
Author Retrospective for

Optimizing Matrix Multiply using PHiPAC: a Portable
High-Performance ANSI C Coding Methodology

Jeff Bilmes
EE Department

University of Washington, Seattle
bilmes@ee.washington.edu

Krste Asanović
EECS Department

University of California, Berkeley
krste@eecs.berkeley.edu

Chee-Whye Chin
Department of Mathematics

National University of Singapore
cheewhye@math.nus.edu.sg

Jim Demmel
EECS Department

University of California, Berkeley
demmel@cs.berkeley.edu

Original paper: http://dx.doi.org/10.1145/263580.263662

1. INTRODUCTION
PHiPAC was an early attempt to improve software per-

formance by searching in a large design space of possible
implementations to find the best one. At the time, in the
early 1990s, the most efficient numerical linear algebra li-
braries were carefully hand tuned for specific microarchi-
tectures and compilers, and were often written in assembly
language. This allowed very precise tuning of an algorithm
to the specifics of a current platform, and provided great op-
portunity for high efficiency. The prevailing thought at the
time was that such an approach was necessary to produce
near-peak performance. On the other hand, this approach
was brittle, and required great human effort to try each code
variant, and so only a tiny subset of the possible code de-
sign points could be explored. Worse, given the combined
complexities of the compiler and microarchitecture, it was
difficult to predict which code variants would be worth the
implementation effort.

PHiPAC circumvented this effort by using code generators
that could easily generate a vast assortment of very different
points within a design space, and even across very differ-
ent design spaces altogether. By following a set of carefully
crafted coding guidelines, the generated code was reason-
ably efficient for any point in the design space. To search
the design space, PHiPAC took a rather naive but effective
approach. Due to the human-designed and deterministic na-
ture of computing systems, one might reasonably think that
smart modeling of the microprocessor and compiler would
be sufficient to predict, without performing any timing, the
optimal point for a given algorithm. But the combination
of an optimizing compiler and a dynamically scheduled mi-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ICS 25th Anniversary Volume. 2014
ACM 978-1-4503-2840-1/14/06.
http://dx.doi.org/10.1145/2591635.2591656 .

croarchitecture with multiple levels of cache and prefetching
results in a very complex, highly non-linear system. Small
changes in the code can cause large changes in performance,
thwarting “smart” search algorithms that attempt to build
models of the performance surface. PHiPAC instead used
massive, diverse, offline, and only loosely informed grid or
randomized search, where each point was evaluated by em-
pirically measuring the code running on the machine, which
succeeded due to its indifference to the shape of the perfor-
mance surface.

Of course, a clever human must first create the set of
possible design spaces in the first place, as well as efficient
search, timing, and code-generation methods, and update
everything as technologies change. This is as it should be,
with humans operating at higher levels of abstraction where
creativity can have broader payoffs.

In retrospect, the idea of using a computer instead of a
human to search a combinatorially large design space seems
obvious. Techniques analogous to autotuning were of course
used previously by many researchers in software and hard-
ware, for example, design-space exploration in CAD. Intelli-
gent search had also already become an integral part of many
of the algorithms used to solve problems in artificial intelli-
gence [10]. At the time, however, PHiPAC was received with
some skepticism. As we explain below, PHiPAC was able to
quickly achieve performance that was on par with some of
the best vendor-supplied numerical libraries available at the
time. Therefore, the tides quickly turned, and autotuning is
now widely used in many fields [5].

2. HISTORY
The PHiPAC project grew out of work in the early 1990s

within the Realization Group at the International Computer
Science Institute (ICSI), who were using large artificial neu-
ral networks (ANN) for speech recognition. The training
algorithms for these ANNs were very computationally in-
tensive, but could be formulated using a few dense linear
algebra kernels. The ICSI group had built custom DSP
multiprocessors (the RAP machine [9]) to accelerate these
algorithms, and was building a custom chip, the T0 vector
microprocessor [13], to provide higher performance at lower
cost.



In addition to the custom computing machines, the speech
researchers at ICSI regularly used their network of desktop
SPARC workstations to run ANN training jobs, with a lo-
cally customized version of pmake used to distribute jobs
among all the idle machines. Although all the worksta-
tions were binary compatible, we noted that six different
SPARC microarchitectures were in use around the institute
with widely varying floating-point performance. This was
also a period of rapid development in RISC workstation ar-
chitectures, and we wanted to be able to quickly and effec-
tively exploit any new machines as they became available.
Although the BLAS library interface was well-established by
this time, high-performance library implementations were
only available for a few machines and often came at signifi-
cant additional cost. Freely available portable matrix-vector
libraries contained näıve code with low performance. In ad-
dition, we wanted to retain a compatible interface to the
T0 vector microprocessor, and so we defined our own simple
floating-point vector library “fltvec”.

The ANN training codes used primarily matrix-vector op-
erations (BLAS2) at this time, and we began handwrit-
ing some optimized C matrix-vector routines for fltvec in
early 1994. During this process, we figured out most of the
portable high-performance C coding rules that eventually
appeared in Section 2 of the paper [2], as an explicit goal of
the library was to attain good performance across the range
of workstations in use at ICSI. The name “PHiPAC” (“fee-
pack”, following the Greek pronunciation of φ) was actually
initially coined to refer just to this coding style, though we
eventually used it to cover the entire autotuning process.

Later in 1994, the speech group was seeking greater per-
formance and wanted to use faster matrix-matrix operations
(BLAS3) on both the workstations and the T0 accelerator.
By December 1994, we had completed an initial matrix-
multiply routine in C that was parameterized using a very
large fixed set of preprocessor macros, and began tuning and
evaluating its performance on various machines.

In the spring of 1995, we taught the CS267 “Applications
of Parallel Computers” class at Berkeley. In this class, stu-
dents entered a matrix-multiply contest and had to compare
their results with the current version of our matrix-multiply
code. We continued to add optimizations and code variants
to the matrix-multiply code, but found that the preproces-
sor macro approach didn’t scale due to the combinatorial
explosion when combining different options. We decided to
change our approach and instead write a program to gen-
erate the code variant directly, including only the specific
macros that were needed for the given set of blocking param-
eters. The first version of this new matrix-multiply code gen-
erator, which would eventually form the core of the PHiPAC
release, was completed around the end of April 1995.

Using the new code generator, we ran timings on many
more machines including an SGI MIPS R4000-based Indigo
and an IBM RS6000. The IBM RS6000 came with the ESSL
BLAS libraries, which were extensively manually tuned and
well regarded, and we were pleasantly surprised when we
found we could quickly achieve similar performance using
our generated code. At this time, we were still manually
changing parameters to explore the design space, but real-
ized that it should be possible to automate the search.

In the summer of 1995, Dominic Lam, an undergraduate,
joined the project and began work on Perl scripts to auto-
matically search (i.e., generate code and then time instances

within) the design space of the generator. We used sim-
ple heuristics to limit the design space the autotuner would
explore, but within the feasible set we performed a simple
exhaustive grid search that could take days to complete.
To help us more quickly get a sense of the tuning space,
we added a random search strategy, and were surprised at
how often this would quickly find a good point, if not the
best point, in the space. The summer was spent refining
the search strategy, which was complicated by the need to
tune for each level of the memory hierarchy, from innermost
(register blocking) to outermost (level 2 cache blocking).

Each new machine we tried would usually require some
additional optimization or improvements in search strat-
egy to get better performance, though the current version
would usually give reasonable performance when first run
on a new machine. As an example, in November 1995, Greg
Henry started using the PHiPAC generator on the newly
introduced Intel Pentium Pro machines, which represented
the first x86 machines with performance competitive to the
RISC workstations. When run on the Pentium Pro, PHiPAC
automatically selected a very different register blocking than
for the register-rich RISC workstation floating-point units.
Although the initial PHiPAC-generated code was reasonably
fast (around 60% of peak), hand-tuned assembly code was
running significantly faster (>80% of peak). PHiPAC relies
on a optimizing compiler to take care of low-level schedul-
ing, and at the time, the code quality of the available x86
compilers was not as high as that from the RISC worksta-
tion vendors. Later modifications to PHiPAC, and better
x86 compilers, led to much improved performance on x86
platforms in our later release.

We released the first PHiPAC code in December 1995,
and started to receive growing interest in the code and the
technique. We also experienced a lot of skepticism from the
compiler community, who thought compilers could gener-
ate good code for matrix multiply, and library authors, who
thought only human-tuned code could attain near-peak per-
formance. Our experiences were that even the most highly
regarded commercial compilers failed dismally on matrix
multiply code, and that PHiPAC often produced code that
matched or beat vendor-supplied hand-tuned libraries. Fur-
ther, for many machines, high-performance libraries weren’t
available or were prohibitively expensive to license.

We continued to improve the search strategy and the code
generation. The search strategy was made more intelligent
to focus on just the runs needed to tune at each level of
the memory hierarchy, while the code generator was simi-
larly improved to generate code specialized for each level of
the memory hierarchy, the lowest level including special fea-
tures like explicit software pipelining [3]. Later in 1996, we
prepared a submission to the Supercomputing conference,
which was rejected partly because a reviewer believed the
ESSL numbers against which we were comparing were from
the FORTRAN compiler!

We reworked the paper and submitted it to ICS-1997,
where thankfully it was accepted [2]. As we worked on the
camera-ready version of the paper, we had a particularly
satisfying visit to SGI where Ed Rothberg had kindly made
available machines containing MIPS R8000 and R10000 pro-
cessors. Within a single afternoon, we had the autotuner
producing matrix-multiply routines that were competitive
with the vendor BLAS libraries for these two very differ-
ent microarchitectures. Given that we had not previously



worked with these machines or their compilers, this was
strong evidence that the autotuning approach could quickly
provide high-performance code for new architectures.

Returning to the original impetus for the project, we used
PHiPAC-generated code to improve neural network training,
resulting in significant speedups [4]. Due to their excellent
performance in many applications such as speech and com-
puter vision, the many layered “deep” variants [8] of neural
networks have recently been experiencing a resurgence of in-
terest, making autotuned implementations [4] perhaps even
more relevant today.

We released the second and final version of PHiPAC in
spring 1998 [3]. By this time, several other efforts had
sprung up to produce autotuners, most notably the ATLAS
project [1], which was directly inspired by PHiPAC. Inde-
pendently, but a little later than PHiPAC, a group at MIT
started the FFTW effort to produce autotuned FFTs [7].

3. AUTOTUNING TODAY
The field of autotuning, or automated design-space explo-

ration, has grown in many directions over the years. This
short retrospective does not permit us to survey the entire
field, or even just the hundreds of papers that have cited our
early work on PHiPAC. But we can summarize their com-
mon motivation: the design space of different ways to im-
plement an algorithm on a particular piece of hardware is so
large, and the impact of even small implementation changes
on the running time is so difficult to predict, that it is much
more productive to automate the process of searching the
design space and to use empirical timing results. This still
leaves the programmer the challenging problems of defining
the design space, and finding an algorithm to search it effi-
ciently, a much better level of abstraction at which to work.
Autotuning is now widely used to generate code not just for
dense linear algebra [1] but also sparse linear algebra [5],
FFTs [6] more general digital signal-processing algorithms
[11], and many other examples [12].

The survey paper [5] summarizes a subset of this subse-
quent work that has been carried on by some of the PHiPAC
authors and other more recent contributors, and gives some
pointers to other literature. One interesting example is the
continued use of the matrix multiply contest as a homework
in our CS267 class. Now the students learn about autotun-
ing before the assignment, and are told that autotuning is
a possible (but not required!) way to do the assignment.
For the class offering discussed in [5], 3-student teams built
autotuners in the 2 weeks they had for the assignment, au-
tomatically generating and searching over tens of thousands
of lines of code. More recently, matrix multiply has been
adopted in UC Berkeley’s newly reorganized 3rd semester
undergraduate programming class CS61C. Again, some of
the sophomores choose to build their own autotuners to ex-
plore the design space.

Looking at ongoing and future work, the challenges and
opportunities are large and growing. Sometimes tuning can-
not be done“offline”, taking a large amount of time to search
the design space and building a library that is called at run-
time, but must be done in part at run-time, when the user’s
input data is available. This is because the best algorithm
may strongly depend on the inputs. For example, for sparse-
matrix operations, the best algorithm depends on the spar-
sity pattern of the matrix. Sometimes the tuning space is so
large that it is even impractical to tune it exhaustively of-

fline, requiring clever machine learning techniques to search
faster. Finally, sometimes the search space includes not just
changes to the software, but also changes to the hardware as
well [11], e.g. when one is trying to build specialized hard-
ware to solve a problem, making the search space larger still.

To conclude, our work on PHiPAC has been an exam-
ple of a larger pattern underlying much successful computer
science research: the goal of research project n + 1 is to
automate the successful ideas from research project n.

4. ACKNOWLEDGEMENTS
We would like to thank Dominic Lam for his work on the

first release of PHiPAC, and Rich Vuduc for experimenting
with PHiPAC after the ICS paper.

5. REFERENCES
[1] ATLAS: Automatically Tuned Linear Algebra

Software. math-atlas.sourceforge.net/, 2014.

[2] J. Bilmes, K. Asanović, C. Chin, and J. Demmel.
Optimizing matrix multiply using PHiPAC: a
Portable, High-Performance, ANSI C coding
methodology. In Proceedings of the International
Conference on Supercomputing, pages 340–347,
Vienna, Austria, July 1997. ACM SIGARC.

[3] J. Bilmes, K. Asanović, C.-W. Chin, and J. Demmel.
The PHiPAC v1.0 Matrix-Multiply Distribution.
Technical Report UCB/CSD-98-1020, Computer
Science Division, University of California at Berkeley,
1998. also ICSI technical report TR-98-035.

[4] J. Bilmes, K. Asanović, C. whye Chin, and J. Demmel.
Using PHiPAC to speed error back-propagation
learning. In Proceedings of ICASSP, volume 5, pages
4153–4157, Munich, Germany, April 1997.

[5] J. Demmel, J. Dongarra, A. Fox, S. Williams,
V. Volkov, and K. Yelick. Autotuning: Accelerating
Time-to-Solution for Computational Science and
Engineering. In SciDAC Review, v. 15, Winter 2009.
available at www.scidacreview.org.

[6] FFTW. www.fftw.org, 2014.

[7] M. Frigo. Portable High-Performance Programs. PhD
thesis, Massachusetts Institute of Technology, June
1999.

[8] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast
learning algorithm for deep belief nets. Neural
computation, 18(7):1527–1554, 2006.

[9] N. Morgan, J. Beck, P. Kohn, J. Bilmes, E. Allman,
and J. Beer. The Ring Array Processor (RAP): A
Multiprocessing Peripheral for Connectionist
Applications. Journal of Parallel and Distributed
Computing, 14:248–259, April 1992.

[10] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 1995.

[11] Spiral: Software/Hardware Generation for DSP
Algorithms. www.spiral.net, 2014.

[12] R. Vuduc, J. W. Demmel, and J. A. Bilmes. Statistical
models for empirical search-based performance tuning.
International Journal of High Performance Computing
Applications, 18(1):65–94, 2004.

[13] J. Wawrzynek, K. Asanović, B. Kingsbury, J. Beck,
D. Johnson, and N. Morgan. Spert-II: A vector
microprocessor system. IEEE Computer, 29(3):79–86,
March 1996.


