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@ Introduction
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Intro

Where to get these slides

@ Where to get these slides right now:

http://goo.gl/PSzuPv
@ QR Code:




Intro
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A Dedication

This tutorial dedicated to Ben Taskar, and his family. RIP Ben.
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Goals of the Tutorial

@ Get an intuitive sense for submodular functions, should be able to
apply them.

@ Learn to recognize submodularity, or recognize when it might be
useful.

@ Learn to realize why submodularity can be useful in machine
learning. Why is it worth your time to study it.

@ Learn to realize when submodularity is inapplicable.
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Submodularity

@ Definition: given a finite ground set V, a function f : 2¥ — R is
said to be submodular if

f(A)+f(B) > f(AUB)+ f(ANB), YA BCV (1)
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Submodularity

@ Definition: given a finite ground set V, a function f : 2¥ — R is
said to be submodular if

f(A)+f(B) > f(AUB)+ f(ANB), VA BCV (1)

@ The definition is the tip of the iceberg. This simple definition can
lead to great mathematical and practical richness.

@ Goals of tutorial: will be very simple, an attempt to cover some
important parts of the iceberg in 2 hours.

@ The tutorial itself is the tip of the iceberg!

@ One last goal: Let A be a set of tutorials on submodularity, and
f(A) the information provided by tutorials A. Our goal is to be a
member of:

argmax f(B U {v}) (2)
veV\B

where B is the set of previous tutorials given on submodularity.
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Sets and set functions

We are given a finite “ground” set of objects:
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Also given a set function f : 2¥ — R that valuates subsets A C V.

Ex: (V)=
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Sets and set functions

Subset A C V of objects:

;

Also given a set function f : 2¥ — R that valuates subsets A C V.
Ex: f(A)=1
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Sets and set functions

Subset B C V of objects:

& ¥

;

Vs
Also given a set function f : 2¥ — R that valuates subsets A C V.
Ex: f(B) =6
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Set functions are pseudo-Boolean functions

@ Any set A C V can be represented as a binary vector x € {0, l}v.
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@ Any set A C V can be represented as a binary vector x € {0, 1}V.

@ The characteristic vector of a set is given by 14 € {0, 1}V where for
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0 else
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A
X(X) = ]-X-
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1

Set functions are pseudo-Boolean functions

@ Any set A C V can be represented as a binary vector x € {0, 1}V.

@ The characteristic vector of a set is given by 14 € {0, 1}V where for
all v e V, we have:

0 else

lA(V):{l if veA 3)

@ It is sometimes useful to go back and forth between X and
x(X) 2 1x.

e f(x):{0,1}Y = R is a pseudo-Boolean function, and submodular
functions are a special case.
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Two equivalent basic definitions

Definition (submodular)

A function f : 2Y — R is submodular if for any A, B C V, we have that:

f(A)+f(B) > f(AUB)+ f(ANB) (4)

Definition (submodular (diminishing returns))

A function f : 2Y — R is submodular if for any AC B C V, and
v € V'\ B, we have that:

f(Au{v}) = f(A) = f(BU{v}) — f(B) (5)

J. Bilmes Submodularity page 11 / 124



Polymatroids

Outline

© From Matroids to Polymatroids
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Example: Rank function of a matrix

@ Given an n X m matrix, thought of as m column vectors:

1 2 3 4 m
I |
X=|x % X3 X4 ... Xm (6)
N |
o Let set V ={1,2,..., m} be the set of column vector indices.

@ For any subset of column vector indices A C V,
let r(A) be the rank of the column vectors indexed by A.

@ Hence r: 2V — Z, and r(A) is the dimensionality of the vector
space spanned by the set of vectors {x,},c -

o Intuitively, r(A) is the size of the largest set of independent vectors
contained within the set of vectors indexed by A.

J. Bilmes Submodularity page 13 / 124



Polymatroids
(RERRN AR RN AR AR RN RN AR AR RN RN AY]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
20 3 0 4 0 0 2 4| o | o |
3]0 000300 5| |7 BE A
4\2 0 0 0 0 0 O 5 o | o |
o Let A={1,2,3}, B={3,4,5}, C=1{6,7}, A, = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) =2.
o r(AUC)=3,r(BUC)=3.
e r(AUA,)=3,r(BUB,)=3,r(AUB,) =4, r(BUA,) = 4.
o r(AUB)=4,r(AnB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8

1/0 2 2 3 01 3 1
2losoaoo2al| (D0 T
3]0 000300 5| |7 FE A8
4\2 0 0 0 0 0 O 5 | | | | | | | |
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e r(AUC)=3,r(BUC)=3.

o r(AUA,) =3, r(BUB,) =3, r(AU ):4,r(BUA,):
or(AUB):4,r(AﬂB)—1<r(C)
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
2losoaoo2al (D0 T T
3]0 000300 5| |7 BE A
4\2 0 0 0 0 0 O 5 o | o |
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o r(AUA,)=3,r(BUB,)=3, r(AUB,) =4, r(BUA,) = 4.
e r(AUB)=4, r(AnB)=1 <r(C)=2.
0 6= r(A)+r(B)>r(AUB)+r(ANB) =5
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.
@ Let 7 be a set of all subsets of V such that for any I € Z, the
vectors indexed by [ are linearly independent.
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

o Let 7 be a set of all subsets of V such that for any | € Z, the
vectors indexed by [ are linearly independent.

@ Given a set B € 7 of linearly independent vectors, then any subset
A C B is also linearly independent.
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

o Let 7 be a set of all subsets of V such that for any | € Z, the
vectors indexed by [ are linearly independent.

@ Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, 7 is down-closed or
“subclusive”, under subsets.
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.
o Let 7 be a set of all subsets of V such that for any | € Z, the
vectors indexed by [ are linearly independent.

@ Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets. In other words,

ACBand BeZI=AcZ (7)
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

o Let 7 be a set of all subsets of V such that for any | € Z, the
vectors indexed by [ are linearly independent.

@ Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets. In other words,

ACBand BeI=AcT (7)
@ Inclusionwise maximal independent subsets (or bases) of B.

maxInd(B) 2 {ACB:AcTandVve B\AAU{v} ¢TI} (8)
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

o Let 7 be a set of all subsets of V such that for any | € Z, the
vectors indexed by [ are linearly independent.

@ Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets. In other words,

ACBand BeZI=AcZl (7)
@ Inclusionwise maximal independent subsets (or bases) of B.
maxind(B) = {ACB:AcZTandVve B\AAU{v}¢ZI} (8)

@ Given any set B C V of vectors, all maximal (by set inclusion)
subsets of linearly independent vectors are the same size. That is,
forall BC V,

VALAQ S maxlnd(B), ‘Al‘ = ‘A2‘ (9)
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From Matrix Rank — Matroid

@ Thus, for all | € Z, the matrix rank function has the property
r(1) =] (10)
and for any B ¢ 7,

r(B) =max{|A|: AC Band AcZ} <|B]| (11)
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Independence System

Definition (set system)

A (finite) ground set V and a set of subsets of V, (} # Z C 2V is called a
set system, notated (V,Z).

Definition (independence (or hereditary) system)

A set system (V/,Z) is an independence system if
) €Z (emptyset containing) (11)
and

VieZ,JCl=JeZI (subclusive) (12)
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Independence System

Definition (set system)

A (finite) ground set V and a set of subsets of V, (} # Z C 2V is called a
set system, notated (V,Z).

Definition (independence (or hereditary) system)

A set system (V/,Z) is an independence system if
) €Z (emptyset containing) (11)
and

VieZ,JCl=JeZI (subclusive) (12)

o Ex: V=1{1,2,3,4}, 7 ={0,{1},{1,2},{1,2,4}}. (V,Z)is a set
system, but not an independence system.
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Independence System

Definition (set system)

A (finite) ground set V and a set of subsets of V, (} # Z C 2V is called a
set system, notated (V,Z).

Definition (independence (or hereditary) system)

A set system (V/,Z) is an independence system if
) €Z (emptyset containing) (11)
and

VieZ,JCl=JeZI (subclusive) (12)

o Ex: V=1{1,2,3,4}, 7 ={0,{1},{1,2},{1,2,4}}. (V,Z) is a set
system, but not an independence system.
o If Z={0,{1},{2},{1,2}}, then (V,Z) is independence system.
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Matroids, many equivalent definitions

Definition (Matroid)

A set system (V,Z) is a Matroid if
(I1) @ € Z (emptyset containing)
(I2) VI €Z,J C | = J €T (down-closed or subclusive)

(I3) VI,J € Z, with |I| = |J| + 1, then there exists x € I\ J such that
Ju{x} e

Definition (Matroid)

A set system (V,Z) is a Matroid if
(11") @ € Z (emptyset containing)
(I12") VI € Z,J C | = J € T (down-closed or subclusive)

(13") VX C V, and h, h € maxInd(X), we have || = |k| (all maximally
independent subsets of X have the same size).
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Linear (or Matric) Matroid

o Let X be an n x m matrix and V ={1,...,m}

@ Let 7 consists of subsets of V/ such that if A€ Z, and
A ={a1,ap,...,ak} then the vectors xa,, Xa,, - . . , X, are linearly
independent.

@ The rank function is just the rank of the space spanned by the
corresponding set of vectors.

@ A base of a matroid is maximally independent set. So a base of this
matroid is a set of rankV independent vectors.
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Cycle Matroid of a graph, or Graphic Matroids

Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € T if the edge-induced graph
G(V,A) by A does not contain any cycle.

Then M = (E,Z) is a matroid.
7 contains all forests and trees.
Bases are spanning forests (spanning trees if G is connected).

Rank function r(A) is the size of the largest spanning forest
contained in G(V, A).
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Partition Matroid

Limit associated with each block, {ki, ko,..., ke }
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Partition Matroid

Independent subset but not maximally independent.
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Partition Matroid

Maximally independent subset, what is called a base.
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Partition Matroid

Not independent since over limit in set six.
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Partition Matroid

o Let V=ViUVoU---U V), be a partition of V into disjoint sets
(disjoint union). Define a set of subsets of V as

I={XCV:|IXnV]|<kforalli=1,... 6. (12

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ A partition matroids rank function is:

V4
r(A) =Y _min(|AN Vi, k) (13)
i=1
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Matroids - rank and submodularity

We can a bit more formally define the rank function this way.

Definition

The rank of a matroid is a function r : 2 — Z_ defined by

r(A):max{]X]:XQA,XEI}:Ta%(\AﬂM (14)
€
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Matroids - rank and submodularity

We can a bit more formally define the rank function this way.

Definition

The rank of a matroid is a function r : 2 — Z_ defined by

r(A):max{]X]:XQA,XEI}:Ta%(\AﬂM (14)
€

@ From the above, we immediately see that r(A) < |A].
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Matroids - rank and submodularity

We can a bit more formally define the rank function this way.

Definition

The rank of a matroid is a function r : 2 — Z_ defined by

r(A):max{]X]:XQA,XEI}:Ta%(\AﬂM (14)
€

e From the above, we immediately see that r(A) < |A|.

@ Moreover, if r(A) = |A|, then A € Z, meaning A is independent
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Matroids - rank and submodularity

We can a bit more formally define the rank function this way.

Definition

The rank of a matroid is a function r : 2 — Z_ defined by

r(A):max{]X]:XQA,XGI}:Ta%(\AﬂM (14)
€

e From the above, we immediately see that r(A) < |A|.

@ Moreover, if r(A) = |A|, then A € Z, meaning A is independent

The rank function r : 2¥ — 7. of a matroid is submodular, that is
r(A)+r(B) > r(AUB) + r(AN B)
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Matroids via rank

In fact, we can use the rank of a matroid for its definition.

Theorem (Matroid from rank)

Let V be a set and let r : 2¥ — 7., be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all A;B C V:

(R1) YAC V 0 < r(A) < |A| (non-negative cardinality bounded)
(R2) r(A) < r(B) whenever AC B C V (monotone non-decreasing)
(R3) r(AUB)+r(ANB) < r(A)+ r(B) for all A,B C V (submodular)

@ Unit increment (if r(A) = k, then either r(AU{v}) = k or
r(AU{v}) = k + 1) follows from the above.

@ So submodularity and non-negative monotone non-decreasing, and
unit increase are necessary and sufficient to define the matroid.

J. Bilmes Submodularity page 25 /124



Polymatroids
(NERRNRRRRRARR AR N AR R AR RN AR AR RN RN AY]

Modular functions, vectors

@ Any set function m : 2V s R whose valuations, for all A C V, take
the form

m(A) =>_ m(a) (15)

acA

is called modular and normalized (meaning m()) = 0).
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Modular functions, vectors

@ Any set function m : 2V s R whose valuations, for all A C V, take
the form

m(A) =>_ m(a) (15)

acA

is called modular and normalized (meaning m(()) = 0).

@ Any normalized modular function is identical to a vector m € RV.
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Modular functions, vectors

@ Any set function m : 2V s R whose valuations, for all A C V, take
the form

m(A) =>_ m(a) (15)
acA
is called modular and normalized (meaning m(()) = 0).
@ Any normalized modular function is identical to a vector m € RV

@ Modular functions are submodular since
m(A) + m(B) > m(AU B) + m(AnN B).
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Modular functions, vectors

@ Any set function m : 2V s R whose valuations, for all A C V, take
the form

m(A) = m(a) (15)
acA

is called modular and normalized (meaning m(()) = 0).
@ Any normalized modular function is identical to a vector m € RV
@ Modular functions are submodular since

m(A) +m(B) > m(AUB) + m(AN B).
@ Modular functions are also supermodular since

m(A) +m(B) < m(AU B) + m(An B).
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Modular functions, vectors

@ Any set function m : 2V s R whose valuations, for all A C V, take
the form

m(A) = m(a) (15)
acA

is called modular and normalized (meaning m(()) = 0).
@ Any normalized modular function is identical to a vector m € RV
@ Modular functions are submodular since

m(A) +m(B) > m(AUB) + m(AN B).
@ Modular functions are also supermodular since

m(A) +m(B) < m(AU B)+ m(An B).

@ Hence, the characteristic vector 14 of a set is modular.
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Modular functions, vectors

@ Any set function m : 2V s R whose valuations, for all A C V, take
the form

m(A) = m(a) (15)
acA

is called modular and normalized (meaning m()) = 0).
@ Any normalized modular function is identical to a vector m € RV.
@ Modular functions are submodular since

m(A) +m(B) > m(AUB) + m(AN B).
@ Modular functions are also supermodular since

m(A) +m(B) < m(AU B)+ m(An B).
@ Hence, the characteristic vector 14 of a set is modular.

@ Modular functions are often called additive or linear.
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Matroid and the greedy algorithm

@ Let (V,Z) be an independence system, and we are given a
non-negative modular weight function w : V — R .
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Matroid and the greedy algorithm

e Let (V,Z) be an independence system, and we are given a
non-negative modular weight function w : V — R .

Algorithm 1: The Matroid Greedy Algorithm
1 Set X+ 0;
2 while 3v € V\ X s.t. XU {v} €7 do
3 v € argmax{w(v):ve V\X, Xu{v}eTl};
4 X XU{v};
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Matroid and the greedy algorithm

e Let (V,Z) be an independence system, and we are given a
non-negative modular weight function w : V — R,..

Algorithm 1: The Matroid Greedy Algorithm

1 Set X« 0 ;
2 while 3v € V\ X s.t. XU {v} € T do
3 L v € argmax{w(v):ve V\X, XU{v}eTl};

4 X+ XU{v};

@ Same as sorting items by decreasing weight w, and then choosing
items in that order that retain independence.
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Matroid and the greedy algorithm

e Let (V,Z) be an independence system, and we are given a
non-negative modular weight function w : V — R,..

Algorithm 1: The Matroid Greedy Algorithm
1 Set X «+ 0 ;
2 while 3v € V\ X s.t. XU{v} €Z do
3 v € argmax{w(v):ve V\X, XU{v}eTl};
4 X+ XU{v};

@ Same as sorting items by decreasing weight w, and then choosing
items in that order that retain independence.

Let (V,Z) be an independence system. Then the pair (V,Z) is a matroid
if and only if for each weight function w € RK Algorithm 1 leads to a
set | € T of maximum weight w(l).
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Matroid Definitions Summary

Given an independence system, matroids are defined equivalently by any
of the following:
@ All maximally independent sets have the same size.

@ A monotone non-decreasing submodular integral rank function with
unit increments.

@ The greedy algorithm achieves the maximum weight independent set
for all weight functions.
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Maximal points in a set

@ Regarding sets, a subset X of S is a maximal subset of S possessing
a given property P if X possesses property P and no set properly
containing X (i.e., any X’ D X with X"\ X C V'\ X) possesses P.
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Maximal points in a set

@ Regarding sets, a subset X of S is a maximal subset of S possessing
a given property P if X possesses property P and no set properly
containing X (i.e., any X’ D X with X"\ X C V' \ X) possesses P.

@ Given any set P C RY, we say that a vector x is maximal within P
if it is the case that for any € > 0, and for all v € V, we have that

x+el, ¢ P (16)
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Maximal points in a set

@ Regarding sets, a subset X of S is a maximal subset of S possessing
a given property P if X possesses property P and no set properly
containing X (i.e., any X’ D X with X"\ X C V' \ X) possesses P.

@ Given any set P C RY, we say that a vector x is maximal within P
if it is the case that for any € > 0, and for all v € V, we have that

x+el, ¢ P (16)

@ Examples of maximal regions (in red)

N OO
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Maximal points in a set

@ Regarding sets, a subset X of S is a maximal subset of S possessing
a given property P if X possesses property P and no set properly
containing X (i.e., any X’ D X with X"\ X C V' \ X) possesses P.

@ Given any set P C RY, we say that a vector x is maximal within P
if it is the case that for any € > 0, and for all v € V, we have that

x+el, ¢ P (16)

e Examples of non-maximal regions (in green)

D OOy
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P-basis of x given compact set P C ]RK

Definition (subvector)

y is a subvector of x if y < x (meaning y(v) < x(v) for all v € V).
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P-basis of x given compact set P C RK

Definition (subvector)

y is a subvector of x if y < x (meaning y(v) < x(v) for all v € V).

Definition (P-basis)

Given a compact set P C RK for any x € RX, a subvector y of x is
called a P-basis of x if y maximal in P.

In other words, y is a P-basis of x if y is a maximal P-contained
subvector of x.

Here, by y being “"maximal”, we mean that there exists no z > y (more
precisely, no z > y + €1, for some v € V and € > 0) having the
properties of y (the properties of y being: in P, and a subvector of x).

J. Bilmes Submodularity page 30 /124



Polymatroids
(NERRNRRRRRARRARNRY AR RN RN RN A

The “rank” of a vector

@ Recall the definition of rank from a matroid M = (V,Z).

rank(A) = max{|/|: I C A/l €T} (17)
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The “rank” of a vector

@ Recall the definition of rank from a matroid M = (V,Z).

rank(A) = max{|/|: I C Al €T} (17)

@ vector rank: Given a compact set P C RK we can define a form of
“vector rank” relative to this P in the following way: Given an
x € RY, we define the vector rank, relative to P, as:

rank(x) = max(y(V):y < x,y € P) (18)

where y < x is componentwise inequality (y; < x;, Vi).
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The “rank” of a vector

@ Recall the definition of rank from a matroid M = (V,Z).

rank(A) = max{|/|: I C Al €T} (17)

@ vector rank: Given a compact set P C RK we can define a form of
“vector rank” relative to this P in the following way: Given an
x € RY, we define the vector rank, relative to P, as:

rank(x) = max(y(V):y < x,y € P) (18)

where y < x is componentwise inequality (y; < x;, Vi).
o If B, is the set of P-bases of x, than rank(x) = max,cp, y(V).
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The “rank” of a vector

@ Recall the definition of rank from a matroid M = (V,Z).

rank(A) = max{|/|: I C Al €T} (17)

@ vector rank: Given a compact set P C RK we can define a form of
“vector rank” relative to this P in the following way: Given an
x € RY, we define the vector rank, relative to P, as:

rank(x) = max(y(V):y < x,y € P) (18)

where y < x is componentwise inequality (y; < x;, Vi).
o If By is the set of P-bases of x, than rank(x) = max,cp, y(V).
@ If x € P, then rank(x) = x(V) (x is its own unique P-basis).
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The “rank” of a vector

@ Recall the definition of rank from a matroid M = (V,Z).

rank(A) = max{|/|: I C Al €T} (17)

@ vector rank: Given a compact set P C RK we can define a form of
“vector rank” relative to this P in the following way: Given an
x € RY, we define the vector rank, relative to P, as:

rank(x) = max(y(V):y < x,y € P) (18)

where y < x is componentwise inequality (y; < x;, Vi).
o If By is the set of P-bases of x, than rank(x) = max,cp, y(V).
e If x € P, then rank(x) = x(V) (x is its own unique P-basis).

@ In general, this might be hard to compute and/or have ill-defined
properties. We next look at an object that restrains and cultivates
this form of rank.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition (polymatroid)

A polymatroid is a compact set P C RK satisfying
Q@0cP
@ If y < x € P then y € P (called down monotone).

© For every x € RY, any maximal vector y € P with y < x (i.e., any
P-basis of x), has the same component sum y(V)
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Polymatroidal polyhedron (or a “polymatroid”)

Definition (polymatroid)

A polymatroid is a compact set P C RK satisfying
Q@0cP
@ If y < x € P then y € P (called down monotone).

© For every x € RY, any maximal vector y € P with y < x (i.e., any
P-basis of x), has the same component sum y(V)

@ Condition 3 restated: That is for any two distinct maximal vectors
yr y? € P, with y! < x & y? < x, with y! # y?, we must have
yH(V) = y3(V).
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Polymatroidal polyhedron (or a “polymatroid”)

Definition (polymatroid)

A polymatroid is a compact set P C RK satisfying

Q@0cP

@ If y < x € P then y € P (called down monotone).

© For every x € RY, any maximal vector y € P with y < x (i.e., any
P-basis of x), has the same component sum y(V)

e Condition 3 restated: That is for any two distinct maximal vectors
yi,y? € P, with y! < x & y? < x, with y! # y? we must have
yHV) = y3(V).

e Condition 3 restated (again): For every vector x € RK, every

maximal independent subvector y of x has the same component
sum y(V) = rank(x).
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Polymatroidal polyhedron (or a “polymatroid”)

Definition (polymatroid)

A polymatroid is a compact set P C RK satisfying
Q@0cP
@ If y < x € P then y € P (called down monotone).

© For every x € RY, any maximal vector y € P with y < x (i.e., any
P-basis of x), has the same component sum y(V)

e Condition 3 restated: That is for any two distinct maximal vectors
yi,y? € P, with y! < x & y? < x, with y! # y? we must have
yHV) = y3(V).

o Condition 3 restated (again): For every vector x € RY, every
maximal independent subvector y of x has the same component
sum y(V) = rank(x).

e Condition 3 restated (yet again): All P-bases of x have the same

component sum.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition (polymatroid)

A polymatroid is a compact set P C RK satisfying
Q@0cP
@ If y < x € P then y € P (called down monotone).

© For every x € RY, any maximal vector y € P with y < x (i.e., any
P-basis of x), has the same component sum y(V)

@ Vectors within P (i.e., any y € P) are called independent, and any
vector outside of P is called dependent.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition (polymatroid)

A polymatroid is a compact set P C RK satisfying
Q@0cP
@ If y < x € P then y € P (called down monotone).

© For every x € RY, any maximal vector y € P with y < x (i.e., any
P-basis of x), has the same component sum y(V)

@ Vectors within P (i.e., any y € P) are called independent, and any
vector outside of P is called dependent.

@ Since all P-bases of x have the same component sum, if B, is the
set of P-bases of x, than rank(x) = y(V) for any y € Bx.
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Matroid and Polymatroid: side-by-side

A Matroid is:

A Polymatroid is:
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Matroid and Polymatroid: side-by-side

A Matroid is:
Q a set system (V,7)

A Polymatroid is:
© a compact set P C RK
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Matroid and Polymatroid: side-by-side

A Matroid is:
Q a set system (V,7)
@ empty-set containing ) € Z

A Polymatroid is:
@ a compact set P C ]RK
@ zero containing, 0 € P
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Matroid and Polymatroid: side-by-side

A Matroid is:
Q a set system (V,7)
@ empty-set containing ) € Z
© subclusive, down closed, 0 CI'CleZ=1"eT.

A Polymatroid is:
@ a compact set P C ]RK
@ zero containing, 0 € P
© down monotone, 0 <y <xeP=yeP
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Matroid and Polymatroid: side-by-side

A Matroid is:
Q a set system (V,7)
@ empty-set containing ) € T
@ subclusive, down closed, 0 C /' CleZT = 1" €.

@ any maximal set / in Z, bounded by another set A, has the same
matroid rank (any maximal independent subset / C A has same size

1]).
A Polymatroid is:
@ a compact set P C ]RK
@ zero containing, 0 € P
© down monotone, 0 <y <xeP=ycP

© any maximal vector y in P, bounded by another vector x, has the
same vector rank (any maximal independent subvector y < x has
same sum y(V)).
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Polymatroidal polyhedron (or a “polymatroid”)

ol——P X P —\P
o \\, X
S
‘y’é/@ s
2 Possibig’y,
Yq Y1

Left: 3 multiple maximal y < x Right: 3 only one maximal y < x,

@ Polymatroid condition here: ¥ maximal y € P, with y < x (which
here means componentwise y; < x; and y» < x2), we just have
y(V) = y1 + y» = const.
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Polymatroidal polyhedron (or a “polymatroid”)

Y, —\P X Yo —\P
o \‘\, X
Se .
‘y’é/@ s
'y Possipjg y
Y1 y1

Left: 3 multiple maximal y < x Right: 3 only one maximal y < x,

@ Polymatroid condition here: ¥ maximal y € P, with y < x (which
here means componentwise y; < x; and y» < x2), we just have
y(V) = y1 + y» = const.

@ On the left, we see there are multiple possible maximal y € P such
that y < x. Each such y must have the same value y(V).
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Polymatroidal polyhedron (or a “polymatroid”)

Y, —\P X Yo —\P
o \‘\, X
Se .
‘y’é/@ s
'y Possipjg y
Y1 y1

Left: 3 multiple maximal y < x Right: 3 only one maximal y < x,

@ Polymatroid condition here: ¥ maximal y € P, with y < x (which
here means componentwise y; < x; and y» < x2), we just have
y(V) = y1 + y» = const.

@ On the left, we see there are multiple possible maximal y € P such
that y < x. Each such y must have the same value y(V).

@ On the right, there is only one maximal y € P. Since there is only
one, the condition on the same value of y(V/),Vy is vacuous.
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Other examples: Polymatroid or not?
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Some possible polymatroid forms in 2D

dependent P-base
vectors
dependent
independent vectors

vectors

It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1, vo} are self-dependent.

@ On the left: full dependence between v; and v,
@ In the middle: full independence between v; and v,
© On the right: partial independence between v; and w»
- The P-bases (or single P-base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the
polytope. Dependent vectors are exterior to the polytope.
- The set of P-bases for a polytope is called the base polytope.
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Polymatroid function and its polyhedron.

Definition

A polymatroid function is a real-valued function f defined on subsets of
V which is normalized, non-decreasing, and submodular. That is:

Q f(0) =0 (normalized)
@ f(A) < f(B) for any AC B C V (monotone non-decreasing)
Q@ f(AUB)+f(ANB) < f(A)+ f(B) for any A, B C V (submodular)

We can define the polyhedron P;r associated with a polymatroid function
as follows
Pr={yeRY:y(A) < f(A) forall AC v} (19)

:{yeRV:yZO,y(A)S F(A) for all A C v} (20)
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A polymatroid function's polyhedron is a polymatroid.

Theorem (Edmonds, 1970)

Let f be a polymatroid function defined on subsets of V. For any
X € RK, and any P;r-basis y*e RK of x, the component sum of y* is

y*(V) = rank(x) = max (y(V) y < x,y € P;r)
=min (x(A) +f(V\A): AC V) (21)

As a consequence, P;r is a polymatroid, since r.h.s. is constant w.r.t. y*.
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A polymatroid function's polyhedron is a polymatroid.

Theorem (Edmonds, 1970)
Let f be a polymatroid function defined on subsets of V. For any
x € RY, and any P/ -basis y* € RY of x, the component sum of y* is
y*(V) = rank(x) = max (y(V) : y < x,y € P})
=min (x(A) +f(V\A): AC V) (21)

As a consequence, P;r is a polymatroid, since r.h.s. is constant w.r.t. y*.

With an appropriate choice of x, we can define/recover the submodular
function from the polymatroid polyhedron via the following:

f(A) = max{y(A):y € P} (22)

There are many important consequences of this theorem (other than just
Pf+ is a polymatroid), regarding submodular function minimization.
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A polymatroid is a polymatroid function’s polytope

Thus, when f is a polymatroid function, P;r is a polymatroid.

@ Is it the case that, conversely, for any polymatroid P, there is an
associated polymatroidal function f such that P = Pf+?
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A polymatroid is a polymatroid function’s polytope

Thus, when f is a polymatroid function, P;r is a polymatroid.

@ Is it the case that, conversely, for any polymatroid P, there is an
associated polymatroidal function f such that P = Pf+?

Theorem

For any polymatroid P (compact subset of RY, zero containing, down-monotone,
and ¥x € RY any maximal independent subvector y < x has same component sum
y(V) = rank(x)), there is a polymatroid function f : 2 — R (normalized,
monotone non-decreasing, submodular) such that P = P;r where

P = {xeR":x>0,x(A) < f(A),YAC V}.
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Next, a bit on rank(x)

@ Recall that the matroid rank function is submodular.
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Next, a bit on rank(x)

@ Recall that the matroid rank function is submodular.

@ For vectors u,v € RY . let uV v be the element-wise max (i.e.,
(u Vv v)(i) = max(u(i),v(i))), and u A v be elementwise min.
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Next, a bit on rank(x)

@ Recall that the matroid rank function is submodular.

o For vectors u,v € RY, let uV v be the element-wise max (i.e.,
(uV v)(i) = max(u(i),v(i))), and u A v be elementwise min.

@ The polymatroid vector rank function rank(x) also satisfies a form
of submodularity.

J. Bilmes Submodularity page 40 / 124



Polymatroids
(NERRNA RN RN A RN AR AR RR RN R ARRNRRNRAY]

Next, a bit on rank(x)

@ Recall that the matroid rank function is submodular.

o For vectors u,v € RY, let uV v be the element-wise max (i.e.,
(uV v)(i) = max(u(i),v(i))), and u A v be elementwise min.

@ The polymatroid vector rank function rank(x) also satisfies a form
of submodularity.

Theorem (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function
rank : RY — R with rank(x) = max (y(V) : y < x,y € P) satisfies, for
all u,v € ]RK

rank(u) + rank(v) > rank(u V v) + rank(u A v) (23)
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Polymatroid from polymatroid function

@ Recall, a matroid may be given as (V, r) where r is the rank
function.

@ We mention also that the term “polymatroid” is sometimes not used
for the polytope itself, but instead but for the pair (V, f),

@ Since (V,f) is equivalent to a polymatroid polytope, this is sensible.
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Polymatroidal polyhedron and greedy

o Let (V,Z) be a set system and w € RY be a weight vector.
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Polymatroidal polyhedron and greedy

o Let (V,Z) be a set system and w € RK be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
v € V\ Asuch that AU {v} € T with w(v) as large as possible,
stopping when no such v exists.
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Polymatroidal polyhedron and greedy

o Let (V,Z) be a set system and w € RK be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
v € V' \ Asuch that AU {v} € Z with w(v) as large as possible,
stopping when no such v exists.

e For a matroid, we saw that set system (V/,Z) is a matroid iff for
each weight function w € RY, the greedy algorithm leads to a set
I € Z of maximum weight w(/).
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Polymatroidal polyhedron and greedy

o Let (V,Z) be a set system and w € RK be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
v € V' \ Asuch that AU {v} € Z with w(v) as large as possible,
stopping when no such v exists.

e For a matroid, we saw that set system (V,Z) is a matroid iff for
each weight function w € RY, the greedy algorithm leads to a set
I € T of maximum weight w(/).

@ Can we also characterize a polymatroid in this way?
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Polymatroidal polyhedron and greedy

o Let (V,Z) be a set system and w € RK be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
v € V' \ Asuch that AU {v} € Z with w(v) as large as possible,
stopping when no such v exists.

e For a matroid, we saw that set system (V,Z) is a matroid iff for
each weight function w € RY, the greedy algorithm leads to a set
I € T of maximum weight w(/).

@ Can we also characterize a polymatroid in this way?

@ That is, if we consider max {Wx T X € P?} where P,f represents the
“independent vectors”, is it the case that P,f is a polymatroid iff
greedy works for this maximization?
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Chains of sets

@ Ground element V = {1,2,..., n} set of integers w.l.0.g.
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Chains of sets

@ Ground element V = {1,2,..., n} set of integers w.l.0.g.

e Given a permutation o = (01, 02,...,0,) of the integers.
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Chains of sets

@ Ground element V = {1,2,..., n} set of integers w.l.0.g.
e Given a permutation 0 = (01,02, ...,0,) of the integers.

@ From this we can form a chain of sets {C;}; with
0=CGC G C---CC,=V formed as:

Ci={o1,02,...,0i}, fori=1...n (24)

DD DO®®W® -
— ! H

1 1 :

|
—

C3
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Chains of sets

@ Ground element V = {1,2,..., n} set of integers w.l.0.g.

e Given a permutation 0 = (01,02, ...,0,) of the integers.

@ From this we can form a chain of sets { G}, with
0l=CCCGC---CC,p=V formed as:

C ={o1,02,...,0;}, fori=1...n (24)

) @9 @) € *=*

@& W

&/

o
—

1
-

Cy
S —

Cs
e Can also form a chain from a vector w € RY sorted in descending
order. Choose o so that w(o1) > w(o2) > -+ > w(op).

@
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@ We often wish to express the gain of an item j € V in context A,
namely f(AU{j}) — f(A).
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Gain

@ We often wish to express the gain of an item j € V in context A,
namely f(AU{j}) — f(A).

@ This is called the gain and is used so often, there are equally as
many ways to notate this. l.e., you might see:

F(AU{J}) — F(A) £ pi(A) (25)
£ pai) (26)
£ Vif(A) (27)
£ F({j}14) (28)
£ £(jlA) (29)
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Gain

@ We often wish to express the gain of an item j € V in context A,
namely f(AU{j}) — f(A).

@ This is called the gain and is used so often, there are equally as
many ways to notate this. l.e., you might see:

F(AU{J}) — f(A) £ pi(A) (25)
£ pati) (26)
£ V;f(A) (27)
£ ({j}1A) (28)
£ £(jlA) (29)

o We'll use f(j|A). Also, f(A|B) = f(AU B) — f(B).

J. Bilmes Submodularity page 44 / 124



Polymatroids
(NERRNR RN R A RN AR A RN R RN RNARNT RRRRAY]

Gain

@ We often wish to express the gain of an item j € V in context A,
namely f(AU{j}) — f(A).

@ This is called the gain and is used so often, there are equally as
many ways to notate this. l.e., you might see:

F(AU{J}) — f(A) £ pi(A) (25)
£ pati) (26)
£ V;f(A) (27)
£ ({j}1A) (28)
£ £(jlA) (29)

o We'll use f(j|A). Also, f(A|B) =f(AUB)—f(B).

@ Submodularity’s diminishing returns definition can be stated as
saying that f(j|A) is a monotone non-increasing function of A, since
f(j|A) > f(j|B) whenever A C B (conditioning reduces valuation).
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Polymatroidal polyhedron and greedy

@ Greedy solution to max(wx : x € Ps)

J. Bilmes Submodularity page 45 / 124



Polymatroids
(NERRNR RN RN A RN RN A RN RRRRRR RN ARRAY]

Polymatroidal polyhedron and greedy

@ Greedy solution to max(wx : x € Py)

@ Sort elements of V w.r.t. w so that, w.l.o.g.
V = (vi, Vs Vi) with w(v) > w(v2) > -+ = w(vm).
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Polymatroidal polyhedron and greedy

@ Greedy solution to max(wx : x € Py)

@ Sort elements of V w.r.t. w so that, w.l.o.g.
V= (vi, va, -, Vim) with w(v2) > w(va) > - - = w(vi).
@ Next, form chain of sets based on w sorted descended, giving:

\/,'d:ef {V]_,VQ./...V,'} (30)

fori=0...m. Note Vo =0, and (V) = 0.
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Polymatroidal polyhedron and greedy

@ Greedy solution to max(wx : x € Py)

@ Sort elements of V w.r.t. w so that, w.l.o.g.
V = (vi, Vs Vi) with w(v) > w(v2) > -+ = w(vm).

@ Next, form chain of sets based on w sorted descended, giving:

Vi ¥ v v, v (30)

fori=0...m. Note Vo =0, and (V) = 0.

o The greedy solution is the vector x € RY with element x(v;) for
i=1,...,n defined as:

x(vi) = £(Vi) = £(Vi1) = f(vi] Vi1) (31)
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Polymatroidal polyhedron and greedy

@ We have a result very similar to what we saw for matroids.

Let f : 2Y — R, be a given set function, and P is a polytope in RJ\: of
the form P = {x € RY : x(A) < f(A),VAC V}.

Then the greedy solution to the problem max(wx : x € P) is optimal Vw
iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).
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Polymatroid extreme points

Greedy does more than this. In fact, we have:

For a given ordering V= (vi,...,vpn) of V and a given V; and x
generated by V; using the greedy procedure, then x is an extreme point
of Pf

If x is an extreme point of Pr and B C V is given such that
{veV:x(v)#0} CBCUA: x(A) = f(A)), then x is generated
using greedy by some ordering of B.
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Intuition: why greedy works with polymatroids

e Given w, the goal is Maximal point in pt

to find for win this re ionf
x = (x(er), x(&2)) 9°on .
that maximizes e f o
e |e [
xTw = x(e1)w(e1) + 2 M' AQ_ 7%
x(e2)w(e). N %3
o If w(es) > w(er) 3 Y
the upper extreme ~7 Y3
point indicated | R\ S Q. D
maximizes xTw over ;q-_)r ﬁ\ » R % :3(
X € P ;_ . $\Q,q/ i
o If w(ex) < w(eq) \450 \G-J/N
the lower extreme —
point indicated f
e
maximizes xTw over ( 1) e1

p+
X
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Polymatroid with labeled edge lengths
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A polymatroid function's polyhedron vs. a polymatroid.

@ Given these results, we can conclude that a polymatroid is really an
extremely natural polyhedral generalization of a matroid. This was
all realized by Jack Edmonds in the mid 1960s (and published in
1969 in his landmark paper “Submodular Functions, Matroids, and
Certain Polyhedra™).

@ Jack Edmonds NIPS talk, 2011 http://videolectures.net/
nipsworkshops2011_edmonds_polymatroids/
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Submodular (or Upper-SemiModular) Lattices

The name “Submodular” comes from lattice theory, and refers to a
property of the “height” function of an upper-semimodular lattice. Ex:
consider the following lattice over 7 elements.

TV height
y 9 @ Such lattices require that for all

submodularity X, ¥, 2,
h(x)+h(y)
x 2
y >h(zVy) <« s vy
e\ = A
. 2+2>3+40 N z 9

TAY @ The lattice is

upper-semimodular
(submodular), height function
is submodular on the lattice.
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Submodular Definitions

Definition (submodular)

A function f : 2Y — R is submodular if for any A, B C V, we have that:

f(A)+f(B) > f(AUB)+ f(ANB) (32)

@ General submodular function, f need not be monotone,
non-negative, nor normalized (i.e., f(()) need not be = 0).
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Normalized Submodular Function

@ Given any submodular function f : 2V 5 R, form a normalized
variant ' : 2¥ — R, with

fi(A) = f(A) - £(0) (33)

@ Then /() = 0.
@ This operation does not affect submodularity, or any minima or
maxima

@ We will assume that all functions in this tutorial are so normalized.
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Submodular Polymatroidal Decomposition

@ Given any arbitrary submodular function f : 2¥ — R, consider the
identity

f(A) = f(A) — m(A) +m(A) = f(A) + m(A) (34)
f(A)

for a modular function m: 2¥ — R, where

m(a) = f(a|V'\ {a}) (35)
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Submodular Polymatroidal Decomposition

@ Given any arbitrary submodular function f : 2¥ — R, consider the
identity

f(A) = f(A) — m(A)+m(A) = ?(A) + m(A) (34)
f(A)

for a modular function m: 2V — R, where
m(a) = f(alV'\ {a}) (35)
@ Then f(A) is polymatroidal since f()) = 0 and for any a and A

f(alA) = f(alA) — f(a]V\ {a}) > 0 (36)
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Totally Normalized

e f is called the totally normalized version of f
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Totally Normalized

e f is called the totally normalized version of f

@ polytope of f and f is the same shape, just shifted.
[ {x e RY : x(A) < f(A),VA C v} (37)

_ {X e RY : x(A) < F(A) + m(A),VA C v} (38)
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Totally Normalized

e f is called the totally normalized version of f

@ polytope of f and f is the same shape, just shifted.
[ {x e RY : x(A) < f(A),VA C v} (37)

= {xeRY :x(A) <F(A)+ m(A)YAC V}  (38)

@ mis like a unary score, f is where things interact . All of the real
structure is in f
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Totally Normalized

e f is called the totally normalized version of f

@ polytope of f and f is the same shape, just shifted.
[ {x e RY : x(A) < f(A),VA C v} (37)
- {x e RY : x(A) < F(A) + m(A),YA C v} (38)

@ m is like a unary score, f is where things interact . All of the real
structure is in f

@ Hence, any submodular function is a sum of polymatroid and
modular.
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Telescoping Summation

@ Given a chainset of sets Ay C A, C --- C A,
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Telescoping Summation

@ Given a chain set of sets A1 C A, C --- C A,

@ Then the telescoping summation property of the gains is as follows:

r—1 r—1
> (AialA) Z FA) = F(A) =f(A) = f(A)  (39)
i=1 i=1
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Submodular Definitions

Given function f : 2Y — R, then
f(A)+f(B) > f(AUB)+f(ANB) forall A,B C V (SC)
if and only if
f(v|X) > f(v]Y) foral X CY CVandv ¢B (DR)
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Submodular Definitions

Given function f : 2Y — R, then
f(A)+f(B)>f(AUB)+ f(ANB) for all A,B C V (SC)
if and only if
f(v|X) > f(v]Y) foral X CY CVandv ¢B (DR)

(SC)=(DR): Set A+~ XU{v}, B+« Y. Then AUB=BU{v} and
ANB =X and f(A)—f(ANB) > f(AU B) — f(B) implies (DR).
(DR)=-(SC): Order A\ B = {v1, v2,..., v, } arbitrarily. Then
f(vil[ANBU{v1,va,...,vi—1}) > f(vi|BU{v1,va,...,vi_1}), i € [r —1]
Applying telescoping summation to both sides, we get:
f(A)—f(ANB) > f(AUB) —f(B)

[]
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Many (Equivalent) Definitions of Submodularity

f(A)+ f(B) > f(AUB) + f(AN B), YA,BC V
F(IS) > FUIT), VSCTCV, withje V\ T
F(C|S) > f(C|T),¥SC TCV, with CCV\T
F(jIS) > F(jISU{k}), ¥S C V with j € V\ (SU{k})
f(AU B\Aﬂ B) < f(AJANB) + f(B|JANB), YA,BC V

(T + > fUIS) - D FUISUT —{j}), VS, TCV
JET\S JES\T

F(T)<FS)+ > fIS), VST TCV
JET\S

FTY<FS)— D fUIS\UD+ D fUISNT)VS, TCV
JES\T JET\S

F(T)<F(S)— Y fUIS\{}), vTcScV
JES\T
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Basic ops: Sums, Restrictions, Conditioning

@ Given submodular fi, o, ..., f, each € 2¥ — R, then conic
combinations are submodular. |l.e.,

k
F(A) = aifi(A) (40)
i—1

where a; > 0.
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Basic ops: Sums, Restrictions, Conditioning

e Given submodular fi, 5, ..., f each € 2¥ — R, then conic
combinations are submodular. l.e.,

k
F(A) = aifi(A) (40)
i=1

where a; > 0.

@ Restrictions: f(A) = g(AN C) is submodular whenever g is, for all
C.
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(NNRNRR R RR NN NR RN AR

Basic ops: Sums, Restrictions, Conditioning

e Given submodular fi, 5, ..., f each € 2¥ — R, then conic
combinations are submodular. l.e.,

k
F(A) = aifi(A) (40)
i=1

where a; > 0.

@ Restrictions: f(A) = g(AnN C) is submodular whenever g is, for all
C.

e Conditioning: f(A) = g(AU C) — f(C) = f(A|C) is submodular
whenever g is for all C.
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The “or" of two polymatroid functions

@ Given two polymatroid functions f and g, suppose feasible A are
defined as {A: f(A) > ar or g(A) > ag} for real ar, a,.
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The “or" of two polymatroid functions

@ Given two polymatroid functions f and g, suppose feasible A are
defined as {A: f(A) > ar or g(A) > ag} for real ar, ag.

o This is identical to: {A:f(A) = ar or g(A) = ag} where
f(A) = min(f(A), ar) and g(A) = min(f(A), ag)
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The “or" of two polymatroid functions

@ Given two polymatroid functions f and g, suppose feasible A are
defined as {A: f(A) > ar or g(A) > ag} for real ar, ag.

o This is identical to: {A: f(A) = ar or g(A) = ag } where
f(A) = min(f(A), ar) and g(A) = min(f(A), ag)

o Define: h(A) = f(A)g(V) + f(V)g(A) — F(A)g(A).
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The “or" of two polymatroid functions

@ Given two polymatroid functions f and g, suppose feasible A are
defined as {A: f(A) > ar or g(A) > ag} for real ar, ag.

o This is identical to: {A: f(A) = ar or g(A) = ag } where
f(A) = min(f(A), ar) and g(A) = min(f(A), ag)
o Define: h(A) = f(A)g(V) + F(V)&(A) — f(A)g(A).
Theorem (Guillory & Bilmes, 2011)
h(A) so defined is polymatroidal.
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The “or" of two polymatroid functions

@ Given two polymatroid functions f and g, suppose feasible A are
defined as {A: f(A) > ar or g(A) > ag} for real ar, ag.

o This is identical to: {A: f(A) = ar or g(A) = ag } where
f(A) = min(f(A), ar) and g(A) = min(f(A), ag)
o Define: h(A) = f(A)g(V) + F(V)&(A) — f(A)g(A).
Theorem (Guillory & Bilmes, 2011)
h(A) so defined is polymatroidal.

h(A) = aray if and only if ?(A) =ar or g(A) = ag
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The “or" of two polymatroid functions

@ Given two polymatroid functions f and g, suppose feasible A are
defined as {A: f(A) > ar or g(A) > ag} for real ar, ag.

o This is identical to: {A: f(A) = ar or g(A) = ag } where
f(A) = min(f(A), ar) and g(A) = min(f(A), ag)
o Define: h(A) = f(A)g(V) + F(V)&(A) — f(A)g(A).
Theorem (Guillory & Bilmes, 2011)
h(A) so defined is polymatroidal.

h(A) = aray if and only if ?(A) =ar or g(A) = ag

@ Therefore, h can be used as a submodular surrogate for the “or" of
multiple submodular functions.
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Composition and Submodular Functions

e Convex/Concave have many nice properties of composition (see
Boyd & Vandenberghe, “Convex Optimization”)
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Composition and Submodular Functions

e Convex/Concave have many nice properties of composition (see
Boyd & Vandenberghe, “Convex Optimization")

@ A submodular function f : 2¥ — R has a different type of input and
output, so composing two submodular functions directly makes no
sense.
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Composition and Submodular Functions

e Convex/Concave have many nice properties of composition (see
Boyd & Vandenberghe, “Convex Optimization")

e A submodular function f : 2¥ — R has a different type of input and
output, so composing two submodular functions directly makes no
sense.

@ However, we have a number of forms of composition results that
preserve submodularity, which we turn to next:
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Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WViUV,U-. UV into k possibly overlapping clusters.
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Submodular Properties
[NNRNRRRRNRY AR RRRRNRRN]

Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WVUV,U-. UV into k possibly overlapping clusters.
e Define new function g : 2K — R where VD C [k] = {1,2,...,k},

g(D) =f(|J va) (41)

deD
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Submodular Properties
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Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WVUV,U-. UV into k possibly overlapping clusters.
o Define new function g : 2Kl — R where VD C [k] = {1,2,...,k},

g(D)=f(|J va) (41)
deD

@ Then g is submodular if either f is monotone non-decreasing or the
sets {V;} are disjoint.
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Submodular Properties
[NNRNRRRRNRY AR RRRRNRRN]

Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WVUV,U-. UV into k possibly overlapping clusters.
o Define new function g : 2Kl — R where VD C [k] = {1,2,...,k},

g(D)=f(|J va) (41)
deD

@ Then g is submodular if either f is monotone non-decreasing or the
sets {V;} are disjoint.

e Ex: Bipartite neighborhoods: Let I : 2 — R be the neighbor
function in a bipartite graph G = (V, U, E,w). V is set of “left”
nodes, U is set of right nodes, E C V x U are edges, and
w : 2 = R is a modular function on edges.
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Submodular Properties
[NNRNRRRRNRY AR RRRRNRRN]

Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WVUV,U-. UV into k possibly overlapping clusters.
o Define new function g : 2Kl — R where VD C [k] = {1,2,...,k},

g(D)=f(|J va) (41)
deD

@ Then g is submodular if either f is monotone non-decreasing or the
sets {V;} are disjoint.

e Ex: Bipartite neighborhoods: Let I' : 2¥ — R be the neighbor
function in a bipartite graph G = (V, U, E,w). V is set of “left”
nodes, U is set of right nodes, E C V x U are edges, and
w : 2 = R is a modular function on edges.

@ Neighbors defined as I'(X) ={u e U: |X x {u} NE| > 1} for
XCV.
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Submodular Properties
[NNRNRRRRNRY AR RRRRNRRN]

Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WVUV,U-. UV into k possibly overlapping clusters.
o Define new function g : 2Kl — R where VD C [k] = {1,2,...,k},

g(D)=f(|J va) (41)
deD

@ Then g is submodular if either f is monotone non-decreasing or the
sets {V;} are disjoint.

e Ex: Bipartite neighborhoods: Let I' : 2¥ — R be the neighbor
function in a bipartite graph G = (V, U, E,w). V is set of “left”
nodes, U is set of right nodes, E C V x U are edges, and
w : 2 = R is a modular function on edges.

@ Neighbors defined as I'(X) ={u e U : |X x {u} N E| > 1} for
X C V. Then f(I'(X)) is submodular. Special case: set cover.
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Submodular Properties
[NNRNRRRRNRY AR RRRRNRRN]

Grouping elements, set cover, and bipartite neighborhoods

@ Given submodular f : 2¥ — R and a grouping of
V=WVUV,U-. UV into k possibly overlapping clusters.
o Define new function g : 2Kl — R where VD C [k] = {1,2,...,k},

g(D)=f(|J va) (41)
deD

@ Then g is submodular if either f is monotone non-decreasing or the
sets {V;} are disjoint.

e Ex: Bipartite neighborhoods: Let I' : 2¥ — R be the neighbor
function in a bipartite graph G = (V, U, E,w). V is set of “left”
nodes, U is set of right nodes, E C V x U are edges, and
w : 2 = R is a modular function on edges.

@ Neighbors defined as I'(X) ={u e U : |X x {u} N E| > 1} for
X C V. Then f(I'(X)) is submodular. Special case: set cover.

@ In fact, all integral polymatroid functions can be obtained in g
above for f a matroid rank function and {V,} appropriately chosen.
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Concave composed with polymatroid

We also have the following composition property with concave functions:

Given functions f : 2¥ — R and g : R — R, the composition
h=fog:2¥ =R (ie, h(S) = g(f(S))) is nondecreasing submodular,
if g is non-decreasing concave and f is nondecreasing submodular.
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Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2¥ — R, then f : 2¥ — R defined as
f(A) = g(m(A)) is submodular

Q@ g: R, — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.
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Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2¥ — R, then f : 2¥ — R defined as
f(A) = g(m(A)) is submodular

Q@ g: R, — R is concave.

e If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
FA) = gi(mi(A)) (42)
i=1
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Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:
@ For all modular functions m : 2¥ — R, then f : 2¥ — R defined as
f(A) = g(m(A)) is submodular
Q@ g: R, — R is concave.

e If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
FA) = gi(mi(A)) (42)
i—1

@ Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).
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Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:
@ For all modular functions m : 2¥ — R, then f : 2¥ — R defined as
f(A) = g(m(A)) is submodular
Q@ g: R, — R is concave.

e If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
FA) = gi(mi(A)) (42)
i—1

@ Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).

@ However, Vondrak showed that a graphic matroid rank function over
K4 can't be represented in this fashion.
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Weighted Matroid Rank Functions

@ We saw matroid rank is submodular. Given matroid (V,Z),

f(B)=max{|A|:AC Band Ac T} (43)
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Weighted Matroid Rank Functions

e We saw matroid rank is submodular. Given matroid (V,7),
f(B) =max{|]A|:AC Band Ac 7} (43)

@ Weighted matroid rank functions. Given matroid (V,Z), and
non-negative modular function m: 2¥ — R,

f(B) =max{m(A): AC Band Ac T} (44)

is also submodular.
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Weighted Matroid Rank Functions

e We saw matroid rank is submodular. Given matroid (V,7),
f(B) =max{|]A|:AC Band Ac 7} (43)

e Weighted matroid rank functions. Given matroid (V,Z), and
non-negative modular function m : 2V Ry,

f(B) = max{m(A): AC Band Ac T} (44)

is also submodular.
@ Take a l-partition matroid with limit k, we get:

f(B) = max{m(A): AC B and |A| < k} (45)
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Submodular Properties
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Weighted Matroid Rank Functions

e We saw matroid rank is submodular. Given matroid (V,7),
f(B) =max{|]A|:AC Band Ac 7} (43)

e Weighted matroid rank functions. Given matroid (V,Z), and
non-negative modular function m : 2V Ry,

f(B) = max{m(A): AC Band Ac T} (44)

is also submodular.
@ Take a l-partition matroid with limit k, we get:

f(B) = max{m(A): AC B and |A| < k} (45)
@ Take a 1l-partition matroid with limit 1, we get the max function:

f(B) = max m(b) (46)
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Facility Location

@ Given a set of k matroids (V,Z;) and k modular weight functions
mj, the following is submodular:

k
f(A)=> aimax{mi(A): AC Band A€ I;} (47)
i=1
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Facility Location

@ Given a set of k matroids (V,Z;) and k modular weight functions
m;, the following is submodular:

k
f(A)=> aimax{mi(A): AC Band A€ I;} (47)
i=1

@ Take all a; =1, all matroids 1-partition matroids, and set
w;j = m;(j), and k = | V| for some weighted graph G = (V, E,w),
we get the uncapacitated facility location function:

F(A) = maxw,; (48)
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Information and Complexity functions

@ Given a set V of items, we might wish to measure the “information”
or “complexity” in a subset A C V.
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Information and Complexity functions

@ Given a set V of items, we might wish to measure the “information”
or “complexity” in a subset A C V.

@ Matroid rank r(A) can measure the “information” or “complexity”
via the dimensionality spanned by vectors with indices A.
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Information and Complexity functions

@ Given a set V of items, we might wish to measure the “information”
or “complexity” in a subset A C V.

@ Matroid rank r(A) can measure the “information” or “complexity”
via the dimensionality spanned by vectors with indices A.

@ Unit increment r(v|A) € {0,1} so no partial independence.

J. Bilmes Submodularity page 68 / 124



Submodular Properties
(NN NN N NN ARRNRR]

Information and Complexity functions

@ Given a set V of items, we might wish to measure the “information”
or “complexity” in a subset A C V.

@ Matroid rank r(A) can measure the “information” or “complexity”
via the dimensionality spanned by vectors with indices A.

@ Unit increment r(v|A) € {0,1} so no partial independence.

@ Entropy of a set of random variables {X,} .,/ where

f(A) = H(Xa) = H(|J Xa) = = > _Pr(xa)logPr(xa)  (49)

acA XA

can measure partial independence.
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Information and Complexity functions

@ Given a set V of items, we might wish to measure the “information”
or “complexity” in a subset A C V.

@ Matroid rank r(A) can measure the “information” or “complexity”
via the dimensionality spanned by vectors with indices A.

@ Unit increment r(v|A) € {0,1} so no partial independence.

e Entropy of a set of random variables {X,}, .,/ where

f(A) = H(Xa) = H(|J Xa) = = > _Pr(xa)logPr(xa)  (49)
acA XA

can measure partial independence.

@ Entropy is submodular due to non-negativity of conditional mutual
information. Given A,B,C C V,

I(Xa\8: XB\alXanB)
= H(Xa) + H(Xg) — H(Xaug) — H(XanB) > 0 (50)
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Generalized information /complexity functions

@ Entropy requires a joint probability distribution over items, while
rank requires a vector space.
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Generalized information /complexity functions

@ Entropy requires a joint probability distribution over items, while
rank requires a vector space.

@ Many information functions are statistical, requiring a distribution,
and measure information within a distribution. E.g., entropy, Rényi's
information, Daroczy's entropy, etc.

J. Bilmes Submodularity page 69 / 124



Submodular Properties
[NNR NN N RN NR ARNRRN]

Generalized information /complexity functions

@ Entropy requires a joint probability distribution over items, while
rank requires a vector space.

@ Many information functions are statistical, requiring a distribution,
and measure information within a distribution. E.g., entropy, Rényi's
information, Daroczy's entropy, etc.

@ Some require a generating algorithm (Kolmogorov complexity).
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Generalized information /complexity functions

@ Entropy requires a joint probability distribution over items, while
rank requires a vector space.

@ Many information functions are statistical, requiring a distribution,
and measure information within a distribution. E.g., entropy, Rényi's
information, Daroczy's entropy, etc.

@ Some require a generating algorithm (Kolmogorov complexity).

@ Submodularity is a natural property of an “information” or
“complexity” function over subsets of objects.
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Submodular Properties
[NNR NN N RN NR ARNRRN]

Generalized information /complexity functions

@ Entropy requires a joint probability distribution over items, while
rank requires a vector space.

@ Many information functions are statistical, requiring a distribution,
and measure information within a distribution. E.g., entropy, Rényi's
information, Daroczy's entropy, etc.

@ Some require a generating algorithm (Kolmogorov complexity).

@ Submodularity is a natural property of an “information” or
“complexity” function over subsets of objects.

@ All submodular functions express a form of “abstract independence”
or “generalized complexity”
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Polymatroids: Generalized Dependence

@ there is a notion of “independence” , i.e., AILB:

F(AU B) = f(A) + f(B), (51)
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Polymatroids: Generalized Dependence

@ there is a notion of “independence” , i.e., AILB:

f(AUB) = f(A)+ f(B), (51)
@ and a notion of “conditional independence” , i.e., AL B|C:
f(AUBUC)+f(C)=f(AUC)+f(BUC) (52)
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Submodular Properties
(NN NN NRNNNY RRRRN]

Polymatroids: Generalized Dependence

@ there is a notion of “independence” , i.e., AILB:

f(AUB) = f(A)+ f(B), (51)
@ and a notion of “conditional independence” | i.e., AL B|C:
f(AUBUC)+f(C)=f(AUC)+ f(BUC) (52)
@ and a notion of “dependence” (conditioning reduces valuation):
f(A|B) = f(AU B) — f(B) < f(A), (53)

J. Bilmes Submodularity page 70 / 124



Submodular Properties
(NN NN NRNNNY RRRRN]

Polymatroids: Generalized Dependence

@ there is a notion of “independence” , i.e., AILB:

f(AUB) = f(A)+ f(B), (51)
@ and a notion of “conditional independence” | i.e., AL B|C:
f(AUBUC)+f(C)=f(AUC)+ f(BUC) (52)
@ and a notion of “dependence” (conditioning reduces valuation):
f(A|B) = f(AU B) — f(B) < f(A), (53)

@ and a notion of “conditional mutual information”

I¢(A;B|C) £ f(AUC)+ f(BUC) - f(AUBUC) —f(C) >0
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Polymatroids: Generalized Dependence

@ there is a notion of “independence” , i.e., AILB:

f(AUB) = f(A)+ f(B), (51)
@ and a notion of “conditional independence” | i.e., AL B|C:
f(AUBUC)+f(C)=f(AUC)+ f(BUC) (52)
@ and a notion of “dependence” (conditioning reduces valuation):
f(A|B) = f(AU B) — f(B) < f(A), (53)

@ and a notion of “conditional mutual information”
I(A;BIC) £ f(AUC)+f(BUC)— f(AUBUC) —f(C)>0

@ and two notions of “information amongst a collection of sets”:
k
1¢(S1: 2.1 SK) =D _F(SK) — F(S1USU---US)  (54)

=1

H(S5 S-S0 = Y. DA S)  (55)
AC{1,2,...k} jeA
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Submodular Separation and Symmetric Submodular

Minimization

@ Subsets A and B are separable if f(AU B) = f(A) + f(B)

@ Hence, separability is the same as statistical independence when f is
the entropy function.

@ Partitioning V into separable blocks can be performed using
symmetric SFM.

@ Given any polymatroid f, symmetrize it as follows:
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Symmetric Submodular Functions

@ Symmetrize and normalize f as f — f via the operation:

19

f(A)=f(A)+f(V\A) —-f(V), (56)

so that f(0)) = 0 if £(§) =0, and F(A) = F(V \ A) for all A.
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Symmetric Submodular Functions

@ Symmetrize and normalize f as f — f via the operation:

%)

f(A)=f(A)+f(V\A) —-f(V), (56)

so that f(0) = 0 if £(0) = 0, and F(A) = F(V \ A) for all A.

@ Such an f is also non-negative since
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Symmetric Submodular Functions

@ Symmetrize and normalize f as f — f via the operation:

f(A)=f(A)+f(V\A) —-f(V), (56)

so that f(0) = 0 if £(0) = 0, and F(A) = F(V \ A) for all A.

@ Such an f is also non-negative since
2f(A) = F(A) + F(V\A) > F(0) + (V) =2f(0) >0  (57)

@ Any submodular function can be so symmetrized, and submodularity
is preserved.
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Symmetric Submodular Functions

@ Symmetrize and normalize f as f — f via the operation:

%)

f(A)=f(A)+f(V\A) —-f(V), (56)

so that f(0) = 0 if £(0) = 0, and F(A) = F(V \ A) for all A.

@ Such an f is also non-negative since
2f(A) = F(A) + F(V\A) > F(0) + (V) =2f(0) >0  (57)

@ Any submodular function can be so symmetrized, and submodularity
is preserved.

o Example: f(A) = H(X4) = entropy, then f(A) = I(Xa; Xw\a) =
symmetric mutual information.
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Separators of submodular function via symmetrized version

@ Such a symmetrized submodular function measures a form of
“dependence” between A and A= V \ A
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Separators of submodular function via symmetrized version

@ Such a symmetrized submodular function measures a form of
“dependence” between A and A= V \ A

Theorem

We are given an f that is normalized & submodular. If 3A such that:

F(A) 2 F(A) + F(A) = f(V)=0 (58)

then f is “decomposable” w.r.t. A. This means that
f(B)=f(BNA)+f(BNA) for all B.
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Gaussian entropy, and the log-determinant function

Definition (differential entropy h(X))

h(X) = — /5 f(x) log f(x)dx (59)

@ When x ~ N(u, X) is multivariate Gaussian, the (differential)
entropy of the r.v. X is given by

h(X) = log \/|2meX| = log \/(2me)"|Z| (60)

and in particular, for a variable subset A and a constant ~,

F(A) = h(Xa) = log \/(2ne) A [£a] = 7|A| + _ log|Ea]  (61)
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Gaussian entropy, and the log-determinant function

Definition (differential entropy h(X))

h(X) = — /s f(x) log f(x)dx (59)

@ When x ~ N (u, X) is multivariate Gaussian, the (differential)
entropy of the r.v. X is given by

h(X) = log \/|2meX| = log v/ (2me)" | Z| (60)

and in particular, for a variable subset A and a constant ~,

F(A) = h(Xa) = log \/ (2me) AIEal =11A] + 7 log|Eal  (61)

@ Application of Jensen's inequality shows that
I(Xa\8: Xg\alXang) = h(Xa) + h(Xg) — h(Xaug) — h(Xang) > 0.
Hence differential entropy is submodular, and thus so is the logdet
function.
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Are all polymatroid functions entropy functions?

@ No, entropy functions must also satisfy the following:
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Are all polymatroid functions entropy functions?

@ No, entropy functions must also satisfy the following:

Theorem (Yeung)

For any four discrete random variables {X,Y,Z, U}, then

I(X;Y)=1(X;Y|Z)=0 (62)
implies that

I(X;Y|Z,U) < I(Z; U|X,Y) + I(X; Y|U) (63)

where I(-;-|-) is the standard Shannon mutual information function.
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Are all polymatroid functions entropy functions?

@ No, entropy functions must also satisfy the following:

Theorem (Yeung)

For any four discrete random variables {X,Y,Z, U}, then

I(X;Y)=1(X;Y|Z)=0 (62)
implies that

I(X;Y|Z,U) < I(Z; U|X,Y) + I(X; Y|U) (63)

where I(-;-|-) is the standard Shannon mutual information function.

@ This is not required for all polymatroid-based conditional mutual
information functions /¢(-; -|-).
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Containment, Gaussian Entropy, and DPPs

@ Submodular functions O Polymatroid functions O Entropy functions
D Gaussian Entropy functions = DPPs.
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Containment, Gaussian Entropy, and DPPs

@ Submodular functions O Polymatroid functions O Entropy functions
D Gaussian Entropy functions = DPPs.

e DPP is a point process where Pr(Y = Y') ox det(Ly) for some
positive-definite matrix L, so DPPs are log-submodular.
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Containment, Gaussian Entropy, and DPPs

@ Submodular functions O Polymatroid functions O Entropy functions
D Gaussian Entropy functions = DPPs.

e DPP is a point process where Pr(Y = Y') ox det(Ly) for some
positive-definite matrix L, so DPPs are log-submodular.

@ Thanks to the properties of matrix algebra (e.g., determinants),
DPPs are computationally extremely attractive.
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Containment, Gaussian Entropy, and DPPs

@ Submodular functions O Polymatroid functions O Entropy functions
D Gaussian Entropy functions = DPPs.

e DPP is a point process where Pr(Y = Y') ox det(Ly) for some
positive-definite matrix L, so DPPs are log-submodular.

@ Thanks to the properties of matrix algebra (e.g., determinants),
DPPs are computationally extremely attractive.

o We'll touch DPPs a bit later when we compare submodularity and
graphical models.
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© Discrete Semimodular Semigradients
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Semigradients

Convex Functions and Tight Subgradients

f,(b) = f(b)
f (@) < f(a)

N
e

b X

@ A convex function f has a subgradient at any in-domain point b,
namely there exists f;, such that

F(x) — F(b) > (fy, x — b), ¥x. (64)
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Semigradients

Concave Functions and Tight Supergradients

f,(b) = f(b)
f (@) < f(a)

N
e

b X

@ A convex function f has a subgradient at any in-domain point b,
namely there exists f;, such that

F(x) — £(b) > (fy, x — b),Vx. (64)

@ We have that f(x) is convex, fp(x) is affine, and is a tight
subgradient (tight at b, affine lower bound on f(x)).
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Convex Functions and Tight Subgradients

()
f°(b) = f(b)
/ fo) fa)=f@)
/|
T b X

@ A concave f has a supergradient at any in-domain point b, namely
there exists 2 such that

f(x) — f(b) < (f°,x — b), ¥x. (65)
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Concave Functions and Tight Supergradients

()
f°(b) = f(b)
/ fo) fa)=f@)
/|
T b X

@ A concave f has a supergradient at any in-domain point b, namely
there exists 2 such that

f(x) — f(b) < (f°,x — b), ¥x. (65)

@ We have that f(x) is concave, f°(x) is affine, and is a tight
supergradient (tight at b, affine upper bound on f(x)).
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Trivial additive upper/lower bounds

@ Any submodular function has trivial additive upper and lower
bounds. That is for all A C V,

m¢(A) < f(A) < m"(A) (66)
where
m'(A) = f(a) (67)
acA
ms(A) = f(alV\{a}) (68)
acA
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Semigradients
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Trivial additive upper/lower bounds

@ Any submodular function has trivial additive upper and lower
bounds. That is for all A C V,

m¢(A) < f(A) < m'(A) (66)
where
m'(A) = f(a) (67)
acA
me(A) = f(alV\{a}) (68)
acA

o m’ € RY and ms € RY are both modular (or additive) functions.
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Semigradients
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Trivial additive upper/lower bounds

@ Any submodular function has trivial additive upper and lower
bounds. That is for all A C V,

m¢(A) < f(A) < m'(A) (66)
where
m'(A) = f(a) (67)
acA
me(A) = f(alV\{a}) (68)
acA

o m" € RY and ms € RY are both modular (or additive) functions.

@ A “semigradient” is customized, and at least at one point is tight.
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Submodular Subgradients

@ For submodular function f, the subdifferential (all subgradients tight
at X C V) can be defined as:

OF(X) = Ix e RY : VY C V,x(Y) — x(X) < f(Y) — f(X)} (69)
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Submodular Subgradients

e For submodular function f, the subdifferential (all subgradients tight
at X C V) can be defined as:

AF(X) = {x RV : VY C V., x(Y) — x(X) < f(Y) — £(X)} (69)

A PP,

(0.0) T

0@ 9f({v1})

@ This partitions RY:
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Submodular Subgradients

e For submodular function f, the subdifferential (all subgradients tight
at X C V) can be defined as:

AF(X) = {x RV : VY C V., x(Y) — x(X) < f(Y) — £(X)} (69)

A PP,

(0.0) T

0@ 9f({v1})

@ This partitions RY:

@ Extreme points are easy to get via Edmonds’s greedy algorithm:
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Submodular Subgradients

e For submodular function f, the subdifferential (all subgradients tight
at X C V) can be defined as:

AF(X) = {x e RV : VY C V,x(Y) — x(X) < f(Y) — f(X)} (69)

Ty

A PP,

(0,0) [

0@ 9f({v1})

@ This partitions RY:

@ Extreme points are easy to get via Edmonds's greedy algorithm:

Theorem (Fujishige 2005, Theorem 6.11)

A point y € RY is an extreme point of Of(X),
iff there exists a maximal chain ) = So C Sy C --- C S, with X = §;
for some j, such that y(S; \ Si—1) = y(Si) — y(Si—1) = f(Si) — f(Si—1).

J. Bilmes
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The Submodular Subgradients (Fujishige 2005)

@ For an arbitrary Y C V

o Let o be a permutation of V and define S7 = {o(1),0(2),...,0(i)}
as o's chain where S7 = Y where |Y| = k.

@ We can define a subgradient h@ corresponding to f as:

£(S9) if i =1
f(S7) — f(S7,) otherwise |

@ We get a tight modular lower bound of f as follows:

23 hY, (X),¥vX C V.

xeX

Note, tight at Y means h’;,J(Y) =f(Y).
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Convexity and Tight Sub- and Super-gradients?

@ Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?
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Convexity and Tight Sub- and Super-gradients?

@ Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

(X
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Convexity and Tight Sub- and Super-gradients?

@ Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

£2(x)
f,X)
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Convexity and Tight Sub- and Super-gradients?

@ Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

2
£o00

b X

@ If a continuous function has both a sub- and super-gradient at a
point, then the function must be affine.
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Convexity and Tight Sub- and Super-gradients?

@ Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

£2(x)
f,X)

b X

@ If a continuous function has both a sub- and super-gradient at a
point, then the function must be affine.

@ What about discrete set functions?
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The Submodular Supergradients

@ Can a submodular function also have a supergradient? We saw that
in the continuous case, simultaneous sub/super gradients meant
linear.

o (Nemhauser, Wolsey, & Fisher 1978) established the following iff
conditions for submodularity (if either hold, f is submodular):

FY)<F(X) = > FUX\)+ > fUXnYy),

Jjex\y JEY\X
FY)<F(X) = > FUIXUYIN) + D FGIX)
jex\Y JEY\X

Recall that f(A|B) = f(AU B) — f(B) is the gain of adding A in the
context of B.
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Submodular and Supergradients

@ Using submodularity further, these can be relaxed to produce two
tight modular upper bounds (Jegelka & Bilmes, 2011, lyer & Bilmes
2013):

F(Y) < mba(Y) 2 F(X Z FUIX\) + Z F(j10),

JjEX\Y JjeEY\X
FY) < mka(Y)2F(X) =D FUIVAY+ D fUIX).
JEX\Y JEY\X

Hence, this yields three tight (at set X) modular upper bounds
m§< 1) m)f( 5 for any submodular function f.
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Why is m§<$2 Modular?

o m:2Y — R is modular if m(X)+ m(Y)=m(XUY)+m(XnNY),or
equivalently if it can be expressed as, for any X C V:

X)=c+Y_ m() (70)

JjeX
where c is a constant. l.e., m € RY.
@ For example, the function

mio(Y) 2 F(X) = D IV + D FGIX) (71)

jex\y JjEY\X
is modular in Y as Equation (70) with

miea(V) 2 [FO) =D FGIV) ]+ 3 FUIVY) - (72)

JjeX JE(XNY)
+ g fU1X) (73)
JEY\X
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Submodular Supergradients (lyer et al, 2013)

@ These three supergradients (which we call grow, shrink, and bar) are
easy to obtain.
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Semigradients

Submodular Supergradients (lyer et al, 2013)

@ These three supergradients (which we call grow, shrink, and bar) are
easy to obtain.

Grow:

~ o~ JEUIY) forj¢yY
&)= {f(jIV\{j}) for j € v
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Semigradients

Submodular Supergradients (lyer et al, 2013)

@ These three supergradients (which we call grow, shrink, and bar) are
easy to obtain.

Shrink:

PR E011) forjgyY
&)= {f(jIY\{j}) forj e v
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Semigradients

Submodular Supergradients (lyer et al, 2013)

@ These three supergradients (which we call grow, shrink, and bar) are
easy to obtain.

Bar:

_ o~ ) f3ID) forj ¢y
&)= {f(jIV\{j}) for j € v
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Semigradients

Submodular Supergradients (lyer et al, 2013)

@ These three supergradients (which we call grow, shrink, and bar) are
easy to obtain.

Bar:

_ o~ ) f3ID) forj ¢y
&)= {f(jIV\{j}) for j € v

e Modular upper bound: m8¥(X) = f(Y) + gy(X) —gv(Y) < f(X).
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Arbitrary functions as difference between submodular
funcs.

Given an arbitrary set function f, it can be expressed as a difference
f = g — h between two polymatroid functions, where both g and h are
polymatroidal.

@ The semi-gradients above offer a majorization/maximization
framework to minimize any function that is naturally expressed as
such a difference.
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Semigradients
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Arbitrary functions as difference between submodular
funcs.

Given an arbitrary set function f, it can be expressed as a difference
f = g — h between two polymatroid functions, where both g and h are
polymatroidal.

@ The semi-gradients above offer a majorization/maximization
framework to minimize any function that is naturally expressed as
such a difference.

@ E.g., to minimize f = g — h, starting with a candidate solution X,
repeatedly choose a modular supergradient for g and modular
subgradient for h, and perform modular minimization (easy). (see
lyer & Bilmes, 2012).
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Applications

@ Sensor placement with submodular costs. l.e., let V be a set of
possible sensor locations, f(A) = /(Xa; X\ a) measures the quality
of a subset A of placed sensors, and ¢(A) the submodular cost. We
have mina f(A) — Ac(A).

@ Discriminatively structured graphical models, EAR measure
I(Xa; X\\a) — 1(Xa; Xv\alC), and synergy in neuroscience.

o Feature selection: a problem of maximizing
1(Xa; C) — Ac(A) = H(Xa) — [H(Xa|C) + Ac(A)], the difference
between two submodular functions, where H is the entropy and c is
a feature cost function.

@ Graphical Model Inference. Finding x that maximizes
p(x) o< exp(—v(x)) where x € {0,1}" and v is a pseudo-Boolean
function. When v is non-submodular, it can be represented as a
difference between submodular functions.
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@ Continuous Extensions
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Continuous Extensions of Discrete Set Functions

e Any function f : 2V — R (equivalently f : {0,1}" — R) can be
extended to a continuous function f : [0,1]Y — R.
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Continuous Extensions of Discrete Set Functions

o Any function f : 2V = R (equivalently f : {0, 1}Y = R) can be
extended to a continuous function f : [0,1]V — R.
@ In fact, any such discrete function defined on the vertices of the n-D

hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n =1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM
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Extensions
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Continuous Extensions of Discrete Set Functions

o Any function f : 2V = R (equivalently f : {0, 1}Y = R) can be
extended to a continuous function f : [0,1]V — R.
@ In fact, any such discrete function defined on the vertices of the n-D

hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM

@ Since there are an exponential number of vertices {0,1}", important
questions regarding such extensions is:
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Continuous Extensions of Discrete Set Functions

o Any function f : 2V = R (equivalently f : {0, 1}Y = R) can be
extended to a continuous function f : [0,1]V — R.

@ In fact, any such discrete function defined on the vertices of the n-D
hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM

@ Since there are an exponential number of vertices {0,1}", important
questions regarding such extensions is:

@ When are they computationally feasible to obtain or estimate?
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Extensions
[NERRNNANRR

Continuous Extensions of Discrete Set Functions

o Any function f : 2V = R (equivalently f : {0, 1}Y = R) can be
extended to a continuous function f : [0,1]V — R.
@ In fact, any such discrete function defined on the vertices of the n-D

hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM

@ Since there are an exponential number of vertices {0,1}", important
questions regarding such extensions is:

@ When are they computationally feasible to obtain or estimate?
@ When do they have nice mathematical properties?
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Continuous Extensions of Discrete Set Functions

o Any function f : 2V = R (equivalently f : {0, 1}Y = R) can be
extended to a continuous function f : [0,1]V — R.

@ In fact, any such discrete function defined on the vertices of the n-D
hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM

@ Since there are an exponential number of vertices {0,1}", important
questions regarding such extensions is:

@ When are they computationally feasible to obtain or estimate?
@ When do they have nice mathematical properties?
© When are they useful for something practical?
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A continuous extension of f

@ Given a submodular function f, a w € RY, define chain
Vi = {v1,va,...,v;} based on w sorted in decreasing order. Then
Edmonds’s greedy algorithm gives us:

f(w)
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A continuous extension of f

@ Given a submodular function f, a w € RY, define chain
Vi = {v1, va,...,v;} based on w sorted in decreasing order. Then
Edmonds’s greedy algorithm gives us:

f(w) = max(wx : x € Pr) (74)
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A continuous extension of f

@ Given a submodular function f, a w € RY, define chain
Vi = {v1, va,...,v;} based on w sorted in decreasing order. Then
Edmonds’s greedy algorithm gives us:

f(w) = max(wx :x € Pr) (74)

:ZW f(vilVi_1) (75)
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Extensions
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A continuous extension of f

@ Given a submodular function f, a w € RY, define chain
Vi = {v1, va,...,v;} based on w sorted in decreasing order. Then
Edmonds’s greedy algorithm gives us:

f(w) = max(wx : x € P¥) (74)
=" w(v)f(vilVi-1) (75)

i=1
=Y " w(v)(F(V)) - f(Vi-1)) (76)

i=1
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Extensions
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A continuous extension of f

@ Given a submodular function f, a w € RY, define chain
Vi = {v1, va,...,v;} based on w sorted in decreasing order. Then
Edmonds’s greedy algorithm gives us:

f(w) = max(wx : x € Pr) (74)
= w(vi)f(vilVi-1) (75)
i=1
=D w(v)(f(V}) = f(Vi-1)) (76)
i=1
m—1
= w(vm)f (Vi) + ) (w(vi) = w(vip))f (Vi) (77)
i=1
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A continuous extension of f

@ Definition of the continuous extension, once again:

f(w) = max(wx : x € P) (78)
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A continuous extension of f

@ Definition of the continuous extension, once again:
f(w) = max(wx : x € Pf) (78)

@ Therefore, if f is a submodular function, we can write

f(w)
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A continuous extension of f

@ Definition of the continuous extension, once again:
f(w) = max(wx : x € Pf) (78)

@ Therefore, if f is a submodular function, we can write

?(W) = w(vp)f )+ Z — w(viy1))f(Vh) (79)
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Extensions
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A continuous extension of f

@ Definition of the continuous extension, once again:
f(w) = max(wx : x € Pf) (78)

@ Therefore, if f is a submodular function, we can write

m—1

F(w) = w(vm)f(Vin) + D (w(vi) = w(vis)) (Vi) (79)

i=1

~ 3 MA(V) (50)

i=1
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A continuous extension of f

@ Definition of the continuous extension, once again:
f(w) = max(wx : x € Pf) (78)

@ Therefore, if f is a submodular function, we can write

F(w) = w(vm)f +Z w(v) — w(vie))F(V))  (79)

_ i AF(V) (50)

where A, = w(vi,) and otherwise \; = w(v;) — w(vj4+1), where the
elements are sorted according to w as before.
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A continuous extension of f

@ Definition of the continuous extension, once again:
f(w) = max(wx : x € Pf) (78)

@ Therefore, if f is a submodular function, we can write

F(w) = w(vam +Z w(vi) —w(vip))f(Vi)  (79)

3V (80)
i=1

where Ay, = w(vi,) and otherwise \; = w(v;) — w(vj41), where the
elements are sorted according to w as before.

@ From convex analysis, we know f(w) = max(wx : x € P) is always
convex in w for any set P C RV since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).

J. Bilmes Submodularity page 93 /124



Extensions
(NRR NRRNRRN

An extension of f

e But, for any f : 2V 5 R, even non-submodular f, we can define an
extension in this way, with

m

F(w) =D Aif (Vi) (81)
i=1
with the V; = {w1,...,v;}'s defined based on sorted descending

order of w as in w(vy) > w(va) > -+ > w(vy,), and where

A= {W(V,') —w(viy1) ifi<m (82)

for i e {1,...,m}, w(Vm) ifi=m

so that w =317, Ay,
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An extension of f

e But, for any f: 2V 3 R, even non-submodular f, we can define an
extension in this way, with

F(w) = Yo Nif (V) (81)
i=1

with the V; = {wv1,...,v;}'s defined based on sorted descending
order of w as in w(vy) > w(va) > -+ > w(vy,), and where
w(v;) —w(viy1) ifi<m (82)

w(vm) ifi=m

for i € {1,..., m}, )\,-:{

so that w =Y 1", Aily,

@ Note that w = ) 7, \j1y, is an interpolation of certain vertices of
the hypercube, and that f(w) = ", \if(V;) is the corresponding
interpolation of the values of f at sets corresponding to each
hypercube vertex.
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Lovasz Extension, Submodularity and Convexity

Lovasz proved the following important theorem.

A function f : 2¥ — R is submodular iff its its continuous extension
defined above as f(w) = > \if (Vi) withw = > Aily. is a convex
function in RV
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Lovasz extension vs. vector rank function

@ Recall vector rank, relative to Py, defined as:
rank(w) = max (y(V):y < w,y € Ps) (83)

where y < w is means componentwise inequality (y; < x;, Vi).

J. Bilmes Submodularity page 96 / 124



Extensions
(NENNR RNRRN

Lovasz extension vs. vector rank function

@ Recall vector rank, relative to Py, defined as:
rank(w) = max(y(V) :y <w,y € Ps) (83)

where y < w is means componentwise inequality (y; < x;, Vi).

e Lovész extension, f : [0,1]Y — R:

f(w) =max(wTx : x € Ps) (84)

J. Bilmes Submodularity page 96 / 124



Extensions
(NENNR RNRRN

Lovasz extension vs. vector rank function

@ Recall vector rank, relative to Py, defined as:

rank(w) = max(y(V) :y < w,y € Ps) (83)

where y < w is means componentwise inequality (y; < x;, Vi).
o Lovdsz extension, f : [0,1]Y — R:

f(w) = max(w'x : x € Pf) (84)

° NBoth are “subnlodular” inNa sense that
f(a)+ f(b) > f(aVv b)+f(aAb).
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Lovasz extension vs. vector rank function

@ Recall vector rank, relative to Py, defined as:
rank(w) = max(y(V) :y <w,y € Ps) (83)

where y < w is means componentwise inequality (y; < x;, Vi).
o Lovdsz extension, f : [0,1]Y — R:

f(w) = max(w'x : x € Pf) (84)
@ Both are “submodular” in a sense that

f(a)+f(b) > f(aV b)+f(anb).
@ When Ps is a matroid polytope, rank(14) = 7(14) = rank(A).
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Minimizing f vs. minimizing f

Let f be submodular and f be its éova’sz extension. TNhen
min{f(A)|JAC V} = min,,c 013" f(w) = min,cpo v f(w).

@ Let w* € argmin {IN‘(W)|W e [o, l]V} and let
A* € argmin {f(A)|A C V}.
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~

Minimizing f vs. minimizing f

Let f be submodular and f be its éova’sz extension. TNhen
min{f(A)|JAC V} = min,,c 013" f(w) = min,cpo v f(w).

o Let w* € argmln{ (w)|w € [0, 1]V} and let

A* € argmin {f(A)|A C V}.
@ Define chain {V/} based on descending sort of w*. Then by greedy
evaluation of L.E. we have

Z)\ f(V¥) = f(A*) = min {f(A)|A C V} (85)
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~

Minimizing f vs. minimizing f

Let f be submodular and f be its éova’sz extension. TNhen
min{f(A)|JAC V} = min,,c 013" f(w) = min,cpo v f(w).

o Let w* € argmin {?(W)|W e [o, 1]V} and let
A* € argmin {f(A)|A C V}.

@ Define chain {V/} based on descending sort of w*. Then by greedy
evaluation of L.E. we have

?(W*):Z)\Tf(\/,-*): f(A*) =min{f(A)JAC V} (85)

@ Then we can show that, for each i s.t. \; > 0,
F(Vi') = F(AY) (86)
So such {V*} are also minimizers.
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Max-Min Theorems

Let f be a submodular function defined on subsets of V. For any
x € RY, we have:

rank(x) = max (y(V):y < x,y € Pr) = min(x(A)+ f(V\A): AC V)
(87)

If we take x to be zero, we get:

Corollary

Let f be a submodular function defined on subsets of V. x € RY, we
have:

rank(0) = max(y(V):y <0,y € Pr) =min(f(A): AC V) (88)
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Duality of convex minimization of Lovdsz extension and

min-norm point algorithm

o Let f be a submodular function with f it's Lovasz extension. Then
the following two problems are duals:

minimize INC(W) + E||w||% maximize — [IxI3

weRY 2 subject to x € B
where Bf = Pr N {x € RV : x(V) = f(V)} is the base polytope of
submodular function f, and ||x||3 = 3" ..\ x(e)? is the squared
2-norm.

@ Minimum-norm point algorithm (Fujishige-1991, Fujishige-2005,
Fujishige-2011, Bach-2013) is essentially an active-set procedure for
quadratic programming, and uses Edmonds’s greedy algorithm to
make it efficient.

@ Unknown worst-case running time, although in practice it usually
performs quite well.
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Other applications of Lovasz Extension

@ “fast” submodular function minimization, as mentioned above.
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Other applications of Lovasz Extension

@ “fast” submodular function minimization, as mentioned above.

@ Structured sparse-encouraging convex norms (Bach-2011,
Bach-2012, and Bach-2013), semi-supervised learning, image
denoising, etc.
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Other applications of Lovasz Extension

@ “fast” submodular function minimization, as mentioned above.

@ Structured sparse-encouraging convex norms (Bach-2011,
Bach-2012, and Bach-2013), semi-supervised learning, image
denoising, etc.

e E.g., last year's NIPS: Learning scale-free networks (Defazio and
Caetano),
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Other applications of Lovasz Extension

@ “fast” submodular function minimization, as mentioned above.

@ Structured sparse-encouraging convex norms (Bach-2011,
Bach-2012, and Bach-2013), semi-supervised learning, image
denoising, etc.

e E.g., last year's NIPS: Learning scale-free networks (Defazio and
Caetano),

@ Non-linear measures (Denneberg), non-linear aggregation functions
(Grabisch et. al), and fuzzy set theory.
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Other applications of Lovasz Extension

@ “fast” submodular function minimization, as mentioned above.

@ Structured sparse-encouraging convex norms (Bach-2011,
Bach-2012, and Bach-2013), semi-supervised learning, image
denoising, etc.

e E.g., last year's NIPS: Learning scale-free networks (Defazio and
Caetano),

@ Non-linear measures (Denneberg), non-linear aggregation functions
(Grabisch et. al), and fuzzy set theory.

@ Note, many of the critical properties of the Lovasz extension were
given by Jack Edmonds in the 1960s. Choquet proposed an identical
integral in 1954, and G. Vitali proposed a similar integral in 1925!
G.Vitali, Sulla definizione di integrale delle funzioni di una variabile, Annali
di Matematica Serie 1V, Tomo [,(1925), 111-121
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Submodular Concave Extension

e Finding a concave extension of a submodular function is NP-hard
(Vondrak).
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Submodular Concave Extension

e Finding a concave extension of a submodular function is NP-hard
(Vondrak).

@ However, a useful surrogate is the multi-linear extension.
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Submodular Concave Extension

e Finding a concave extension of a submodular function is NP-hard
(Vondrak).

@ However, a useful surrogate is the multi-linear extension.

For a set function f : 2¥ — R, define its multilinear extension
F:[0,1]Y — R by

F=> fS)[Ix [T @—x) (90)

scv i€S  jeV\S
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Submodular Concave Extension

e Finding a concave extension of a submodular function is NP-hard
(Vondrak).

@ However, a useful surrogate is the multi-linear extension.

For a set function f : 2¥ — R, define its multilinear extension
F:[0,1]Y — R by

F=> fS)[Ix [T @—x) (90)

scv €S jeV\S

@ Not concave, but still provides useful approximations for many
constrained maximization algorithms (e.g., multiple matroid and/or
knapsack constraints) via the continuous greedy algorithm followed
by rounding.
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[NRRNNRNNA] |

Submodular Concave Extension

e Finding a concave extension of a submodular function is NP-hard
(Vondrak).
@ However, a useful surrogate is the multi-linear extension.

For a set function f : 2¥ — R, define its multilinear extension
F:[0,1]Y — R by

F=> fS)[Ix [T @—x) (90)

scv i€S  jeV\S

@ Not concave, but still provides useful approximations for many
constrained maximization algorithms (e.g., multiple matroid and/or
knapsack constraints) via the continuous greedy algorithm followed
by rounding.

@ Often has to be approximated.
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@ Like Concave or Convex?
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Concave or Convex?
[NRNRR

Submodular: Concave? Convex? Neither? Both?

@ Are submodular functions more like convex or more like concave
functions?
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Concave or Convex?
(LERNN]

Submodular is like Concave

@ Convex 1: Like convex functions, submodular functions can be
minimized efficiently (polynomial time).
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Concave or Convex?
(LERNN]

Submodular is like Concave

@ Convex 1: Like convex functions, submodular functions can be
minimized efficiently (polynomial time).

@ Convex 2: The Lovasz extension of a discrete set function is convex
iff the set function is submodular.
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Concave or Convex?
(NLRNN]

Submodular is like Concave

e Convex 3: Frank's discrete separation theorem: Let f : 2Y — R be
a submodular function and g : 2¥ — R be a supermodular function
such that for all A C V,

g(A) < f(A) (91)
Then there exists modular function x € RY such that for all A C V:
g(A) < x(A) < f(A) (92)
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Concave or Convex?
(NLRNN]

Submodular is like Concave

e Convex 3: Frank's discrete separation theorem: Let f : 2Y — R be
a submodular function and g : 2¥ — R be a supermodular function
such that for all AC V,

g(A) < f(A) (91)
Then there exists modular function x € RY such that for all A C V:
g(A) < x(A) < F(A) (92)

e Compare to convex/concave case.

@ mx)
N glx)
X
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Concave or Convex?
(NRE RN

Submodular is like Concave

@ Convex 4: Set of minimizers of a convex function is a convex set.
Set of minimizers of a submodular function is a lattice. l.e., if
A, B € argminycy f(A) then AU B € argminycy f(A) and
AN B € argminc\, f(A) -
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Concave or Convex?
(NRE RN

Submodular is like Concave

@ Convex 4: Set of minimizers of a convex function is a convex set.
Set of minimizers of a submodular function is a lattice. l.e., if
A, B € argminycy, f(A) then AU B € argminy-y f(A) and
ANB e argmin;\g/ f(A) -

@ Convex 5: Submodular functions have subdifferentials and
subgradients tight at any point.
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Concave or Convex?
(NERR NI

Submodularity and Concave

@ Concave 1: A function is submodular if for all X C V and j, k € V
f(X +Jj)+ (X +k) > F(X+j+k)+f(X) (93)
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Submodularity and Concave

@ Concave 1: A function is submodular if for all X C V and j, k € V
F(X +J)+ (X + k) > (X +j+ k) +f(X) (93)

e With the gain defined as V;(X) = f(X + ) — f(X), seen as a form
of discrete gradient, this trivially becomes a second-order condition,
akin to concave functions: A function is submodular if for all X C V
and j, k € V, we have:

V,Vif(X) <0 (94)
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Submodularity and Concave

@ Concave 1: A function is submodular if for all X C V and j, k € V
F(X +J)+ (X + k) > (X +j+ k) +f(X) (93)

e With the gain defined as V;(X) = f(X + ) — f(X), seen as a form
of discrete gradient, this trivially becomes a second-order condition,
akin to concave functions: A function is submodular if for all X C V
and j, k € V, we have:

V;Vif(X) <0 (94)

@ Concave 2: Recall, Theorem 25: composition h=1fog: 2V 5 R
(i.e., h(S) = g(f(S))) is nondecreasing submodular, if g is
non-decreasing concave and f is nondecreasing submodular.

J. Bilmes Submodularity page 107 / 124



Concave or Convex?
(NERR NI

Submodularity and Concave

@ Concave 1: A function is submodular if for all X C V and j, k € V
F(X +J)+ (X + k) > (X +j+ k) +f(X) (93)

e With the gain defined as V;(X) = f(X + ) — f(X), seen as a form
of discrete gradient, this trivially becomes a second-order condition,
akin to concave functions: A function is submodular if for all X C V
and j, k € V, we have:

V;Vif(X) <0 (94)

e Concave 2: Recall, Theorem 25: composition h=fog:2¥ - R
(i.e., h(S) = g(f(S))) is nondecreasing submodular, if g is
non-decreasing concave and f is nondecreasing submodular.

@ Concave 3: Submodular functions have superdifferentials and
supergradients tight at any point.
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Submodularity and Concave

@ Concave 1: A function is submodular if for all X C V and j, k € V
F(X +J)+ (X + k) > (X +j+ k) +f(X) (93)

e With the gain defined as V;(X) = f(X + ) — f(X), seen as a form
of discrete gradient, this trivially becomes a second-order condition,
akin to concave functions: A function is submodular if for all X C V
and j, k € V, we have:

V;Vif(X) <0 (94)

e Concave 2: Recall, Theorem 25: composition h=fog:2¥ - R
(i.e., h(S) = g(f(S))) is nondecreasing submodular, if g is
non-decreasing concave and f is nondecreasing submodular.

@ Concave 3: Submodular functions have superdifferentials and
supergradients tight at any point.

@ Concave 4: Concave maximization solved via local gradient ascent.
Submodular maximization is (approximately) solvable via greedy
(coordinate-ascent-like) algorithms.
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Concave or Convex?
(NRRNR}

Submodularity and neither Concave nor Convex

@ Neither 1: Submodular functions have simultaneous sub- and
super-gradients, tight at any point.
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Submodularity and neither Concave nor Convex

@ Neither 1: Submodular functions have simultaneous sub- and
super-gradients, tight at any point.

@ Neither 2: Concave functions are closed under min, while
submodular functions are not.
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Submodularity and neither Concave nor Convex

@ Neither 1: Submodular functions have simultaneous sub- and
super-gradients, tight at any point.

@ Neither 2: Concave functions are closed under min, while
submodular functions are not.

@ Neither 3: Convex functions are closed under max, while
submodular functions are not.
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Concave or Convex?
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Submodularity and neither Concave nor Convex

@ Neither 1: Submodular functions have simultaneous sub- and
super-gradients, tight at any point.

@ Neither 2: Concave functions are closed under min, while
submodular functions are not.

@ Neither 3: Convex functions are closed under max, while
submodular functions are not.

@ Neither 4: Convex functions can't, in general, be efficiently or
approximately maximized, while submodular functions can be.
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Concave or Convex?
(NRRNR}

Submodularity and neither Concave nor Convex

@ Neither 1: Submodular functions have simultaneous sub- and
super-gradients, tight at any point.

@ Neither 2: Concave functions are closed under min, while
submodular functions are not.

@ Neither 3: Convex functions are closed under max, while
submodular functions are not.

@ Neither 4: Convex functions can't, in general, be efficiently or
approximately maximized, while submodular functions can be.

@ Neither 5: Convex functions have local optimality conditions of the
form V,f(x) = 0. Analogous submodular function semi-gradient
condition m(X) = 0 offers no such guarantee (for neither
maximization nor minimization).
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© Optimization
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Optimization
(AN

SFM Summary (modified from S. lwata’'s slides)
General Submodular Function Minimization

’ Wolfe (1976)/von Hohenbalken (1975) k’ ’ F“jiShige“gBO”gg”H’ Bach (2012”3)‘

minimum norm point gen. convex methods
algorithm
N Edmonds (1965/1970)‘
’ Grotschel, Lovasz, Schrijver (1981, 1988) —

Ellipsoid Method ’ Bixby, Cunningham Topkis (1984)‘
0(1’15)/ log M) ’ Cunningham (1985) ‘
7 8
O(n'y logn) e N\, OW'y+n’)
Iwata, Fleischer, Fujishige (2000) ‘ ’ Schrijver (2000) ‘

{
\ ’ Fleischer, lwata (2000) ‘
wata
— |

Fully Combinatorial

’ Iwata (2003) ( ’ Orlin (2007) ‘
O((n'y +n*)log M) O(nsy +n%)

Iwata, Orlin (2009)
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Constrained Submodular Minimization

@ Constrained submodular minimization

Telg f(A) (95)
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Optimization
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Constrained Submodular Minimization

@ Constrained submodular minimization

TEIE f(A) (95)

@ C can be paths, matchings, or spanning trees (Goel et. al.), cover
constraints (lwata & Nagano), cuts (Jegelka & Bilmes), or
cardinality lower bounds (Svitkina & Fleischer).
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@ Constrained submodular minimization

TEIE f(A) (95)

@ C can be paths, matchings, or spanning trees (Goel et. al.), cover
constraints (lwata & Nagano), cuts (Jegelka & Bilmes), or
cardinality lower bounds (Svitkina & Fleischer).

@ Some cardinality constraints can be obtained via the min-norm
algorithm (Nagano & Kawahara, 2013).
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@ Constrained submodular minimization

TEIE f(A) (95)

@ C can be paths, matchings, or spanning trees (Goel et. al.), cover
constraints (lwata & Nagano), cuts (Jegelka & Bilmes), or
cardinality lower bounds (Svitkina & Fleischer).

@ Some cardinality constraints can be obtained via the min-norm
algorithm (Nagano & Kawahara, 2013).

@ Other forms of constraints are “easy” (e.g., certain lattices,
odd/even sets (see McCormick's SFM tutorial paper).
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Constrained Submodular Minimization

@ Constrained submodular minimization

TEIE f(A) (95)

@ C can be paths, matchings, or spanning trees (Goel et. al.), cover
constraints (lwata & Nagano), cuts (Jegelka & Bilmes), or
cardinality lower bounds (Svitkina & Fleischer).

@ Some cardinality constraints can be obtained via the min-norm
algorithm (Nagano & Kawahara, 2013).

@ Other forms of constraints are “easy” (e.g., certain lattices,
odd/even sets (see McCormick's SFM tutorial paper).

@ In general, many constraints make the problem NP-hard although
approximation guarantees are possible (although often hardness is
things like Q(n) or Q(n?/3)).
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Constrained Submodular Minimization

@ Constrained submodular minimization

TEIE f(A) (95)

C can be paths, matchings, or spanning trees (Goel et. al.), cover
constraints (lwata & Nagano), cuts (Jegelka & Bilmes), or
cardinality lower bounds (Svitkina & Fleischer).

@ Some cardinality constraints can be obtained via the min-norm
algorithm (Nagano & Kawahara, 2013).

@ Other forms of constraints are “easy” (e.g., certain lattices,
odd/even sets (see McCormick's SFM tutorial paper).

@ In general, many constraints make the problem NP-hard although
approximation guarantees are possible (although often hardness is
things like Q(n) or Q(n%/3)).

@ Other forms of constraints: C = {A C V : g(A) > «a} for some other

submodular function g. This is studied for the first time here at

NIPS-2013 (see Saturday talk, lyer & Bilmes, NIPS 2013).
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Submodular Maximization: Unconstrained

@ In general, NP-hard.
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Submodular Maximization: Unconstrained

@ In general, NP-hard.
@ The greedy algorithm for monotone submodular maximization:
Algorithm 2: The Greedy Algorithm

Set50<—®;
fori<0...|V|—1do

Choose v; as follows: v; = {argmaxvev\sf f(Siu {v})} ;
Set Sj41 + S U {Vi} ;

J. Bilmes Submodularity page 112 / 124



Optimization
(IR

Submodular Maximization: Unconstrained

@ In general, NP-hard.
@ The greedy algorithm for monotone submodular maximization:
Algorithm 3: The Greedy Algorithm

Set50<—@;
fori<0...|V|-1do

Choose v; as follows: v; = {argmaxvev\si f(SiuU {v})} ;
Set 5,'+1 «— S U {V,'} ;

@ has a strong guarantee:
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Submodular Maximization: Unconstrained

@ In general, NP-hard.
@ The greedy algorithm for monotone submodular maximization:
Algorithm 4: The Greedy Algorithm

Set50<—@;
fori<0...|V|-1do

Choose v; as follows: v; = {argmaxvev\si f(SiuU {v})} ;
Set 5,'+1 «— S U {V,'} ;

@ has a strong guarantee:

Given a polymatroid function f , the above greedy algorithm returns sets
Si such that for each i we have f(S;) > (1 — 1/e) maxs|<; f(S).
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Submodular Max Summary - from J. Vondrak

Monotone Maximization

’ Constraint H Approximation ‘ Hardness ‘ Technique
S| < k 1-1/e 1-1/e greedy
matroid 1-1/e 1—1/e | multilinear ext.

O(1) knapsacks 1-1/e 1—1/e | multilinear ext.
k matroids k+ € k/ log k local search
k matroids and O(1) .
knapsacks O(k) k/log k | multilinear ext.
Nonmonotone Maximization
’ Constraint H Approximation | Hardness ‘ Technique
Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.
O(1) knapsacks 1/e 0.49 multilinear ext.
k matroids k+ O(1) k/ log k local search
k matroids and O(I) .
knapsacks O(k) k/log k | multilinear ext.
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© Parameterization and Applications
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Parameterization
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A submodular function as a parameter

@ In some cases, it may be useful to view a submodular function
f:2Y — R as a input “parameter” to a machine learning algorithm.
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A submodular function as a parameter

@ In some cases, it may be useful to view a submodular function
f:2Y — R as a input “parameter” to a machine learning algorithm.

@ Hence, it is imperative in the ML community to develop ways to
learn or approximately learn such submodular parameterizations.
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A submodular function as a parameter

@ In some cases, it may be useful to view a submodular function
f:2Y — R as a input “parameter” to a machine learning algorithm.

@ Hence, it is imperative in the ML community to develop ways to
learn or approximately learn such submodular parameterizations.

@ Ex: Structured sparsity-encouraging convex norm (Bach): i.e., a
submodular function f, via its Lovasz extension f, gives us a norm

lwlls = F(Jwl) (96)
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A submodular function as a parameter

@ In some cases, it may be useful to view a submodular function
f:2Y — R as a input “parameter” to a machine learning algorithm.

@ Hence, it is imperative in the ML community to develop ways to
learn or approximately learn such submodular parameterizations.

e Ex: Structured sparsity-encouraging convex norm (Bach): i.e., a
submodular function f, via its Lovasz extension f, gives us a norm

lwllr = F(|wl) (96)

@ So finding a desirable norm is equivalent to finding a desirable
submodular function.

J. Bilmes Submodularity page 115 / 124



Parameterization
[RARN

Graphical Models vs. log-supermodular distributions

e Consider family of distributions p : {0,1}" — [0, 1] of the form:

p(x) = 7 exp(F(x) (97)
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Graphical Models vs. log-supermodular distributions

o Consider family of distributions p : {0,1}" — [0, 1] of the form:

p(x) = 3 &xp((x) (97)

@ Graphical models: f(x) = > .. fc(xc) where C are a set of cliques.
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Graphical Models vs. log-supermodular distributions

o Consider family of distributions p : {0,1}" — [0, 1] of the form:

p(x) = 3 &xp((x) (97)

o Graphical models: f(x) = > .. fc(xc) where C are a set of cliques.
o If —f is supermodular, MAP assignment is a submodular
minimization problem. Typical example:

1

p(x) = - exp(—f(x) + m(x)) (98)

where f is submodular “energy” (often a graph-cut problem) and m
is modular (unaries). Common in computer vision.
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Graphical Models vs. log-supermodular distributions

o Consider family of distributions p : {0,1}" — [0, 1] of the form:

p(x) = 3 &xp((x) (97)

o Graphical models: f(x) = > .. fc(xc) where C are a set of cliques.
o If —f is supermodular, MAP assignment is a submodular
minimization problem. Typical example:

1

p(x) = - exp(—f(x) + m(x)) (98)

where f is submodular “energy” (often a graph-cut problem) and m
is modular (unaries). Common in computer vision.

@ Complexity is polynomial regardless of the tree-width of f —
submodularity is anti-graphical.
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Graphical Models vs. log-supermodular distributions

o Consider family of distributions p : {0,1}" — [0, 1] of the form:

p(x) = 3 &xp((x) (97)

o Graphical models: f(x) = > .. fc(xc) where C are a set of cliques.
o If —f is supermodular, MAP assignment is a submodular
minimization problem. Typical example:

p(x) = 5 exp(—(x) + m(x) (9%)

where f is submodular “energy” (often a graph-cut problem) and m
is modular (unaries). Common in computer vision.

@ Complexity is polynomial regardless of the tree-width of f —
submodularity is anti-graphical.

@ Log-supermodular distributions, since log p(x) is a supermodular
function.
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Graphical Models vs. log-submodular distributions

@ On the other hand, with

1

p(x) = - exp(f(x)) (99)

where f is submodular then p is log-submodular.
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Graphical Models vs. log-submodular distributions

@ On the other hand, with

p(x) = 5 exp((x) (99)

where f is submodular then p is log-submodular.

@ Example: f(x) = logdet(Cx) where X is the set corresponding to
binary vector x (i.e., x = 1x) and C is the sub-matrix with
rows/columns selected by X.
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Graphical Models vs. log-submodular distributions

@ On the other hand, with

p(x) = 5 exp((x) (99)

where f is submodular then p is log-submodular.

e Example: f(x) = logdet(Cx) where X is the set corresponding to
binary vector x (i.e., x = 1x) and C is the sub-matrix with
rows/columns selected by X.

@ Hence p(x) is a determinantal point process.
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1

log-supermodular vs. log-submodular distributions

@ Log-supermodular: MAP or high-probable assignments should be
“regular”, “homogeneous”, “smooth”, “simple”. E.g., attractive
potentials in computer vision, ferromagnetic Potts model statistical
physics.

J. Bilmes Submodularity page 118 / 124



Parameterization
1

log-supermodular vs. log-submodular distributions

@ Log-supermodular: MAP or high-probable assignments should be
“regular”’, “homogeneous”, “smooth”, “simple”. E.g., attractive
potentials in computer vision, ferromagnetic Potts model statistical
physics.

@ Log-submodular: MAP or high-probable assignments should be
“diverse”, or “complex”, or “covering”, like in determinantal point
processes.
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Other examples: submodular parameterization

@ Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).
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Other examples: submodular parameterization

@ Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

@ Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).
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Other examples: submodular parameterization

@ Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

e Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).

@ Rank-order based divergences (Submodular Bregman Divergence,
and the Lovdsz-Bregman Divergences) (lyer & Bilmes, 2013).
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Other examples: submodular parameterization

@ Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

e Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).

@ Rank-order based divergences (Submodular Bregman Divergence,
and the Lovdsz-Bregman Divergences) (lyer & Bilmes, 2013).

@ Feature and dictionary selection (Krause & Guestrin, Das & Kempe)
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Other examples: submodular parameterization

@ Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

e Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).

@ Rank-order based divergences (Submodular Bregman Divergence,
and the Lovdsz-Bregman Divergences) (lyer & Bilmes, 2013).

e Feature and dictionary selection (Krause & Guestrin, Das & Kempe)

e Computer vision (Kolmogorov, Boykov, Kohli, Ladicky, Torr, etc.).

J. Bilmes Submodularity page 119 / 124



Parameterization
(NN |

Other examples: submodular parameterization

@ Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

e Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).

@ Rank-order based divergences (Submodular Bregman Divergence,
and the Lovdsz-Bregman Divergences) (lyer & Bilmes, 2013).

e Feature and dictionary selection (Krause & Guestrin, Das & Kempe)
e Computer vision (Kolmogorov, Boykov, Kohli, Ladicky, Torr, etc.).

@ Data subset (or core set) selection in machine learning (Lin &
Bilmes, Wei & Bilmes). Data summarization, summarizing big
redundant data.

J. Bilmes Submodularity page 119 / 124



Parameterization
(NN |

Other examples: submodular parameterization

@ Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

e Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).

@ Rank-order based divergences (Submodular Bregman Divergence,
and the Lovdsz-Bregman Divergences) (lyer & Bilmes, 2013).

e Feature and dictionary selection (Krause & Guestrin, Das & Kempe)
e Computer vision (Kolmogorov, Boykov, Kohli, Ladicky, Torr, etc.).

e Data subset (or core set) selection in machine learning (Lin &
Bilmes, Wei & Bilmes). Data summarization, summarizing big
redundant data.

@ Influence determination in social networks (Kempe, Kleinberg, &
Tardos)
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@ Reading
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Classic References

@ Jack Edmonds's paper “"Submodular Functions, Matroids, and
Certain Polyhedra” from 1970.

@ Nemhauser, Wolsey, Fisher, “A Analysis of Approximations for
Maximizing Submodular Set Functions-I", 1978

@ Lovdsz's paper, “Submodular functions and convexity”, from 1983.
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Classic Books

Fujishige, “Submodular Functions and Optimization”, 2005
Narayanan, “Submodular Functions and Electrical Networks”, 1997
Welsh, “Matroid Theory”, 1975.

Oxley, “Matroid Theory”, 1992 (and 2011).

Lawler, "Combinatorial Optimization: Networks and Matroids”,
1976.

@ Schrijver, “Combinatorial Optimization”, 2003
@ Gruenbaum, “Convex Polytopes, 2nd Ed", 2003.
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Recent online material with an ML slant

@ My class, most proofs for above are given. http://j.ee.
washington.edu/~bilmes/classes/eeb96a_fall_2012/.
Next offered, April 2014.

@ Andreas Krause's web page http://submodularity.org.

@ Stefanie Jegelka and Andreas Krause's ICML 2013 tutorial
http://techtalks.tv/talks/
submodularity-in-machine-learning-new-directions-part-i/
58125/

@ Francis Bach's updated 2013 text.
http://hal.archives-ouvertes.fr/docs/00/87/06/09/PDF/
submodular_fot_revised_hal.pdf

@ Tom McCormick's overview paper on submodular minimization
http://people.commerce.ubc.ca/faculty/mccormick/
sfmchap8a.pdf

o Georgia Tech's 2012 workshop on submodularity: http:
//www.arc.gatech.edu/events/arc-submodularity-workshop
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The End: Thank you!

J. Bilmes

Making Everything Easier!”

gubmodularity

FOR

DUMMIES

Learn to:

with a 1 — 1/e guarantee!

@ Minimize your functions in
polynomial time!

o Draw beautiful polyhedra!

@ Solve exponentialy large
linear programs in polynomial
time!

Paul E. Matroid

Wonmy Neuswon Overee

Submodularity page

@ Greedily choose your data sets

Moniton Submodularanian

f(A) + f(B)
>

f(AUB) 4+ f(ANB)

) @
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