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Modern Times
Big Data is Really Big and Getting Even Bigger.

Sensors &
Devices
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Every day, we create 2.5 quintillion bytes (2.5 billion gigabytes) of
data (source: IBM).
90% of the world’s data has been created in the last two years.
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Big Data in Machine Learning
Statistics and Machine Learning

“There’s no data like more data”, more samples reduces sampling
error, higher statistical significance, and better p values.

Computational Consequences:
More expensive, computational resource demands (compute and
storage), distributed implementations, more complicated
Research opportunities to address new computational challenges

1 systems programming, parallel and distributed computing,
network topologies, efficient databases.

2 Examples: map reduce, Hadoop, GraphLab, HaLoop, Greenplum,
Asterix, Spark, SystemML, MLBase, Myria, etc.
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Bigger is Different

H2O molecules

small (n-body)

medium (fluid dynamics, viscosity, compresibility),

large (global weather systems, meteorology).

Same underlying molecular collision events!
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Bigger is Different

Neurons

small (neural spike trains, population coding)
medium (intelligence, consciousness, psychology)
large (society, social choice, wisdom of the crowd)

Same underlying electrical and chemical impulses.
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Bigger is Different

“More is Different”, P.W. Anderson, 1972
(Nobel laureate). “The ability to reduce
everything to simple fundamental laws does
not imply the ability to start from those laws
and reconstruct the universe.”

“. . . alterations of being . . . are not only the
transition of one magnitude into another,
but a transition from quantity into quality,”
Hegel, The Science of Logic, 1816
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Big Data is Different Data: A Proposition

Hypothesis: extremely large data sets offer qualitatively different
capabilities than small data sets.

Some Evidence: Image Completion (Hays & Efros, 2007)

“our initial experiments . . . on a dataset of ten thousand images
were very discouraging. However, increasing the image collection
to two million yielded a qualitative leap in performance”

Problem: Big data sets are big, unwieldy, computationally
challenging, and highly redundant.

Research Quest: Can statistical predictions and actions be made
cost effectively using the right small data?
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Sets and set functions

We are given a finite “ground” set of objects:

V =




Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f (V ) = 6
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Sets and set functions

Subset A ⊆ V of objects:

A =




Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f (A) = 1
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Sets and set functions

Subset B ⊆ V of objects:

B =




Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f (B) = 6
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Two Equivalent Submodular Definitions

Definition (submodular)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have
that:

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) (1)

Definition (submodular (diminishing returns))

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \ B , we have that:

f (A ∪ {v})− f (A) ≥ f (B ∪ {v})− f (B) (2)

Incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B .
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Example: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls,
f (S) counts the number of distinct colors.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a
Larger Context (diminishing returns). Thus, f is submodular.
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Discrete Optimization

Unconstrained minimization and maximization:

min
X⊆V

f (X ) (3) max
X⊆V

f (X ) (4)

Knowing nothing about f ,
need 2n queries for any quality
assurance on candidate solu-
tion. Otherwise, solution can
be unboundedly poor!!

∅

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

When f is submodular, however, Eq. (3) is polytime, and Eq. (4)
is constant-factor approximable.
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Constrained Discrete Optimization
Constrained case: interested only in a subset of subsets S ⊆ 2V .

Ex: Bounded size S =
{S ⊆ V : |S | ≤ k}, or given cost
vector w and budget, bounded
cost

{
S ⊆ V :

∑
s∈S w(s) ≤ b

}
. ∅

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

Ex: feasible sets S as
combinatorial objects.

Trees

Matchings

Paths

Verte
x Covers

Ed
ge

 C
ov

er
s

Cuts

Ex: feasible sets S as
sub-level sets of g ,
S = {S ⊆ V : g(S) ≤ α},
sup-level sets S =
{S ⊆ V : g(S) ≥ α}
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Constrained Discrete Optimization

Constrained discrete optimization problems:

maximize f (S)

subject to S ∈ S (5)

minimize f (S)

subject to S ∈ S (6)

where S ⊆ 2V is the feasible set of sets.

Fortunately, when f (and g) are submodular, these problems can
often be solved with guarantees, often very efficiently! (Feige,
Mirrokni & Vondrák 20XX; Goel, Karande, Tripathi & Wang; Svitkina &
Fleischer 2010; Jegelka & Bilmes 2011, Iyer, Jegelka, & Bilmes 2013, Iyer &
Bilmes 2014, and many others).
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The Entropy Function

Given a joint distribution p(xV ) over |V | random variables:

f (A) , H(XA) = −
∑
xA

p(xA) log p(xA) (7)

with p(xV ) joint probability distribution over XV .

Shannon’s incredible 1948 paper stated that entropy is subadditive
H(XA) + H(XB) ≤ H(A ∪ B). McGill 1954 stated that further
conditioning reduces entropy, H(XA|XB) ≥ H(XA|XB ,XC ).
This condition is identical to submodularity!
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A Salmagundi of Submodularity

Many diverse functions are submodular. E.g.,
set cover, vertex cover, edge cover, graph cut, bipartite
neighborhoods, facility location, sums of weighted concave
composed with additive functions, matrix rank, matroid rank,
entropy, KL-divergence functions, quantum entropy, log
determinant, spectral functions applied to Hermitian matrix, etc.

All submodular functions express a form of “abstract
combinatorial independence” or “generalized complexity”

Given submodular f , ∃ a notion of “independence” , i.e., A⊥⊥B :

f (A ∪ B) = f (A) + f (B), (8)

and a notion of “conditional independence” , i.e., A⊥⊥B |C :

f (A ∪ B ∪ C ) + f (C ) = f (A ∪ C ) + f (B ∪ C ) (9)
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Submodularity as a Model for Real-World Data

Submodularity: useful model to valuate set of data objects.
Meaning of valuations typically depend on if function is to be
maximized or minimized.

Maximization
diversity, coverage, span,

irredundancy, and information.

Minimization
cooperative costs, complexity,

roughness, and irregularity.
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Big Data Summarization: Submodular Approaches

We are given a set indexed by V

Approach: 1) find a good function f : 2V → R+ that represents
information in V . 2) Then optimize f to obtain a subset.

1) Heuristic: design f by hand, hoping that f is a good proxy for the
information within V . Acknowledge that f is a surrogate
objective, guarantees are only in terms of f .

2) Alternatively: attempt to learn f , or some aspects of a good f , in
some fashion based on training data.

We report on both kinds of results for summarizing large data sets
below.
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Document Summarization

Given a large set of documents, summarize it down to the essential set
of sentences.
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Extractive Document Summarization

We extract sentences (green) as a summary of the full document

⊂

The summary on the left is a subset of the summary on the right.

Consider adding a new (blue) sentence to each of the two
summaries.

Marginal benefit of adding the new (blue) sentence to the smaller
(left) summary is no less than the marginal benefit of adding blue
sentence to the larger (right) summary.

J. Bilmes Sum. Large Data — 3/27/2015 page 23 / 52



Large Data Gen. Independence/Complexity Doc Summarization Data Summarization Image Summarization Assay Selection End

Submodularity for document summarization?

Exists many unintentional uses of submodularity in NLP community.

E.g., maximum marginal relevance (MMR) (Carbonell &
Goldstein, 1998) has a diminishing returns property.

Modified MMR - (McDonald, 2007)

Concept-based approaches (Filatova & Hatzivassiloglou 2004;
Takamura & Okumura, 2009; Riedhammer et al., 2010; Qazvinian
et al., 2010).

Automatic evaluation of candidate summarizes are submodular:
ROUGE-N (Lin 2004) and Pyramid (Nenkova & Passonneau,
2004).

Both ROUGE-N and Pyramid are parameterized by good quality
summarizes produced by humans, used only for evaluation.
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Structured Learning of Submodularity

w>ft(y) is a convex combination of submodular functions.

Mixture weights can be learnt via structured max-margin.

minimize
w≥0,ξt

1

T

∑
t

ξt +
λ

2
‖w‖2 (10)

subject to w>ft(y
(t)) ≥ max

y∈Yt

(
w>ft(y) + `t(y)

)
− ξt ,∀t

ξt ≥ 0,∀t. (11)

Exponential set of constraints reduced to an embedded
optimization problem, “inference.”
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Typical Results (DUC-06)
Rouge-2: higher is better

Lin & Bilmes,
ACL 2011

Lin & Bilmes, 
2012

9.3

9.4

9.5

9.6

9.7

9.8

9.9

10.0

DUC-06 best system Fidelity+Diversity Submodular mixture

ROUGE-2 Recall (%)

ROUGE-2 F-Measure (%)
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As the data set size grow . . .

There is no data like more data

⇒ more data is like no more data.

Andrew Ng’s Stanford machine 
learning class, 2011
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As the data set sizes grow . . .
Andrew Ng’s Stanford machine 
learning class, 2011

(Riccardi & Hakkani-Tür, 2005, Speech Recognition) (Callison-Burch&Bloodgood, 2010, Machine Translation)

Tong & Koller, 2001 (Soon, Ng, Lim, 2001, Coreference Resolution)
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Speed, memory, attention, problem solving
playing game Luminosity

http://www.lumosity.com/blog/how-much-and-how-often-should-i-train/
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Practical Goals: Submodular Proxies

Research question: Can statistical predictions be cost effective
using small data?

Using a submodular model that is easy to evaluate, can we
produce useful and easy to obtain training data subsets that still
perform well enough?
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Speech Subset Selection

Corpus Summarization: Given a large set of speech utterances
(training corpus) V = {v1, v2, . . . , vn}, choose a small subset
A ⊆ V that is representative of V .

Goal: training on summary should yield highest accuracy possible.

Focus on drastic reductions in training set (one to two orders
magnitude) to reduce model design time.
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Submodular Switchboard: GMM and DNN

1% 5% 10% 20% all

Rand 52.1± 1.5 38.2±0.2 35.1±0.3 34.4±0.2

31.0

HE (words) 49.6 36.5 34.8 N/A
HE (3-phones) 47.5 37.6 34.2 N/A
SM (3-phones) 47.5 35.7 33.3 32.6

Table : Word error rates, random (Rand), histogram-entropy (HE), the
submodular (SM) system. Histogram-entropy results saturate after 10%.

1% 5% 10% 20% all

Rand 43.7±0.5 34.3±0.9 31.5±0.5 29.8±0.2
26.0HE (3-phones) 42.8 33.9 31.3 N/A

SM (3-phones) 41.1 31.8 29.3 28.2

Table : Word error rates for DNN system.
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Data subset selection for machine translation

Statistical Machine Translation (SMT): automatically translate
from one human language to another.

Common problems in SMT: 1) test data is from a target domain
while training data is mixed-domain; 2) phrase translation table,
when based on all training data, can be massive.

Solution: choose and then train using only a (domain-specific)
subset of training data.

Many previous approaches (e.g., n-gram overlap (Ittycheriah &
Roukos, 2007), coverage of unseen n-grams (Eck et al. 2005),
feature decay approach (Biçici & Yuret, 2011-2013)) are
inadvertently submodular.

Some (e.g., Moore & Lewis, 2010) are only modular.

We approach directly using submodular functions.
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Feature based submodular functions

V is set of sentences, U is a set of features (n-grams in our work).

Feature-based submodular functions:

f (X ) =
∑
u∈U

wuφu(mu(X )) (12)

where wu > 0 is a feature weight, mu(X ) =
∑

x∈X mu(x) is a
non-negative modular function specific to feature u, mu(x) is a
relevance score, a non-negative scalar score indicating the
relevance of feature u in object x , and φu is a u-specific
non-negative non-decreasing concave function.
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Results on Two Standard Translation Corpora

Method Data Subset Sizes 
10% 20% 30% 40% 100% 

                               NIST 
Random 0.3991 0.4142 0.4205 0.4220 

0.4257 
Cross-entropy 0.4235 0.4292 0.4290 0.4292 
Submodular-5 0.4285 0.4356 0.4333 0.4324 
Submodular-6 0.4302*  0.4334 0.4371* 0.4349 

EUROPARL 

0.2651 
Random 0.2590 0.2652  0.2677  0.2697  
Cross-entropy 0.2639  0.2687  0.2704  0.2723  
Submodular-5 0.2653  0.2727  0.2697  0.2720  
Submodular-6 0.2697*  0.2700  0.2740*  0.2723  

BLEU test-set scores (higher is better) for random, cross-entropy (standard baseline), and
various submodular methods. Bold = significant over best Xent system.
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Handwritten Image Recognition

Task: Train a machine learning system to classify hand-written
digits correctly.

A standard data set
MNIST (Lecun,’98).

Deep Neural Networks
are state-of-the art on
this kind of data, but
they are very slow to
train and greatly benefit
from GPU hardware.
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Image Recognition, Submodular Selection
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Deep Neural Network Results (MNIST)

Random
FASS+ f fs
US
FASS+ ffac
FASS+ fNN FASS = Filtered

Active Submodu-
lar Selection

US = Uncertainty
Sampling

ffs, ffac, and fNN

are three submod-
ular functions.
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Modern Image collections

Many images, also that have a higher level gestalt than just a few.
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Image Summarization

Task: Summarize collection
of images by representative
subset of the images

Applications:

Summarizing your
holiday pictures.

Summarizing image
search results

Efficient browsing of
image collections

Video frame
summarization

⇓
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Image Summarization - Data Collection

Data Statistics

14 image collections with 100 pictures each

∼ 400 human summaries for every image collection, via Amazon
Turk, about 5500 summaries total!

Example collections:
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Image Summarization

Super-Pixel Based V-Rouge

Whole collection: 3 best summaries:

3 medium summaries:

3 worst summaries:
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Image Summarization

Typical Results - Learnt mixture using Max-Margin

f(∅) = 0 f(V ) = 1

Greedy Min

Average Pruned Random

Max of Learned Mixture

Average Pruned Human

Greedy Max
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Assay Selection

Functional genomics: improve understanding of gene function
(e.g., transcription, translation, and forms of interactions).
Genomic assays measure a DNA activity in cell-type specific
nucleus. E.g., transcription, transcription factor binding, DNA
accessibility, covalent modification of the histone proteins, etc.

Cost prohibitive: The
cost of genomics as-
says limits their ap-
plication. Ideally, to
fully characterize a
cell type, one desires
every possible assay
type, but too costly.

Ce
ll 

Ty
pe

s (
34

6)

Assay Types (316)

Encode
Roadmap
Epigenomics
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Assay Selection: Typical Results

Fortunately, assay types are often redundant.

Goal: choose a subset of assay types such that remaining assay
types can be deduced.

Below are some preliminary results on summarizing genomic
assays, quality of summaries measured in a variety of ways.

metric whole data set averaged random facility location saturated coverage

annotation prediction 0.434 0.270±0.039 0.319 0.330

assay prediction (SVR) 0.690 0.977±0.028 0.898 0.943

assay prediction (LR) 0.728 1.032±0.025 0.969 0.975

function prediction (F-measure) 0.0489 0.0029±0.0025 0.0065 0.0081

function prediction (AUC-PR) 0.076 0.027±0.009 0.038 0.042
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The End

The End: Thank you!

++

+ +

f (A) f (B) f (A ∪ B)

= f (Ar ) +f (C ) + f (Br )

≥

≥
= f (A ∩ B)

f (A ∩ B)

= f (Ar ) + 2f (C ) + f (Br )
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