algorithm followed
by rounding.

@ Often has to be approximated.
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Concave or Convex?

Outline: Part 3

@ Like Concave or Convex?
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Concave or Convex?
[NRRRR

Submodular: Concave? Convex? Neither? Both?

@ Are submodular functions more like convex or more like concave
functions?
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Concave or Convex?
(N ERNN]

Submodular is like Concave

@ Convex 1: Like convex functions, submodular functions can be
minimized efficiently (polynomial time).
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Concave or Convex?
(N ERNN]

Submodular is like Concave

@ Convex 1: Like convex functions, submodular functions can be
minimized efficiently (polynomial time).

@ Convex 2: The Lovasz extension of a discrete set function is convex
iff the set function is submodular.
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Concave or Convex?
(NLRNN]

Submodular is like Concave

e Convex 3: Frank's discrete separation theorem: Let f : 2Y — R be
a submodular function and g : 2¥ — R be a supermodular function
such that for all A C V,

g(A) < f(A) (134)
Then there exists modular function x € RY such that for all A C V:
g(A) < x(A) < f(A) (135)
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Concave or Convex?
(NLRNN]

Submodular is like Concave

e Convex 3: Frank's discrete separation theorem: Let f : 2Y — R be
a submodular function and g : 2¥ — R be a supermodular function
such that for all AC V,

g(A) < f(A) (134)
Then there exists modular function x € RY such that for all A C V:
g(A) < x(A) < F(A) (135)

e Compare to convex/concave case.

@ mx)
N glx)
X
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Concave or Convex?
(NNL RN

Submodular is like Concave

@ Convex 4: Set of minimizers of a convex function is a convex set.
Set of minimizers of a submodular function is a lattice. l.e., if
A, B € argminycy f(A) then AU B € argminycy f(A) and
AN B € argminc\, f(A) -
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Concave or Convex?
(NNL RN

Submodular is like Concave

@ Convex 4: Set of minimizers of a convex function is a convex set.
Set of minimizers of a submodular function is a lattice. l.e., if
A, B € argminycy, f(A) then AU B € argminy-y f(A) and
ANB e argmin;\g/ f(A) -

@ Convex 5: Submodular functions have subdifferentials and
subgradients tight at any point.
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Concave or Convex?
L

Submodularity and Concave

@ Concave 1: A function is submodular if for all X C V and j, k € V
f(X +Jj)+ (X +k) > F(X+j+k)+f(X) (136)
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Concave or Convex?
L

Submodularity and Concave

@ Concave 1: A function is submodular if for all X C V and j, k € V
F(X +J)+ (X + k) > (X +j+ k) +f(X) (136)

e With the gain defined as V;(X) = f(X + ) — f(X), seen as a form
of discrete gradient, this trivially becomes a second-order condition,
akin to concave functions: A function is submodular if for all X C V
and j, k € V, we have:

V,Vif(X) <0 (137)
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Concave or Convex?
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Submodularity and Concave

@ Concave 1: A function is submodular if for all X C V and j, k € V
F(X +J)+ (X + k) > (X +j+ k) +f(X) (136)

e With the gain defined as V;(X) = f(X + ) — f(X), seen as a form
of discrete gradient, this trivially becomes a second-order condition,
akin to concave functions: A function is submodular if for all X C V
and j, k € V, we have:

V,Vif(X) <0 (137)

@ Concave 2: Recall, Theorem 16: composition h=1fo g : 2V 5 R
(i.e., h(S) = g(f(S))) is nondecreasing submodular, if g is
non-decreasing concave and f is nondecreasing submodular.
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Submodularity and Concave

@ Concave 1: A function is submodular if for all X C V and j, k € V
F(X +J)+ (X + k) > (X +j+ k) +f(X) (136)

e With the gain defined as V;(X) = f(X + ) — f(X), seen as a form
of discrete gradient, this trivially becomes a second-order condition,
akin to concave functions: A function is submodular if for all X C V
and j, k € V, we have:

ViVif(X) <0 (137)
e Concave 2: Recall, Theorem 16: composition h=fog:2¥ - R
(i.e., h(S) = g(f(S))) is nondecreasing submodular, if g is
non-decreasing concave and f is nondecreasing submodular.

@ Concave 3: Submodular functions have superdifferentials and
supergradients tight at any point.
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Concave or Convex?
L

Submodularity and Concave

@ Concave 1: A function is submodular if for all X C V and j, k € V
F(X +J)+ (X + k) > (X +j+ k) +f(X) (136)

e With the gain defined as V;(X) = f(X + ) — f(X), seen as a form
of discrete gradient, this trivially becomes a second-order condition,
akin to concave functions: A function is submodular if for all X C V
and j, k € V, we have:

V,Vif(X) <0 (137)

e Concave 2: Recall, Theorem 16: composition h=fog:2¥ - R
(i.e., h(S) = g(f(S))) is nondecreasing submodular, if g is
non-decreasing concave and f is nondecreasing submodular.

@ Concave 3: Submodular functions have superdifferentials and
supergradients tight at any point.

@ Concave 4: Concave maximization solved via local gradient ascent.
Submodular maximization is (approximately) solvable via greedy
(coordinate-ascent-like) algorithms.
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Concave or Convex?
(NNANR}

Submodularity and neither Concave nor Convex

@ Neither 1: Submodular functions have simultaneous sub- and
super-gradients, tight at any point.
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Concave or Convex?
(NNANR}

Submodularity and neither Concave nor Convex

@ Neither 1: Submodular functions have simultaneous sub- and
super-gradients, tight at any point.

@ Neither 2: Concave functions are closed under min, while
submodular functions are not.
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Submodularity and neither Concave nor Convex

@ Neither 1: Submodular functions have simultaneous sub- and
super-gradients, tight at any point.

@ Neither 2: Concave functions are closed under min, while
submodular functions are not.

@ Neither 3: Convex functions are closed under max, while
submodular functions are not.

@ Neither 4: Convex functions can't, in general, be efficiently or
approximately maximized, while submodular functions can be.
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Concave or Convex?
(NNANR}

Submodularity and neither Concave nor Convex

@ Neither 1: Submodular functions have simultaneous sub- and
super-gradients, tight at any point.

@ Neither 2: Concave functions are closed under min, while
submodular functions are not.

@ Neither 3: Convex functions are closed under max, while
submodular functions are not.

@ Neither 4: Convex functions can't, in general, be efficiently or
approximately maximized, while submodular functions can be.

@ Neither 5: Convex functions have local optimality conditions of the
form V,f(x) = 0. Analogous submodular function semi-gradient
condition m(X) = 0 offers no such guarantee (for neither
maximization nor minimization) — although there are other forms
of local guarantees.
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Optimization

Outline: Part 3

© Optimization
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Optimization
[NERRNT]

Submodular Optimization Results Summary

Maximization

Minimization

Unconstrained

In general, NP-hard, greedy
gives 1 — 1/e approximation
for polymatroid cardinality
constrained, improved with
curvature.

Polynomial time but ineffi-
cient O(n%y + n®). Special
cases (graph representable,
sums of concave over mod-
ular) much faster, min-norm
empirically often works well.

Constrained

NP-hard. For some con-
straints  (matroid,  knap-
sack), approximable with

greedy (or approximate con-
cave relaxations). Curvature
dependence  for  combi-
natorial and submodular
constraints.

In general, NP-hard even to
approximate, but for many
submodular functions still
approximable. Curvature
dependence for combinato-
rial and submodular con-
straints.
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Optimization
[LERNNR

SFM Summary (modified from S. lwata’'s slides)
General Submodular Function Minimization

’ Wolfe (1976)/von Hohenbalken (1975) k’ ’ F“jiShige“gBO”gg”H’ Bach (2012”3)‘

minimum norm point gen. convex methods
algorithm
N Edmonds (1965/1970)‘
’ Grotschel, Lovasz, Schrijver (1981, 1988) —

Ellipsoid Method ’ Bixby, Cunningham Topkis (1984)‘
0(1’15)/ log M) ’ Cunningham (1985) ‘
7 8
O(n'y logn) e N\, OW'y+n’)
Iwata, Fleischer, Fujishige (2000) ‘ ’ Schrijver (2000) ‘

{
\ ’ Fleischer, lwata (2000) ‘
wata
— |

Fully Combinatorial

’ Iwata (2003) ( ’ Orlin (2007) ‘
O((n'y +n*)log M) O(nsy +n%)

Iwata, Orlin (2009)
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Optimization
L RNAR

Theoretical Results: Constrained Submodular Min

minimize f(5):S€§ (138)

@ Constraint set & might either be cuts, paths, matchings, cardinality
constraints, etc.
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Optimization
L RNAR

Theoretical Results: Constrained Submodular Min

minimize f(5):S€§ (138)

o Constraint set & might either be cuts, paths, matchings, cardinality

constraints, etc.
@ Minimization algorithms should have multiplicative approximation
guarantee, i.e,. f(S) < af(S5*) where S* is optimal solution, o > 1.
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Optimization
L RNAR

Theoretical Results: Constrained Submodular Min

minimize f(5):S€§ (138)
o Constraint set & might either be cuts, paths, matchings, cardinality
constraints, etc.
@ Minimization algorithms should have multiplicative approximation

guarantee, i.e,. f(S) < af(S*) where S* is optimal solution, o > 1.
@ In general, how good are the algorithms? Depends on the constraint:

Constraint: MMin EA Lower bound
trees/matchings n vm n

cuts m v/m vm
paths n vm n?/3
cardinality k Vn Vn

Goel et al (09), Goemans et al (2009), Jegelka-Bilmes (11) ...
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Optimization
L RNAR

Theoretical Results: Constrained Submodular Min

minimize f(5):S€§ (138)
o Constraint set 8 might either be cuts, paths, matchings, cardinality
constraints, etc.
@ Minimization algorithms should have multiplicative approximation
guarantee, i.e,. f(S) < af(S*) where S* is optimal solution, o > 1.
@ In general, how good are the algorithms? Depends on the constraint:

Constraint: MMin EA Lower bound
trees/matchings n vm n

cuts m v/m v/m
paths n vm n?/3
cardinality k Vvn Vvn

Goel et al (09), Goemans et al (2009), Jegelka-Bilmes (11) ...
@ Worst case polynomial upper/lower bounds.
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Optimization
L RNAR

Theoretical Results: Constrained Submodular Min

minimize f(5):S€§ (138)

o Constraint set & might either be cuts, paths, matchings, cardinality
constraints, etc.

@ Minimization algorithms should have multiplicative approximation
guarantee, i.e,. f(S) < af(S*) where S* is optimal solution, o > 1.

@ In general, how good are the algorithms? Depends on the constraint:

Constraint: MMin EA Lower bound
trees/matchings n vm n

cuts m v/m v/m
paths n vm n?/3
cardinality k Vvn Vvn

Goel et al (09), Goemans et al (2009), Jegelka-Bilmes (11) ...
@ Worst case polynomial upper/lower bounds.
@ Other forms of constraints are “easy” (e.g., certain lattices,
odd/even sets (see McCormick's SFM tutorial paper).
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Optimization
ARY AR

Submodular Maximization: Unconstrained

@ In general, NP-hard. Bound take form f(S) > af(5*), a < 1.
@ The greedy algorithm for monotone submodular maximization:
Algorithm 2: The Greedy Algorithm

Set50<—@;
fori<0...|V|-1do

Choose v; as follows: v; = {argmaxvev\si f(SiuU {v})} ;
Set 5,'+1 «— S U {V,'} ;

@ has a strong guarantee:

Given a polymatroid function f , the above greedy algorithm returns sets
Si such that for each i we have f(S;) > (1 — 1/e) maxs|<; f(S).
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Optimization
1

Submodular Max, Constrained

Monotone Maximization

’ Constraint Approximation | Hardness ‘ Technique ‘
S| < k 1-1/e 1-1/e greedy
matroid 1-1/e 1—1/e | multilinear ext.

O(1) knapsacks 1-1/e 1—1/e | multilinear ext.
k matroids k+ € k/ log k local search
Enar;]jatgilsds and O(1) O(k) k/log k | multilinear ext.

Nonmonotone Maximization
] Constraint Approximation \ Hardness \ Technique
Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.
O(1) knapsacks 1/e 0.49 multilinear ext.
k matroids k+ O(1) k/ log k local search
k matroids and O(1) .
knapsacks O(k) k/log k | multilinear ext.
, compiled by J. Vondrak
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Optimization
(ARRNI

Constrained Submodular Minimization

@ Bounds can be improved if we use a functions “curvature”
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Optimization
(ARRNI

Constrained Submodular Minimization

@ Bounds can be improved if we use a functions “curvature”

@ Curvature of a monotone submodular function:

re(X) = l—mjin f(jf|()j)\’/) (139)

The solutions X then have guarantees in terms of curvature ky:

0<kr2re(V)<1 (140)
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Optimization
(ARRNI

Constrained Submodular Minimization

@ Bounds can be improved if we use a functions “curvature”

@ Curvature of a monotone submodular function:

ke(X) 21— mjin f(Jf|()J<)\j) (139)

The solutions X then have guarantees in terms of curvature kr:

0<kr2re(V)<1 (140)

@ Curvature dependent constrained maximization bounds:

Constraints | Method | Approximation bound | Lower bound

Cardinality | Greedy hif(l — e ff) Kif(l — e hf)
. 1 —K

Matroid Greedy 1/(1+ kr) (1—e")
Knapsack | Greedy 1-1/e 1-1/e
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Optimization
(ARRNI

Constrained Submodular Minimization

@ Bounds can be improved if we use a functions “curvature”

@ Curvature of a monotone submodular function:

i fU)

The solutions X then have guarantees in terms of curvature kr:

ke(X) 21— min f(j|X\j). (139)

0<kr2re(V)<1 (140)

@ Curvature dependent constrained maximization bounds:

Constraints | Method | Approximation bound | Lower bound

Cardinality | Greedy %{(1 — e~ ") H%(l — e hf)
Matroid Greedy 1/(1 + k) K—lf(l — e fr)
Knapsack | Greedy 1-1/e 1-1/e

@ Improve curvature independent bounds when k¢ < 1.
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Optimization
[ANRNAT ]

Curvature Dependent Bounds for Constraint Minimization

@ Minimization bounds take the form:

A x| 1
0 = T D= mey ) =
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Optimization
[ANRNAT ]

Curvature Dependent Bounds for Constraint Minimization

@ Minimization bounds take the form:

~ | X 1
) < T = D = me (7))

@ Lower curvature = Better guarantees!
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Optimization
[ANRNAT ]

Curvature Dependent Bounds for Constraint Minimization

@ Minimization bounds take the form:

f(X) <

X

T (X = DA = s (X))

@ Lower curvature = Better guarantees!

X)) < T

LI

Lower bound

T+ (m—1)(1—rs)

Constraint Semigradient | Curvature-Ind.

Card. LB e (eI CELT o(n'/?) K{(l(\f—w)
Spanning Tree jEn 1")(1_,“) 0(n) g}(m)

Matchings R (e 2’3(17,“) o(n) Q(m)

s-t path =) (=r) 0(n*3) (m)
s-t cut 1+(m_'1n)(1_,€f) ‘9(”2/3) N(m)
s-t cut o 0(v/n) Q(l-f—(\/E——\{)(l—nf))

Summary of results for constrained minimization (lyer, Jegelka, Bilmes, 2013).
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Outline: Part 3

@ Reading
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Classic References

@ Jack Edmonds's paper “"Submodular Functions, Matroids, and
Certain Polyhedra” from 1970.

@ Nemhauser, Wolsey, Fisher, “A Analysis of Approximations for
Maximizing Submodular Set Functions-I", 1978

@ Lovdsz's paper, “Submodular functions and convexity”, from 1983.
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Classic Books

Fujishige, “Submodular Functions and Optimization”, 2005
Narayanan, “Submodular Functions and Electrical Networks”, 1997
Welsh, “Matroid Theory”, 1975.

Oxley, “Matroid Theory”, 1992 (and 2011).

Lawler, "Combinatorial Optimization: Networks and Matroids”,
1976.

@ Schrijver, “Combinatorial Optimization”, 2003
@ Gruenbaum, “Convex Polytopes, 2nd Ed", 2003.
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Recent online material with an ML slant

@ My class, most proofs for above are given. http://j.ee.
washington.edu/~bilmes/classes/eeb96b_spring 2014/

All lectures being placed on youtube!

@ Andreas Krause's web page http://submodularity.org.

@ Stefanie Jegelka and Andreas Krause's ICML 2013 tutorial
http://techtalks.tv/talks/
submodularity-in-machine-learning-new-directions-part-i/
58125/

@ Francis Bach's updated 2013 text.
http://hal.archives-ouvertes.fr/docs/00/87/06/09/PDF/
submodular_fot_revised_hal.pdf

@ Tom McCormick's overview paper on submodular minimization
http://people.commerce.ubc.ca/faculty/mccormick/
sfmchap8a.pdf

o Georgia Tech's 2012 workshop on submodularity: http:
//www.arc.gatech.edu/events/arc-submodularity-workshop
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The End: Thank you!

J. Bilmes

Making Everything Easier!”

gubmodularity

FOR

DUMMIES

Learn to:

with a 1 — 1/e guarantee!

@ Minimize your functions in
polynomial time!

o Draw beautiful polyhedra!

@ Solve exponentialy large
linear programs in polynomial
time!

Paul E. Matroid

Wonmy Neuswon Overee

Submodularity page

@ Greedily choose your data sets

Moniton Submodularanian

f(A) + f(B)
>

f(AUB) 4+ f(ANB)

) @
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