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A Dedication

This tutorial dedicated to Ben Taskar, and his family. RIP Ben.
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Goals of the Tutorial

Get an intuitive sense for submodular functions, should be able to
apply them.

Learn to recognize submodularity, or recognize when it might be
useful.

Learn to realize why submodularity can be useful in machine
learning. Why is it worth your time to study it.

Learn to realize when submodularity is inapplicable.
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Submodularity

Definition: given a finite ground set V , a function f : 2V → R is
said to be submodular if

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V (1)

The definition is the tip of the iceberg. This simple definition can
lead to great mathematical and practical richness.

Goals of tutorial: will be very simple, an attempt to cover some
important parts of the iceberg in 2 hours.

The tutorial itself is the tip of the iceberg!

One last goal: Let A be a set of tutorials on submodularity, and
f (A) the information provided by tutorials A. Our goal is to be a
member of:

argmax
v∈V \B

f (B ∪ {v}) (2)

where B is the set of previous tutorials given on submodularity.
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Sets and set functions

We are given a finite “ground” set of objects:

V =




Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f (V ) = 6
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Sets and set functions
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Also given a set function f : 2V → R that valuates subsets A ⊆ V .
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Sets and set functions

Subset B ⊆ V of objects:

B =
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Set functions are pseudo-Boolean functions

Any set A ⊆ V can be represented as a binary vector x ∈ {0, 1}V .

The characteristic vector of a set is given by 1A ∈ {0, 1}V where for
all v ∈ V , we have:

1A(v) =

{
1 if v ∈ A

0 else
(3)

It is sometimes useful to go back and forth between X and

x(X )
∆
= 1X .

f (x) : {0, 1}V → R is a pseudo-Boolean function, and submodular
functions are a special case.
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Two equivalent basic definitions

Definition (submodular)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) (4)

Definition (submodular (diminishing returns))

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \ B, we have that:

f (A ∪ {v})− f (A) ≥ f (B ∪ {v})− f (B) (5)
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Example: Rank function of a matrix

Given an n ×m matrix, thought of as m column vectors:

X =


1 2 3 4 m

| | | | |
x1 x2 x3 x4 . . . xm

| | | | |

 (6)

Let set V = {1, 2, . . . ,m} be the set of column vector indices.

For any subset of column vector indices A ⊆ V ,
let r(A) be the rank of the column vectors indexed by A.

Hence r : 2V → Z+ and r(A) is the dimensionality of the vector
space spanned by the set of vectors {xa}a∈A.

Intuitively, r(A) is the size of the largest set of independent vectors
contained within the set of vectors indexed by A.
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Example: Rank function of a matrix

Consider the following 4× 8 matrix, so V = {1, 2, 3, 4, 5, 6, 7, 8}.





1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5




=





1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |





Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C ) = 2.

r(A ∪ C ) = 3, r(B ∪ C ) = 3.

r(A ∪ Ar ) = 3, r(B ∪ Br ) = 3, r(A ∪ Br ) = 4, r(B ∪ Ar ) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C ) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5
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Intro Basics Polymatroids Submodular Properties

From Matrix Rank → Matroid

So V is set of column vector indices of a matrix.

Let I be a set of all subsets of V such that for any I ∈ I, the
vectors indexed by I are linearly independent.

Given a set B ∈ I of linearly independent vectors, then any subset
A ⊆ B is also linearly independent.

Hence, I is down-closed or
“subclusive”, under subsets. In other words,

A ⊆ B and B ∈ I ⇒ A ∈ I (7)

Inclusionwise maximal independent subsets (or bases) of B.

maxInd(B) , {A ⊆ B : A ∈ I and ∀v ∈ B \ A,A ∪ {v} /∈ I} (8)

Given any set B ⊂ V of vectors, all maximal (by set inclusion)
subsets of linearly independent vectors are the same size. That is,
for all B ⊆ V ,

∀A1,A2 ∈ maxInd(B), |A1| = |A2| (9)
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Intro Basics Polymatroids Submodular Properties

From Matrix Rank → Matroid

Thus, for all I ∈ I, the matrix rank function has the property

r(I ) = |I | (10)

and for any B /∈ I,

r(B) = max {|A| : A ⊆ B and A ∈ I} ≤ |B| (11)
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Intro Basics Polymatroids Submodular Properties

Independence System

Definition (set system)

A (finite) ground set V and a set of subsets of V , ∅ 6= I ⊆ 2V is called a
set system, notated (V , I).

Definition (independence (or hereditary) system)

A set system (V , I) is an independence system if

∅ ∈ I (emptyset containing) (I1)

and

∀I ∈ I, J ⊂ I ⇒ J ∈ I (subclusive) (I2)

Ex: V = {1, 2, 3, 4}, I = {∅, {1}, {1, 2}, {1, 2, 4}}. (V , I) is a set
system, but not an independence system.
If I = {∅, {1}, {2}, {1, 2}}, then (V , I) is independence system.
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Intro Basics Polymatroids Submodular Properties

Matroids, many equivalent definitions

Definition (Matroid)

A set system (V , I) is a Matroid if

(I1) ∅ ∈ I (emptyset containing)

(I2) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3) ∀I , J ∈ I, with |I | = |J|+ 1, then there exists x ∈ I \ J such that
J ∪ {x} ∈ I.

Definition (Matroid)

A set system (V , I) is a Matroid if

(I1’) ∅ ∈ I (emptyset containing)

(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3’) ∀X ⊆ V , and I1, I2 ∈ maxInd(X ), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).
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Intro Basics Polymatroids Submodular Properties

Linear (or Matric) Matroid

Let X be an n ×m matrix and V = {1, . . . ,m}
Let I consists of subsets of V such that if A ∈ I, and
A = {a1, a2, . . . , ak} then the vectors xa1 , xa2 , . . . , xak are linearly
independent.

The rank function is just the rank of the space spanned by the
corresponding set of vectors.

A base of a matroid is maximally independent set. So a base of this
matroid is a set of rankV independent vectors.
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Intro Basics Polymatroids Submodular Properties

Cycle Matroid of a graph, or Graphic Matroids

Let G = (V ,E ) be a graph. Consider (E , I) where the edges of the
graph E are the ground set and A ∈ I if the edge-induced graph
G (V ,A) by A does not contain any cycle.

Then M = (E , I) is a matroid.

I contains all forests and trees.

Bases are spanning forests (spanning trees if G is connected).

Rank function r(A) is the size of the largest spanning forest
contained in G (V ,A).
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Intro Basics Polymatroids Submodular Properties

Example: graphic matroid

A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Partition Matroid

Ground set of objects, V =

{

}
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Partition Matroid

Partition of V into six blocks, V1,V2, . . . ,V6

J. Bilmes Submodularity page 22 / 124



Intro Basics Polymatroids Submodular Properties

Partition Matroid

Limit associated with each block, {k1, k2, . . . , k6}
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Partition Matroid

Independent subset but not maximally independent.
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Partition Matroid

Maximally independent subset, what is called a base.
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Partition Matroid

Not independent since over limit in set six.
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Partition Matroid

Let V = V1 ∪ V2 ∪ · · · ∪ V` be a partition of V into disjoint sets
(disjoint union). Define a set of subsets of V as

I = {X ⊆ V : |X ∩ Vi | ≤ ki for all i = 1, . . . , `}. (12)

where k1, . . . , k` are fixed parameters, ki ≥ 0. Then M = (V , I) is a
matroid.

A partition matroids rank function is:

r(A) =
∑̀
i=1

min(|A ∩ Vi |, ki ) (13)
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Matroids - rank and submodularity

We can a bit more formally define the rank function this way.

Definition

The rank of a matroid is a function r : 2V → Z+ defined by

r(A) = max {|X | : X ⊆ A,X ∈ I} = max
X∈I
|A ∩ X | (14)

From the above, we immediately see that r(A) ≤ |A|.
Moreover, if r(A) = |A|, then A ∈ I, meaning A is independent

Lemma

The rank function r : 2V → Z+ of a matroid is submodular, that is
r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B)
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Matroids via rank

In fact, we can use the rank of a matroid for its definition.

Theorem (Matroid from rank)

Let V be a set and let r : 2V → Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ⊆ V :

(R1) ∀A ⊆ V 0 ≤ r(A) ≤ |A| (non-negative cardinality bounded)

(R2) r(A) ≤ r(B) whenever A ⊆ B ⊆ V (monotone non-decreasing)

(R3) r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B) for all A,B ⊆ V (submodular)

Unit increment (if r(A) = k , then either r(A ∪ {v}) = k or
r(A ∪ {v}) = k + 1) follows from the above.

So submodularity and non-negative monotone non-decreasing, and
unit increase are necessary and sufficient to define the matroid.
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Modular functions, vectors

Any set function m : 2V → R whose valuations, for all A ⊆ V , take
the form

m(A) =
∑
a∈A

m(a) (15)

is called modular and normalized (meaning m(∅) = 0).

Any normalized modular function is identical to a vector m ∈ RV .

Modular functions are submodular since
m(A) + m(B) ≥ m(A ∪ B) + m(A ∩ B).

Modular functions are also supermodular since
m(A) + m(B) ≤ m(A ∪ B) + m(A ∩ B).

Hence, the characteristic vector 1A of a set is modular.

Modular functions are often called additive or linear.
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Matroid and the greedy algorithm

Let (V , I) be an independence system, and we are given a
non-negative modular weight function w : V → R+.

Algorithm 1: The Matroid Greedy Algorithm

1 Set X ← ∅ ;
2 while ∃v ∈ V \ X s.t. X ∪ {v} ∈ I do
3 v ∈ argmax {w(v) : v ∈ V \ X , X ∪ {v} ∈ I} ;
4 X ← X ∪ {v} ;

Same as sorting items by decreasing weight w , and then choosing
items in that order that retain independence.

Theorem

Let (V , I) be an independence system. Then the pair (V , I) is a matroid
if and only if for each weight function w ∈ RV

+, Algorithm 1 leads to a
set I ∈ I of maximum weight w(I ).
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Matroid Definitions Summary

Given an independence system, matroids are defined equivalently by any
of the following:

All maximally independent sets have the same size.

A monotone non-decreasing submodular integral rank function with
unit increments.

The greedy algorithm achieves the maximum weight independent set
for all weight functions.
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Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing
a given property P if X possesses property P and no set properly
containing X (i.e., any X ′ ⊃ X with X ′ \ X ⊆ V \ X ) possesses P.

Given any set P ⊆ RV , we say that a vector x is maximal within P
if it is the case that for any ε > 0, and for all v ∈ V , we have that

x + ε1v /∈ P (16)
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Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing
a given property P if X possesses property P and no set properly
containing X (i.e., any X ′ ⊃ X with X ′ \ X ⊆ V \ X ) possesses P.

Given any set P ⊆ RV , we say that a vector x is maximal within P
if it is the case that for any ε > 0, and for all v ∈ V , we have that

x + ε1v /∈ P (16)

Examples of maximal regions (in red)
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Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing
a given property P if X possesses property P and no set properly
containing X (i.e., any X ′ ⊃ X with X ′ \ X ⊆ V \ X ) possesses P.

Given any set P ⊆ RV , we say that a vector x is maximal within P
if it is the case that for any ε > 0, and for all v ∈ V , we have that

x + ε1v /∈ P (16)

Examples of non-maximal regions (in green)
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P-basis of x given compact set P ⊆ RV
+

Definition (subvector)

y is a subvector of x if y ≤ x (meaning y(v) ≤ x(v) for all v ∈ V ).

Definition (P-basis)

Given a compact set P ⊆ RV
+, for any x ∈ RV

+, a subvector y of x is
called a P-basis of x if y maximal in P.
In other words, y is a P-basis of x if y is a maximal P-contained
subvector of x .

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z ≥ y + ε1v for some v ∈ V and ε > 0) having the
properties of y (the properties of y being: in P, and a subvector of x).
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The “rank” of a vector

Recall the definition of rank from a matroid M = (V , I).

rank(A) = max {|I | : I ⊆ A, I ∈ I} (17)

vector rank: Given a compact set P ⊆ RV
+, we can define a form of

“vector rank” relative to this P in the following way: Given an
x ∈ RV , we define the vector rank, relative to P, as:

rank(x) = max (y(V ) : y ≤ x , y ∈ P) (18)

where y ≤ x is componentwise inequality (yi ≤ xi ,∀i).

If Bx is the set of P-bases of x , than rank(x) = maxy∈Bx y(V ).

If x ∈ P, then rank(x) = x(V ) (x is its own unique P-basis).

In general, this might be hard to compute and/or have ill-defined
properties. We next look at an object that restrains and cultivates
this form of rank.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition (polymatroid)

A polymatroid is a compact set P ⊆ RV
+ satisfying

1 0 ∈ P

2 If y ≤ x ∈ P then y ∈ P (called down monotone).

3 For every x ∈ RV
+, any maximal vector y ∈ P with y ≤ x (i.e., any

P-basis of x), has the same component sum y(V )
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2 If y ≤ x ∈ P then y ∈ P (called down monotone).

3 For every x ∈ RV
+, any maximal vector y ∈ P with y ≤ x (i.e., any

P-basis of x), has the same component sum y(V )

Condition 3 restated: That is for any two distinct maximal vectors
y 1, y 2 ∈ P, with y 1 ≤ x & y 2 ≤ x , with y 1 6= y 2, we must have
y 1(V ) = y 2(V ).

Condition 3 restated (again): For every vector x ∈ RV
+, every

maximal independent subvector y of x has the same component
sum y(V ) = rank(x).

Condition 3 restated (yet again): All P-bases of x have the same
component sum.
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2 If y ≤ x ∈ P then y ∈ P (called down monotone).

3 For every x ∈ RV
+, any maximal vector y ∈ P with y ≤ x (i.e., any

P-basis of x), has the same component sum y(V )

Vectors within P (i.e., any y ∈ P) are called independent, and any
vector outside of P is called dependent.

Since all P-bases of x have the same component sum, if Bx is the
set of P-bases of x , than rank(x) = y(V ) for any y ∈ Bx .
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Since all P-bases of x have the same component sum, if Bx is the
set of P-bases of x , than rank(x) = y(V ) for any y ∈ Bx .
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Matroid and Polymatroid: side-by-side

A Matroid is:

1 a set system (V , I)
2 empty-set containing ∅ ∈ I
3 subclusive, down closed, ∅ ⊆ I ′ ⊆ I ∈ I ⇒ I ′ ∈ I.
4 any maximal set I in I, bounded by another set A, has the same

matroid rank (any maximal independent subset I ⊆ A has same size
|I |).

A Polymatroid is:

1 a compact set P ⊆ RV
+

2 zero containing, 0 ∈ P
3 down monotone, 0 ≤ y ≤ x ∈ P ⇒ y ∈ P
4 any maximal vector y in P, bounded by another vector x , has the

same vector rank (any maximal independent subvector y ≤ x has
same sum y(V )).
.
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Polymatroidal polyhedron (or a “polymatroid”)

x

{ xpossible y possible y
y1

y2

y1

y2P P

Left: ∃ multiple maximal y ≤ x Right: ∃ only one maximal y ≤ x ,

Polymatroid condition here: ∀ maximal y ∈ P, with y ≤ x (which
here means componentwise y1 ≤ x1 and y2 ≤ x2), we just have
y(V ) = y1 + y2 = const.

On the left, we see there are multiple possible maximal y ∈ P such
that y ≤ x . Each such y must have the same value y(V ).

On the right, there is only one maximal y ∈ P. Since there is only
one, the condition on the same value of y(V ),∀y is vacuous.
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Other examples: Polymatroid or not?

x x
x

x x x

x x x
x

x

x
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Some possible polymatroid forms in 2D

independent
vectors

dependent
vectors

dependent
vectors

P-base

P-bases

P-bases

dependent

vectors

dependent

vectors

independent

vectors

independent

vectors

45˚

45˚

It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2

2 In the middle: full independence between v1 and v2

3 On the right: partial independence between v1 and v2

- The P-bases (or single P-base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the

polytope. Dependent vectors are exterior to the polytope.
- The set of P-bases for a polytope is called the base polytope.
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Polymatroid function and its polyhedron.

Definition

A polymatroid function is a real-valued function f defined on subsets of
V which is normalized, non-decreasing, and submodular. That is:

1 f (∅) = 0 (normalized)

2 f (A) ≤ f (B) for any A ⊆ B ⊆ V (monotone non-decreasing)

3 f (A∪B) + f (A∩B) ≤ f (A) + f (B) for any A,B ⊆ V (submodular)

We can define the polyhedron P+
f associated with a polymatroid function

as follows

P+
f =

{
y ∈ RV

+ : y(A) ≤ f (A) for all A ⊆ V
}

(19)

=
{

y ∈ RV : y ≥ 0, y(A) ≤ f (A) for all A ⊆ V
}

(20)
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A polymatroid function’s polyhedron is a polymatroid.

Theorem (Edmonds, 1970)

Let f be a polymatroid function defined on subsets of V . For any
x ∈ RV

+, and any P+
f -basis y x ∈ RV

+ of x, the component sum of y x is

y x(V ) = rank(x) = max
(
y(V ) : y ≤ x , y ∈ P+

f

)
= min (x(A) + f (V \ A) : A ⊆ V ) (21)

As a consequence, P+
f is a polymatroid, since r.h.s. is constant w.r.t. y x .

With an appropriate choice of x , we can define/recover the submodular
function from the polymatroid polyhedron via the following:

f (A) = max
{

y(A) : y ∈ P+
f

}
(22)

There are many important consequences of this theorem (other than just
P+
f is a polymatroid), regarding submodular function minimization.
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A polymatroid is a polymatroid function’s polytope

Thus, when f is a polymatroid function, P+
f is a polymatroid.

Is it the case that, conversely, for any polymatroid P, there is an
associated polymatroidal function f such that P = P+

f ?

Theorem

For any polymatroid P (compact subset of RV
+, zero containing, down-monotone,

and ∀x ∈ RV
+ any maximal independent subvector y ≤ x has same component sum

y(V ) = rank(x)), there is a polymatroid function f : 2V → R (normalized,

monotone non-decreasing, submodular) such that P = P+
f where

P+
f =

{
x ∈ RV : x ≥ 0, x(A) ≤ f (A), ∀A ⊆ V

}
.
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Next, a bit on rank(x)

Recall that the matroid rank function is submodular.

For vectors u, v ∈ RV , let u ∨ v be the element-wise max (i.e.,
(u ∨ v)(i) = max(u(i), v(i))), and u ∧ v be elementwise min.

The polymatroid vector rank function rank(x) also satisfies a form
of submodularity.

Theorem (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function
rank : RV

+ → R with rank(x) = max (y(V ) : y ≤ x , y ∈ P) satisfies, for
all u, v ∈ RV

+

rank(u) + rank(v) ≥ rank(u ∨ v) + rank(u ∧ v) (23)
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Polymatroid from polymatroid function

Recall, a matroid may be given as (V , r) where r is the rank
function.

We mention also that the term “polymatroid” is sometimes not used
for the polytope itself, but instead but for the pair (V , f ),

Since (V , f ) is equivalent to a polymatroid polytope, this is sensible.
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Polymatroidal polyhedron and greedy

Let (V , I) be a set system and w ∈ RV
+ be a weight vector.

Recall greedy algorithm: Set A = ∅, and repeatedly choose
v ∈ V \ A such that A ∪ {v} ∈ I with w(v) as large as possible,
stopping when no such v exists.

For a matroid, we saw that set system (V , I) is a matroid iff for
each weight function w ∈ RV

+, the greedy algorithm leads to a set
I ∈ I of maximum weight w(I ).

Can we also characterize a polymatroid in this way?

That is, if we consider max
{

wx : x ∈ P+
f

}
, where P+

f represents the
“independent vectors”, is it the case that P+

f is a polymatroid iff
greedy works for this maximization?
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Chains of sets

Ground element V = {1, 2, . . . , n} set of integers w.l.o.g.

Given a permutation σ = (σ1, σ2, . . . , σn) of the integers.

From this we can form a chain of sets {Ci}i with
∅ = C0 ⊆ C1 ⊆ · · · ⊆ Cn = V formed as:

Ci = {σ1, σ2, . . . , σi}, for i = 1 . . . n (24)

σ(1) σ(2) σ(3) σ(4) σ(5) σ(6) σ(7) σ(8)

C1

C2

C3

...

Can also form a chain from a vector w ∈ RV sorted in descending
order. Choose σ so that w(σ1) ≥ w(σ2) ≥ · · · ≥ w(σn).
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Gain

We often wish to express the gain of an item j ∈ V in context A,
namely f (A ∪ {j})− f (A).

This is called the gain and is used so often, there are equally as
many ways to notate this. I.e., you might see:

f (A ∪ {j})− f (A)
∆
= ρj(A) (25)

∆
= ρA(j) (26)

∆
= ∇j f (A) (27)

∆
= f ({j}|A) (28)

∆
= f (j |A) (29)

We’ll use f (j |A). Also, f (A|B) = f (A ∪ B)− f (B).
Submodularity’s diminishing returns definition can be stated as
saying that f (j |A) is a monotone non-increasing function of A, since
f (j |A) ≥ f (j |B) whenever A ⊆ B (conditioning reduces valuation).
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f (A ∪ {j})− f (A)
∆
= ρj(A) (25)

∆
= ρA(j) (26)

∆
= ∇j f (A) (27)

∆
= f ({j}|A) (28)

∆
= f (j |A) (29)

We’ll use f (j |A). Also, f (A|B) = f (A ∪ B)− f (B).
Submodularity’s diminishing returns definition can be stated as
saying that f (j |A) is a monotone non-increasing function of A, since
f (j |A) ≥ f (j |B) whenever A ⊆ B (conditioning reduces valuation).
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Polymatroidal polyhedron and greedy

Greedy solution to max(wx : x ∈ Pf )

Sort elements of V w.r.t. w so that, w.l.o.g.
V = (v1, v2, . . . , vm) with w(v1) ≥ w(v2) ≥ · · · ≥ w(vm).

Next, form chain of sets based on w sorted descended, giving:

Vi
def
= {v1, v2, . . . vi} (30)

for i = 0 . . .m. Note V0 = ∅, and f (V0) = 0.

The greedy solution is the vector x ∈ RV
+ with element x(vi ) for

i = 1, . . . , n defined as:

x(vi ) = f (Vi )− f (Vi−1) = f (vi |Vi−1) (31)
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Polymatroidal polyhedron and greedy

We have a result very similar to what we saw for matroids.

Theorem

Let f : 2V → R+ be a given set function, and P is a polytope in RV
+ of

the form P =
{

x ∈ RV
+ : x(A) ≤ f (A),∀A ⊆ V

}
.

Then the greedy solution to the problem max(wx : x ∈ P) is optimal ∀w
iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).
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Polymatroid extreme points

Greedy does more than this. In fact, we have:

Theorem

For a given ordering V = (v1, . . . , vm) of V and a given Vi and x
generated by Vi using the greedy procedure, then x is an extreme point
of Pf

Corollary

If x is an extreme point of Pf and B ⊆ V is given such that
{v ∈ V : x(v) 6= 0} ⊆ B ⊆ ∪(A : x(A) = f (A)), then x is generated
using greedy by some ordering of B.
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Intuition: why greedy works with polymatroids

Given w , the goal is
to find
x = (x(e1), x(e2))
that maximizes
xᵀw = x(e1)w(e1) +
x(e2)w(e2).

If w(e2) > w(e1)
the upper extreme
point indicated
maximizes xᵀw over
x ∈ P+

f .

If w(e2) < w(e1)
the lower extreme
point indicated
maximizes xᵀw over
x ∈ P+

f .

e1

e2

f(e1)

f(e1|e2)

f(e
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f(e
2|e

1)

45°

w(e 2
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w(e 1
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w(e 1
)

Maximal point in 
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P+
f

M
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Polymatroid with labeled edge lengths
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e 3
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A polymatroid function’s polyhedron vs. a polymatroid.

Given these results, we can conclude that a polymatroid is really an
extremely natural polyhedral generalization of a matroid. This was
all realized by Jack Edmonds in the mid 1960s (and published in
1969 in his landmark paper “Submodular Functions, Matroids, and
Certain Polyhedra”).

Jack Edmonds NIPS talk, 2011 http://videolectures.net/

nipsworkshops2011_edmonds_polymatroids/
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Outline

1 Introduction

2 Basics

3 From Matroids to Polymatroids

4 Submodular Definitions, Examples, and Properties
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Submodular (or Upper-SemiModular) Lattices

The name “Submodular” comes from lattice theory, and refers to a
property of the “height” function of an upper-semimodular lattice. Ex:
consider the following lattice over 7 elements.

x ∧ y

x y

x ∨ y

0

1

2

3

2 + 2 > 3 + 0

height

submodularity
h(x)+h(y) 
     > h(x∨y ) 
     + h(x∧y)

Such lattices require that for all
x , y , z ,

x y

z

x ∨ y

x y

⇒

The lattice is
upper-semimodular
(submodular), height function
is submodular on the lattice.
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Submodular Definitions

Definition (submodular)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) (32)

General submodular function, f need not be monotone,
non-negative, nor normalized (i.e., f (∅) need not be = 0).
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Normalized Submodular Function

Given any submodular function f : 2V → R, form a normalized
variant f ′ : 2V → R, with

f ′(A) = f (A)− f (∅) (33)

Then f ′(∅) = 0.

This operation does not affect submodularity, or any minima or
maxima

We will assume that all functions in this tutorial are so normalized.
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Submodular Polymatroidal Decomposition

Given any arbitrary submodular function f : 2V → R, consider the
identity

f (A) = f (A)−m(A)︸ ︷︷ ︸
f̄ (A)

+m(A) = f̄ (A) + m(A) (34)

for a modular function m : 2V → R, where

m(a) = f (a|V \ {a}) (35)

Then f̄ (A) is polymatroidal since f̄ (∅) = 0 and for any a and A

f̄ (a|A) = f (a|A)− f (a|V \ {a}) ≥ 0 (36)
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Totally Normalized

f̄ is called the totally normalized version of f

polytope of f̄ and f is the same shape, just shifted.

Pf =
{

x ∈ RV : x(A) ≤ f (A),∀A ⊆ V
}

(37)

=
{

x ∈ RV : x(A) ≤ f̄ (A) + m(A),∀A ⊆ V
}

(38)

m is like a unary score, f̄ is where things interact . All of the real
structure is in f̄

Hence, any submodular function is a sum of polymatroid and
modular.
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Telescoping Summation

Given a chain set of sets A1 ⊆ A2 ⊆ · · · ⊆ Ar

Then the telescoping summation property of the gains is as follows:

r−1∑
i=1

f (Ai+1|Ai ) =
r∑

i=2

f (Ai )−
r−1∑
i=1

f (Ai ) = f (Ar )− f (A1) (39)
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Submodular Definitions

Theorem

Given function f : 2V → R, then

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) for all A,B ⊆ V (SC)

if and only if

f (v |X ) ≥ f (v |Y ) for all X ⊆ Y ⊆ V and v /∈ B (DR)

Proof.

(SC)⇒(DR): Set A← X ∪ {v}, B ← Y . Then A ∪ B = B ∪ {v} and
A ∩ B = X and f (A)− f (A ∩ B) ≥ f (A ∪ B)− f (B) implies (DR).

(DR)⇒(SC): Order A \ B = {v1, v2, . . . , vr} arbitrarily. Then

f (vi |A ∩ B ∪ {v1, v2, . . . , vi−1}) ≥ f (v1|B ∪ {v1, v2, . . . , vi−1}), i ∈ [r − 1]

Applying telescoping summation to both sides, we get:

f (A)− f (A ∩ B) ≥ f (A ∪ B)− f (B)
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Many (Equivalent) Definitions of Submodularity

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V

f (j |S) ≥ f (j |T ), ∀S ⊆ T ⊆ V , with j ∈ V \ T

f (C |S) ≥ f (C |T ),∀S ⊆ T ⊆ V , with C ⊆ V \ T

f (j |S) ≥ f (j |S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k})
f (A ∪ B|A ∩ B) ≤ f (A|A ∩ B) + f (B|A ∩ B), ∀A,B ⊆ V

f (T ) ≤ f (S) +
∑

j∈T\S

f (j |S)−
∑

j∈S\T

f (j |S ∪ T − {j}), ∀S ,T ⊆ V

f (T ) ≤ f (S) +
∑

j∈T\S

f (j |S), ∀S ⊆ T ⊆ V

f (T ) ≤ f (S)−
∑

j∈S\T

f (j |S \ {j}) +
∑

j∈T\S

f (j |S ∩ T ) ∀S ,T ⊆ V

f (T ) ≤ f (S)−
∑

j∈S\T

f (j |S \ {j}), ∀T ⊆ S ⊆ V
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Basic ops: Sums, Restrictions, Conditioning

Given submodular f1, f2, . . . , fk each ∈ 2V → R, then conic
combinations are submodular. I.e.,

f (A) =
k∑

i=1

αi fi (A) (40)

where αi ≥ 0.

Restrictions: f (A) = g(A ∩ C ) is submodular whenever g is, for all
C .

Conditioning: f (A) = g(A ∪ C )− f (C ) = f (A|C ) is submodular
whenever g is for all C .
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The “or” of two polymatroid functions

Given two polymatroid functions f and g , suppose feasible A are
defined as {A : f (A) ≥ αf or g(A) ≥ αg} for real αf , αg .

This is identical to:
{

A : f̄ (A) = αf or ḡ(A) = αg

}
where

f̄ (A) = min(f (A), αf ) and ḡ(A) = min(f (A), αg )

Define: h(A) = f̄ (A)ḡ(V ) + f̄ (V )ḡ(A)− f̄ (A)ḡ(A).

Theorem (Guillory & Bilmes, 2011)

h(A) so defined is polymatroidal.

Theorem

h(A) = αf αg if and only if f̄ (A) = αf or ḡ(A) = αg

Therefore, h can be used as a submodular surrogate for the “or” of
multiple submodular functions.
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Composition and Submodular Functions

Convex/Concave have many nice properties of composition (see
Boyd & Vandenberghe, “Convex Optimization”)

A submodular function f : 2V → R has a different type of input and
output, so composing two submodular functions directly makes no
sense.

However, we have a number of forms of composition results that
preserve submodularity, which we turn to next:
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Intro Basics Polymatroids Submodular Properties

Grouping elements, set cover, and bipartite neighborhoods

Given submodular f : 2V → R and a grouping of
V = V1 ∪ V2 ∪ · · · ∪ Vk into k possibly overlapping clusters.

Define new function g : 2[k] → R where ∀D ⊆ [k] = {1, 2, . . . , k},
g(D) = f (

⋃
d∈D

Vd) (41)

Then g is submodular if either f is monotone non-decreasing or the
sets {Vi} are disjoint.

Ex: Bipartite neighborhoods: Let Γ : 2V → R be the neighbor
function in a bipartite graph G = (V ,U,E ,w). V is set of “left”
nodes, U is set of right nodes, E ⊆ V × U are edges, and
w : 2E → R is a modular function on edges.

Neighbors defined as Γ(X ) = {u ∈ U : |X × {u} ∩ E | ≥ 1} for
X ⊆ V .

Then f (Γ(X )) is submodular. Special case: set cover.

In fact, all integral polymatroid functions can be obtained in g
above for f a matroid rank function and {Vd} appropriately chosen.
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Intro Basics Polymatroids Submodular Properties

Concave composed with polymatroid

We also have the following composition property with concave functions:

Theorem

Given functions f : 2V → R and g : R→ R, the composition
h = f ◦ g : 2V → R (i.e., h(S) = g(f (S))) is nondecreasing submodular,
if g is non-decreasing concave and f is nondecreasing submodular.
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Intro Basics Polymatroids Submodular Properties

Concave composed with non-negative modular

Theorem

Given a ground set V . The following two are equivalent:

1 For all modular functions m : 2V → R+, then f : 2V → R defined as
f (A) = g(m(A)) is submodular

2 g : R+ → R is concave.

If g is non-decreasing concave, then f is polymatroidal.

Sums of concave over modular functions are submodular

f (A) =
K∑
i=1

gi (mi (A)) (42)

Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).

However, Vondrak showed that a graphic matroid rank function over
K4 can’t be represented in this fashion.
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Intro Basics Polymatroids Submodular Properties

Weighted Matroid Rank Functions

We saw matroid rank is submodular. Given matroid (V , I),

f (B) = max {|A| : A ⊆ B and A ∈ I} (43)

Weighted matroid rank functions. Given matroid (V , I), and
non-negative modular function m : 2V → R+,

f (B) = max {m(A) : A ⊆ B and A ∈ I} (44)

is also submodular.

Take a 1-partition matroid with limit k, we get:

f (B) = max {m(A) : A ⊆ B and |A| ≤ k} (45)

Take a 1-partition matroid with limit 1, we get the max function:

f (B) = max
b∈B

m(b) (46)
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Intro Basics Polymatroids Submodular Properties

Facility Location

Given a set of k matroids (V , Ii ) and k modular weight functions
mi , the following is submodular:

f (A) =
k∑

i=1

αi max {mi (A) : A ⊆ B and A ∈ Ii} (47)

Take all αi = 1, all matroids 1-partition matroids, and set
wij = mi (j), and k = |V | for some weighted graph G = (V ,E ,w),
we get the uncapacitated facility location function:

f (A) =
∑
i∈V

max
a∈A

wai (48)
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Information and Complexity functions

Given a set V of items, we might wish to measure the “information”
or “complexity” in a subset A ⊂ V .

Matroid rank r(A) can measure the “information” or “complexity”
via the dimensionality spanned by vectors with indices A.

Unit increment r(v |A) ∈ {0, 1} so no partial independence.

Entropy of a set of random variables {Xv}v∈V , where

f (A) = H(XA) = H(
⋃
a∈A

Xa) = −
∑
xA

Pr(xA) log Pr(xA) (49)

can measure partial independence.

Entropy is submodular due to non-negativity of conditional mutual
information. Given A,B,C ⊆ V ,

I (XA\B ; XB\A|XA∩B)

= H(XA) + H(XB)− H(XA∪B)− H(XA∩B) ≥ 0 (50)
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Intro Basics Polymatroids Submodular Properties

Generalized information/complexity functions

Entropy requires a joint probability distribution over items, while
rank requires a vector space.

Many information functions are statistical, requiring a distribution,
and measure information within a distribution. E.g., entropy, Rényi’s
information, Daroczy’s entropy, etc.

Some require a generating algorithm (Kolmogorov complexity).

Submodularity is a natural property of an “information” or
“complexity” function over subsets of objects.

All submodular functions express a form of “abstract independence”
or “generalized complexity”
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Intro Basics Polymatroids Submodular Properties

Polymatroids: Generalized Dependence
there is a notion of “independence” , i.e., A⊥⊥B:

f (A ∪ B) = f (A) + f (B), (51)

and a notion of “conditional independence” , i.e., A⊥⊥B|C :

f (A ∪ B ∪ C ) + f (C ) = f (A ∪ C ) + f (B ∪ C ) (52)

and a notion of “dependence” (conditioning reduces valuation):

f (A|B) , f (A ∪ B)− f (B) < f (A), (53)

and a notion of “conditional mutual information”

If (A; B|C ) , f (A ∪ C ) + f (B ∪ C )− f (A ∪ B ∪ C )− f (C ) ≥ 0

and two notions of “information amongst a collection of sets”:

If (S1; S2; . . . ; Sk) =
k∑

i=1

f (Sk)− f (S1 ∪ S2 ∪ · · · ∪ Sk) (54)

I ′f (S1; S2; . . . ; Sk) =
∑

A⊆{1,2,...,k}

(−1)|A|+1f (
⋃
j∈A

Sj) (55)
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Submodular Separation and Symmetric Submodular
Minimization

Subsets A and B are separable if f (A ∪ B) = f (A) + f (B)

Hence, separability is the same as statistical independence when f is
the entropy function.

Partitioning V into separable blocks can be performed using
symmetric SFM.

Given any polymatroid f , symmetrize it as follows:
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Symmetric Submodular Functions

Symmetrize and normalize f as f → f̆ via the operation:

f̆ (A) = f (A) + f (V \ A)− f (V ), (56)

so that f̆ (∅) = 0 if f (∅) = 0, and f̆ (A) = f̆ (V \ A) for all A.

Such an f̆ is also non-negative since

2f̆ (A) = f̆ (A) + f̆ (V \ A) ≥ f̆ (∅) + f̆ (V ) = 2f̆ (∅) ≥ 0 (57)

Any submodular function can be so symmetrized, and submodularity
is preserved.

Example: f (A) = H(XA) = entropy, then f̆ (A) = I (XA; XV \A) =
symmetric mutual information.
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Separators of submodular function via symmetrized version

Such a symmetrized submodular function measures a form of
“dependence” between A and Ā , V \ A

Theorem

We are given an f that is normalized & submodular. If ∃A such that:

f̆ (A) , f (A) + f (Ā)− f (V ) = 0 (58)

then f is “decomposable” w.r.t. A. This means that
f (B) = f (B ∩ A) + f (B ∩ Ā) for all B.
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Gaussian entropy, and the log-determinant function

Definition (differential entropy h(X ))

h(X ) = −
∫
S

f (x) log f (x)dx (59)

When x ∼ N (µ,Σ) is multivariate Gaussian, the (differential)
entropy of the r.v. X is given by

h(X ) = log
√
|2πeΣ| = log

√
(2πe)n|Σ| (60)

and in particular, for a variable subset A and a constant γ,

f (A) = h(XA) = log
√

(2πe)|A||ΣA| = γ|A|+ 1

2
log |ΣA| (61)

Application of Jensen’s inequality shows that
I (XA\B ; XB\A|XA∩B) = h(XA) + h(XB)− h(XA∪B)− h(XA∩B) ≥ 0.
Hence differential entropy is submodular, and thus so is the logdet
function.
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Are all polymatroid functions entropy functions?

No, entropy functions must also satisfy the following:

Theorem (Yeung)

For any four discrete random variables {X ,Y ,Z ,U}, then

I (X ; Y ) = I (X ; Y |Z ) = 0 (62)

implies that

I (X ; Y |Z ,U) ≤ I (Z ; U|X ,Y ) + I (X ; Y |U) (63)

where I (·; ·|·) is the standard Shannon mutual information function.

This is not required for all polymatroid-based conditional mutual
information functions If (·; ·|·).
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Containment, Gaussian Entropy, and DPPs

Submodular functions ⊃ Polymatroid functions ⊃ Entropy functions
⊃ Gaussian Entropy functions = DPPs.

DPP is a point process where Pr(Y = Y ) ∝ det(LY ) for some
positive-definite matrix L, so DPPs are log-submodular.

Thanks to the properties of matrix algebra (e.g., determinants),
DPPs are computationally extremely attractive.

We’ll touch DPPs a bit later when we compare submodularity and
graphical models.
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Semigradients Extensions Concave or Convex? Optimization Parameterization Refs

Convex Functions and Tight Subgradients

b

fb(b) = f(b)
fb(a) ≤ f(a)

x

f(x) fb(x)

A convex function f has a subgradient at any in-domain point b,
namely there exists fb such that

f (x)− f (b) ≥ 〈fb, x − b〉,∀x . (64)

We have that f (x) is convex, fb(x) is affine, and is a tight
subgradient (tight at b, affine lower bound on f (x)).

J. Bilmes Submodularity page 78 / 124



Semigradients Extensions Concave or Convex? Optimization Parameterization Refs

Concave Functions and Tight Supergradients

b

fb(b) = f(b)
fb(a) ≤ f(a)

x

f(x) fb(x)

A convex function f has a subgradient at any in-domain point b,
namely there exists fb such that

f (x)− f (b) ≥ 〈fb, x − b〉,∀x . (64)

We have that f (x) is convex, fb(x) is affine, and is a tight
subgradient (tight at b, affine lower bound on f (x)).

J. Bilmes Submodularity page 78 / 124



Semigradients Extensions Concave or Convex? Optimization Parameterization Refs

Convex Functions and Tight Subgradients

b

fb(b) = f(b)
fb(a) ≥ f(a)

x

f(x)

fb(x)

A concave f has a supergradient at any in-domain point b, namely
there exists f b such that

f (x)− f (b) ≤ 〈f b, x − b〉,∀x . (65)

We have that f (x) is concave, f b(x) is affine, and is a tight
supergradient (tight at b, affine upper bound on f (x)).
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Trivial additive upper/lower bounds

Any submodular function has trivial additive upper and lower
bounds. That is for all A ⊆ V ,

mf (A) ≤ f (A) ≤ mf (A) (66)

where

mf (A) =
∑
a∈A

f (a) (67)

mf (A) =
∑
a∈A

f (a|V \ {a}) (68)

mf ∈ RV and mf ∈ RV are both modular (or additive) functions.

A “semigradient” is customized, and at least at one point is tight.
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Submodular Subgradients

For submodular function f , the subdifferential (all subgradients tight
at X ⊆ V ) can be defined as:

∂f (X ) = {x ∈ RV : ∀Y ⊆ V , x(Y )− x(X ) ≤ f (Y )− f (X )} (69)

This partitions RV :
x1

x2

∂f(∅) ∂f({v1})

∂f({v2})
∂f({v1, v2})

(0, 0)

Extreme points are easy to get via Edmonds’s greedy algorithm:

Theorem (Fujishige 2005, Theorem 6.11)

A point y ∈ RV is an extreme point of ∂f (X ),
iff there exists a maximal chain ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn with X = Sj

for some j, such that y(Si \ Si−1) = y(Si )− y(Si−1) = f (Si )− f (Si−1).
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The Submodular Subgradients (Fujishige 2005)

For an arbitrary Y ⊆ V

Let σ be a permutation of V and define Sσi = {σ(1), σ(2), . . . , σ(i)}
as σ’s chain where Sσk = Y where |Y | = k .

We can define a subgradient hf
Y corresponding to f as:

hf
Y ,σ(σ(i)) =

{
f (Sσ1 ) if i = 1

f (Sσi )− f (Sσi−1) otherwise
.

We get a tight modular lower bound of f as follows:

hf
Y ,σ(X ) ,

∑
x∈X

hf
Y ,σ(x) ≤ f (X ),∀X ⊆ V .

Note, tight at Y means hf
Y ,σ(Y ) = f (Y ).
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Convexity and Tight Sub- and Super-gradients?

Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

If a continuous function has both a sub- and super-gradient at a
point, then the function must be affine.

What about discrete set functions?

J. Bilmes Submodularity page 83 / 124



Semigradients Extensions Concave or Convex? Optimization Parameterization Refs

Convexity and Tight Sub- and Super-gradients?

Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

b x

fb(x)

If a continuous function has both a sub- and super-gradient at a
point, then the function must be affine.

What about discrete set functions?

J. Bilmes Submodularity page 83 / 124



Semigradients Extensions Concave or Convex? Optimization Parameterization Refs

Convexity and Tight Sub- and Super-gradients?

Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

fb(x)

b x

fb(x)

If a continuous function has both a sub- and super-gradient at a
point, then the function must be affine.

What about discrete set functions?

J. Bilmes Submodularity page 83 / 124



Semigradients Extensions Concave or Convex? Optimization Parameterization Refs

Convexity and Tight Sub- and Super-gradients?

Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

fb(x)

b x

fb(x)

If a continuous function has both a sub- and super-gradient at a
point, then the function must be affine.

What about discrete set functions?

J. Bilmes Submodularity page 83 / 124



Semigradients Extensions Concave or Convex? Optimization Parameterization Refs

Convexity and Tight Sub- and Super-gradients?

Can there be both a tight linear upper bound and tight linear lower
bound on a convex (or concave) function, where each bound is tight
at the same point?

fb(x)

b x

fb(x)

If a continuous function has both a sub- and super-gradient at a
point, then the function must be affine.

What about discrete set functions?

J. Bilmes Submodularity page 83 / 124



Semigradients Extensions Concave or Convex? Optimization Parameterization Refs

The Submodular Supergradients

Can a submodular function also have a supergradient? We saw that
in the continuous case, simultaneous sub/super gradients meant
linear.

(Nemhauser, Wolsey, & Fisher 1978) established the following iff
conditions for submodularity (if either hold, f is submodular):

f (Y ) ≤ f (X )−
∑

j∈X\Y

f (j |X\j) +
∑

j∈Y \X

f (j |X ∩ Y ),

f (Y ) ≤ f (X )−
∑

j∈X\Y

f (j |(X∪Y )\j) +
∑

j∈Y \X

f (j |X )

Recall that f (A|B) , f (A∪B)− f (B) is the gain of adding A in the
context of B.
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Submodular and Supergradients

Using submodularity further, these can be relaxed to produce two
tight modular upper bounds (Jegelka & Bilmes, 2011, Iyer & Bilmes
2013):

f (Y ) ≤ mf
X ,1(Y ) , f (X )−

∑
j∈X\Y

f (j |X\j) +
∑

j∈Y \X

f (j |∅),

f (Y ) ≤ mf
X ,2(Y ) , f (X )−

∑
j∈X\Y

f (j |V \j) +
∑

j∈Y \X

f (j |X ).

Hence, this yields three tight (at set X ) modular upper bounds
mf

X ,1,m
f
X ,2 for any submodular function f .
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Why is mf
X ,2 Modular?

m : 2V → R is modular if m(X ) + m(Y ) = m(X ∪ Y ) + m(X ∩ Y ), or
equivalently if it can be expressed as, for any X ⊆ V :

m(X ) = c +
∑
j∈X

m(j) (70)

where c is a constant. I.e., m ∈ RV .

For example, the function

mf
X ,2(Y ) , f (X )−

∑
j∈X\Y

f (j |V \j) +
∑

j∈Y \X

f (j |X ) (71)

is modular in Y as Equation (70) with

mf
X ,2(Y ) ,

[
f (X )−

∑
j∈X

f (j |V \j)
]

+
∑

j∈(X∩Y )

f (j |V \j) (72)

+
∑

j∈Y \X

f (j |X ) (73)
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Submodular Supergradients (Iyer et al, 2013)

These three supergradients (which we call grow, shrink, and bar) are
easy to obtain.

Modular upper bound: mgY (X ) = f (Y ) + gY (X )− gY (Y ) ≤ f (X ).
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X Y
V
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X Y
V
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Arbitrary functions as difference between submodular
funcs.

Theorem

Given an arbitrary set function f , it can be expressed as a difference
f = g − h between two polymatroid functions, where both g and h are
polymatroidal.

The semi-gradients above offer a majorization/maximization
framework to minimize any function that is naturally expressed as
such a difference.

E.g., to minimize f = g − h, starting with a candidate solution X ,
repeatedly choose a modular supergradient for g and modular
subgradient for h, and perform modular minimization (easy). (see
Iyer & Bilmes, 2012).
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Applications

Sensor placement with submodular costs. I.e., let V be a set of
possible sensor locations, f (A) = I (XA; XV \A) measures the quality
of a subset A of placed sensors, and c(A) the submodular cost. We
have minA f (A)− λc(A).

Discriminatively structured graphical models, EAR measure
I (XA; XV \A)− I (XA; XV \A|C ), and synergy in neuroscience.

Feature selection: a problem of maximizing
I (XA; C )− λc(A) = H(XA)− [H(XA|C ) + λc(A)], the difference
between two submodular functions, where H is the entropy and c is
a feature cost function.

Graphical Model Inference. Finding x that maximizes
p(x) ∝ exp(−v(x)) where x ∈ {0, 1}n and v is a pseudo-Boolean
function. When v is non-submodular, it can be represented as a
difference between submodular functions.
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Continuous Extensions of Discrete Set Functions

Any function f : 2V → R (equivalently f : {0, 1}V → R) can be
extended to a continuous function f̃ : [0, 1]V → R.

In fact, any such discrete function defined on the vertices of the n-D
hypercube {0, 1}n has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

x0 1 x0 1x0 1 x0 1x0 1x0 1

f̃ : [0, 1] → R
Convex Extensions

f̃ : [0, 1] → R
Concave Extensions

f : {0, 1}V → R
Discrete Function

Since there are an exponential number of vertices {0, 1}n, important
questions regarding such extensions is:

1 When are they computationally feasible to obtain or estimate?
2 When do they have nice mathematical properties?
3 When are they useful for something practical?
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A continuous extension of f

Given a submodular function f , a w ∈ RV , define chain
Vi = {v1, v2, . . . , vi} based on w sorted in decreasing order. Then
Edmonds’s greedy algorithm gives us:

f̃ (w)

= max(wx : x ∈ Pf ) (74)

=
m∑
i=1

w(vi )f (vi |Vi−1) (75)

=
m∑
i=1

w(vi )(f (Vi )− f (Vi−1)) (76)

= w(vm)f (Vm) +
m−1∑
i=1

(w(vi )− w(vi+1))f (Vi ) (77)
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A continuous extension of f

Definition of the continuous extension, once again:

f̃ (w) = max(wx : x ∈ Pf ) (78)

Therefore, if f is a submodular function, we can write

f̃ (w)

= w(vm)f (Vm) +
m−1∑
i=1

(w(vi )− w(vi+1))f (Vi ) (79)

=
m∑
i=1

λi f (Vi ) (80)

where λm = w(vm) and otherwise λi = w(vi )− w(vi+1), where the
elements are sorted according to w as before.

From convex analysis, we know f̃ (w) = max(wx : x ∈ P) is always
convex in w for any set P ⊆ RV , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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An extension of f

But, for any f : 2V → R, even non-submodular f , we can define an
extension in this way, with

f̃ (w) =
m∑
i=1

λi f (Vi ) (81)

with the Vi = {v1, . . . , vi}’s defined based on sorted descending
order of w as in w(v1) ≥ w(v2) ≥ · · · ≥ w(vm), and where

for i ∈ {1, . . . ,m}, λi =

{
w(vi )− w(vi+1) if i < m

w(vm) if i = m
(82)

so that w =
∑m

i=1 λi1Vi

Note that w =
∑m

i=1 λi1Vi
is an interpolation of certain vertices of

the hypercube, and that f̃ (w) =
∑m

i=1 λi f (Vi ) is the corresponding
interpolation of the values of f at sets corresponding to each
hypercube vertex.
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Lovász Extension, Submodularity and Convexity

Lovász proved the following important theorem.

Theorem

A function f : 2V → R is submodular iff its its continuous extension
defined above as f̃ (w) =

∑m
i=1 λi f (Vi ) with w =

∑m
i=1 λi1Vi

is a convex
function in RV .
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Lovász extension vs. vector rank function

Recall vector rank, relative to Pf , defined as:

rank(w) = max (y(V ) : y ≤ w , y ∈ Pf ) (83)

where y ≤ w is means componentwise inequality (yi ≤ xi ,∀i).

Lovász extension, f̃ : [0, 1]V → R:

f̃ (w) = max(wᵀx : x ∈ Pf ) (84)

Both are “submodular” in a sense that
f̃ (a) + f̃ (b) ≥ f̃ (a ∨ b) + f̃ (a ∧ b).

When Pf is a matroid polytope, rank(1A) = f̃ (1A) = rank(A).
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f̃ (a) + f̃ (b) ≥ f̃ (a ∨ b) + f̃ (a ∧ b).

When Pf is a matroid polytope, rank(1A) = f̃ (1A) = rank(A).
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Minimizing f̃ vs. minimizing f

Theorem

Let f be submodular and f̃ be its Lovász extension. Then
min {f (A)|A ⊆ V } = minw∈{0,1}V f̃ (w) = minw∈[0,1]V f̃ (w).

Let w∗ ∈ argmin
{

f̃ (w)|w ∈ [0, 1]V
}

and let

A∗ ∈ argmin {f (A)|A ⊆ V }.

Define chain {V ∗i } based on descending sort of w∗. Then by greedy
evaluation of L.E. we have

f̃ (w∗) =
∑
i

λ∗i f (V ∗i ) = f (A∗) = min {f (A)|A ⊆ V } (85)

Then we can show that, for each i s.t. λi > 0,

f (V ∗i ) = f (A∗) (86)

So such {V ∗i } are also minimizers.
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Max-Min Theorems

Theorem

Let f be a submodular function defined on subsets of V . For any
x ∈ RV , we have:

rank(x) = max (y(V ) : y ≤ x , y ∈ Pf ) = min (x(A) + f (V \ A) : A ⊆ V )
(87)

If we take x to be zero, we get:

Corollary

Let f be a submodular function defined on subsets of V . x ∈ RV , we
have:

rank(0) = max (y(V ) : y ≤ 0, y ∈ Pf ) = min (f (A) : A ⊆ V ) (88)
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Duality of convex minimization of Lovász extension and
min-norm point algorithm

Let f be a submodular function with f̃ it’s Lovász extension. Then
the following two problems are duals:

minimize
w∈RV

f̃ (w) +
1

2
‖w‖2

2
maximize − ‖x‖2

2

subject to x ∈ Bf

where Bf = Pf ∩
{

x ∈ RV : x(V ) = f (V )
}

is the base polytope of
submodular function f , and ‖x‖2

2 =
∑

e∈V x(e)2 is the squared
2-norm.

Minimum-norm point algorithm (Fujishige-1991, Fujishige-2005,
Fujishige-2011, Bach-2013) is essentially an active-set procedure for
quadratic programming, and uses Edmonds’s greedy algorithm to
make it efficient.

Unknown worst-case running time, although in practice it usually
performs quite well.
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Other applications of Lovász Extension

“fast” submodular function minimization, as mentioned above.

Structured sparse-encouraging convex norms (Bach-2011,
Bach-2012, and Bach-2013), semi-supervised learning, image
denoising, etc.

E.g., last year’s NIPS: Learning scale-free networks (Defazio and
Caetano),

Non-linear measures (Denneberg), non-linear aggregation functions
(Grabisch et. al), and fuzzy set theory.

Note, many of the critical properties of the Lovász extension were
given by Jack Edmonds in the 1960s. Choquet proposed an identical
integral in 1954, and G. Vitali proposed a similar integral in 1925!
G.Vitali, Sulla definizione di integrale delle funzioni di una variabile, Annali

di Matematica Serie IV, Tomo I,(1925), 111-121
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Submodular Concave Extension

Finding a concave extension of a submodular function is NP-hard
(Vondrak).

However, a useful surrogate is the multi-linear extension.

Definition

For a set function f : 2V → R, define its multilinear extension
F : [0, 1]V → R by

F (x) =
∑
S⊆V

f (S)
∏
i∈S

xi
∏

j∈V \S

(1− xj) (90)

Not concave, but still provides useful approximations for many
constrained maximization algorithms (e.g., multiple matroid and/or
knapsack constraints) via the continuous greedy algorithm followed
by rounding.

Often has to be approximated.
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5 Discrete Semimodular Semigradients

6 Continuous Extensions

7 Like Concave or Convex?

8 Optimization

9 Parameterization and Applications

10 Reading

J. Bilmes Submodularity page 102 / 124



Semigradients Extensions Concave or Convex? Optimization Parameterization Refs

Submodular: Concave? Convex? Neither? Both?

Are submodular functions more like convex or more like concave
functions?
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Submodular is like Concave

Convex 1: Like convex functions, submodular functions can be
minimized efficiently (polynomial time).

Convex 2: The Lovász extension of a discrete set function is convex
iff the set function is submodular.
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Submodular is like Concave

Convex 3: Frank’s discrete separation theorem: Let f : 2V → R be
a submodular function and g : 2V → R be a supermodular function
such that for all A ⊆ V ,

g(A) ≤ f (A) (91)

Then there exists modular function x ∈ RV such that for all A ⊆ V :

g(A) ≤ x(A) ≤ f (A) (92)

Compare to convex/concave case.

g(x)

x

f(x) m(x)
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Submodular is like Concave

Convex 4: Set of minimizers of a convex function is a convex set.
Set of minimizers of a submodular function is a lattice. I.e., if
A,B ∈ argminA⊆V f (A) then A ∪ B ∈ argminA⊆V f (A) and
A ∩ B ∈ argminA⊆V f (A)

Convex 5: Submodular functions have subdifferentials and
subgradients tight at any point.
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Submodularity and Concave

Concave 1: A function is submodular if for all X ⊆ V and j , k ∈ V

f (X + j) + f (X + k) ≥ f (X + j + k) + f (X ) (93)

With the gain defined as ∇j(X ) = f (X + j)− f (X ), seen as a form
of discrete gradient, this trivially becomes a second-order condition,
akin to concave functions: A function is submodular if for all X ⊆ V
and j , k ∈ V , we have:

∇j∇k f (X ) ≤ 0 (94)

Concave 2: Recall, Theorem 25: composition h = f ◦ g : 2V → R
(i.e., h(S) = g(f (S))) is nondecreasing submodular, if g is
non-decreasing concave and f is nondecreasing submodular.
Concave 3: Submodular functions have superdifferentials and
supergradients tight at any point.
Concave 4: Concave maximization solved via local gradient ascent.
Submodular maximization is (approximately) solvable via greedy
(coordinate-ascent-like) algorithms.
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Submodularity and neither Concave nor Convex

Neither 1: Submodular functions have simultaneous sub- and
super-gradients, tight at any point.

Neither 2: Concave functions are closed under min, while
submodular functions are not.

Neither 3: Convex functions are closed under max, while
submodular functions are not.

Neither 4: Convex functions can’t, in general, be efficiently or
approximately maximized, while submodular functions can be.

Neither 5: Convex functions have local optimality conditions of the
form ∇x f (x) = 0. Analogous submodular function semi-gradient
condition m(X ) = 0 offers no such guarantee (for neither
maximization nor minimization).
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SFM Summary (modified from S. Iwata’s slides)

General Submodular Function Minimization 

 

Iwata, Fleischer, Fujishige (2000) Schrijver (2000) 

Iwata (2003) 

Fleischer, Iwata (2000) 

Orlin (2007) 

Iwata (2002) 

Fully Combinatorial 

Grötschel, Lovász, Schrijver (1981, 1988)

Ellipsoid Method 

minimum norm point
algorithm

Cunningham (1985) 

Fujishige (1980/1991)

Bixby,Cunningham,Topkis (1984) 

Edmonds (1965/1970) 

Bach (2012/13) 

Iwata, Orlin (2009) 

Wolfe (1976)/von Hohenbalken (1975)
gen. convex methods
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Constrained Submodular Minimization

Constrained submodular minimization

min
A∈C

f (A) (95)

C can be paths, matchings, or spanning trees (Goel et. al.), cover
constraints (Iwata & Nagano), cuts (Jegelka & Bilmes), or
cardinality lower bounds (Svitkina & Fleischer).
Some cardinality constraints can be obtained via the min-norm
algorithm (Nagano & Kawahara, 2013).
Other forms of constraints are “easy” (e.g., certain lattices,
odd/even sets (see McCormick’s SFM tutorial paper).
In general, many constraints make the problem NP-hard although
approximation guarantees are possible (although often hardness is
things like Ω(n) or Ω(n2/3)).
Other forms of constraints: C = {A ⊆ V : g(A) ≥ α} for some other
submodular function g . This is studied for the first time here at
NIPS-2013 (see Saturday talk, Iyer & Bilmes, NIPS 2013).
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Submodular Maximization: Unconstrained

In general, NP-hard.

The greedy algorithm for monotone submodular maximization:

Algorithm 1: The Greedy Algorithm

Set S0 ← ∅ ;
for i ← 0 . . . |V | − 1 do

Choose vi as follows: vi =
{

argmaxv∈V \Si f (Si ∪ {v})
}

;

Set Si+1 ← Si ∪ {vi} ;

has a strong guarantee:

Theorem

Given a polymatroid function f , the above greedy algorithm returns sets
Si such that for each i we have f (Si ) ≥ (1− 1/e) max|S |≤i f (S).
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Submodular Maximization: Unconstrained

In general, NP-hard.

The greedy algorithm for monotone submodular maximization:

Algorithm 4: The Greedy Algorithm

Set S0 ← ∅ ;
for i ← 0 . . . |V | − 1 do

Choose vi as follows: vi =
{

argmaxv∈V \Si f (Si ∪ {v})
}
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Submodular Max Summary - from J. Vondrak

Monotone Maximization
Constraint Approximation Hardness Technique

|S | ≤ k 1− 1/e 1− 1/e greedy

matroid 1− 1/e 1− 1/e multilinear ext.

O(1) knapsacks 1− 1/e 1− 1/e multilinear ext.

k matroids k + ε k/ log k local search
k matroids and O(1)
knapsacks

O(k) k/ log k multilinear ext.

Nonmonotone Maximization
Constraint Approximation Hardness Technique

Unconstrained 1/2 1/2 combinatorial

matroid 1/e 0.48 multilinear ext.

O(1) knapsacks 1/e 0.49 multilinear ext.

k matroids k + O(1) k/ log k local search
k matroids and O(1)
knapsacks

O(k) k/ log k multilinear ext.
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A submodular function as a parameter

In some cases, it may be useful to view a submodular function
f : 2V → R as a input “parameter” to a machine learning algorithm.

Hence, it is imperative in the ML community to develop ways to
learn or approximately learn such submodular parameterizations.

Ex: Structured sparsity-encouraging convex norm (Bach): i.e., a
submodular function f , via its Lovász extension f̃ , gives us a norm

‖w‖f = f̃ (|w |) (96)

So finding a desirable norm is equivalent to finding a desirable
submodular function.
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Graphical Models vs. log-supermodular distributions

Consider family of distributions p : {0, 1}V → [0, 1] of the form:

p(x) =
1

Z
exp(f (x)) (97)

Graphical models: f (x) =
∑

c∈C fc(xc) where C are a set of cliques.

If −f is supermodular, MAP assignment is a submodular
minimization problem. Typical example:

p(x) =
1

Z
exp(−f (x) + m(x)) (98)

where f is submodular “energy” (often a graph-cut problem) and m
is modular (unaries). Common in computer vision.

Complexity is polynomial regardless of the tree-width of f —
submodularity is anti-graphical.

Log-supermodular distributions, since log p(x) is a supermodular
function.
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Graphical Models vs. log-submodular distributions

On the other hand, with

p(x) =
1

Z
exp(f (x)) (99)

where f is submodular then p is log-submodular.

Example: f (x) = log det(CX ) where X is the set corresponding to
binary vector x (i.e., x = 1X ) and C is the sub-matrix with
rows/columns selected by X .

Hence p(x) is a determinantal point process.
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log-supermodular vs. log-submodular distributions

Log-supermodular: MAP or high-probable assignments should be
“regular”, “homogeneous”, “smooth”, “simple”. E.g., attractive
potentials in computer vision, ferromagnetic Potts model statistical
physics.

Log-submodular: MAP or high-probable assignments should be
“diverse”, or “complex”, or “covering”, like in determinantal point
processes.
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Other examples: submodular parameterization

Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).

Rank-order based divergences (Submodular Bregman Divergence,
and the Lovász-Bregman Divergences) (Iyer & Bilmes, 2013).

Feature and dictionary selection (Krause & Guestrin, Das & Kempe)

Computer vision (Kolmogorov, Boykov, Kohli, Ladicky, Torr, etc.).

Data subset (or core set) selection in machine learning (Lin &
Bilmes, Wei & Bilmes). Data summarization, summarizing big
redundant data.

Influence determination in social networks (Kempe, Kleinberg, &
Tardos)
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Classic References

Jack Edmonds’s paper “Submodular Functions, Matroids, and
Certain Polyhedra” from 1970.

Nemhauser, Wolsey, Fisher, “A Analysis of Approximations for
Maximizing Submodular Set Functions-I”, 1978

Lovász’s paper, “Submodular functions and convexity”, from 1983.
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Classic Books

Fujishige, “Submodular Functions and Optimization”, 2005

Narayanan, “Submodular Functions and Electrical Networks”, 1997

Welsh, “Matroid Theory”, 1975.

Oxley, “Matroid Theory”, 1992 (and 2011).

Lawler, “Combinatorial Optimization: Networks and Matroids”,
1976.

Schrijver, “Combinatorial Optimization”, 2003

Gruenbaum, “Convex Polytopes, 2nd Ed”, 2003.
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Recent online material with an ML slant

My class, most proofs for above are given. http://j.ee.

washington.edu/~bilmes/classes/ee596a_fall_2012/.
Next offered, April 2014.
Andreas Krause’s web page http://submodularity.org.
Stefanie Jegelka and Andreas Krause’s ICML 2013 tutorial
http://techtalks.tv/talks/

submodularity-in-machine-learning-new-directions-part-i/

58125/

Francis Bach’s updated 2013 text.
http://hal.archives-ouvertes.fr/docs/00/87/06/09/PDF/

submodular_fot_revised_hal.pdf

Tom McCormick’s overview paper on submodular minimization
http://people.commerce.ubc.ca/faculty/mccormick/

sfmchap8a.pdf

Georgia Tech’s 2012 workshop on submodularity: http:

//www.arc.gatech.edu/events/arc-submodularity-workshop
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The End: Thank you!

Submodularity

Greedily choose your data sets
1− 1/e guarantee!

Minimize your functions in
polynomial time!

Draw beautiful polyhedra!
Solve exponentialy large
linear programs in polynomial
time!

Paul  E.  Matroid
Moniton Submodularanian
Wonmy Neuswon Overee 

+

f (A) + f (B)

f (A ∪ B)

≥
f (A ∩ B)

with a
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