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1.1 Introduction

Semi-supervised learning (SSL) is the process of training decision functions using
small amounts of labeled and relatively large amounts of unlabeled data. In many
applications, annotating training data is time-consuming and error prone. Speech
recognition is the typical example, which requires large amounts of meticulously
annotated speech data (Evermann et al., 2005) to produce an accurate system. In
the case of document classification for Internet search, it is not even feasible to
accurately annotate a relatively large number of web pages for all categories of
potential interest. SSL lends itself as a useful technique in many machine learning
applications as one needs only to annotate relatively small amounts of the avail-
able data. SSL is related to the problem of transductive learning (Vapnik, 1998).
In general, a learner is transductive if it is designed for prediction on only a closed
data set, where the test set is revealed at training time. In practice, however, trans-
ductive learners can be modified to handle unseen data (Sindhwani et al., 2005;
Zhu, 2005a). Chapter 25 in (Chapelle et al., 2007) gives a full discussion on the
relationship between SSL and transductive learning. In this chapter, SSL refers to
the semi-supervised transductive classification problem.

Let x ∈ X denote the input to the decision function (classifier), f , and y ∈ Y

denote its output label, i.e., f : X→ Y. In most cases f(x) = argmaxy∈Y p(y|x).
In SSL, certain reasonable assumptions are made so that properties of the distri-
bution p(x) (which is available from the unlabeled data sampled from p(x)) can
influence p(y|x). These assumptions are as follows:

1. Manifold Assumption - the data items x ∈ X lie on a low-dimensional manifold
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embedded within a high dimensional space. There are two ways to interpret
this. First, the data may lie, irrespective of class, on one global low-dimensional
manifold embedded within a high dimensional space. Second, the data for each
class might lie on its own specific manifold, and the manifolds for different
classes might or might not intersect. While the first case is more commonly
discussed, in either case the decision boundary between classes can be more
accurately determined using not just the labeled but also the unlabeled data.

2. Smoothness Assumption - if two points x1 and x2 in a high-density region are
close based on a given distance measure on X (which might depend on the
manifold), then their corresponding output labels are also likely to be close or
identical. Stated differently, a decision boundary between classes will lie in a
low-density region. A third way to state this is, if between two points there exists
a trajectory that always lies within the same connected high-density region, then
the two points will likely have the same label. Here, a high-density region is a
subset of X that has high probability according to p(x). This is sometimes also
called the cluster assumption.

These assumptions often being essentially true for real-world data is the reason
why a large set of semi-supervised learning algorithms work quite well for many
applications.

SSL has a long history of previous research. Early work includes methods such
as Self-training (Scudder, 1965) which involves training the decision function us-
ing data annotated during a previous classification run over the unlabeled data. This
so called “labeled” data needs to be carefully chosen and/or filtered or else it would
amount to adding noise (i.e., incorrectly labeled samples) to the training set. In gen-
eral, self-training offers no guarantees except under certain conditions (Haffari and
Sarkar, 2007). Co-training is a related algorithm where one uses two sets of deci-
sion functions with one learning from the output of the other and vice versa. The co-
training algorithm is one of the more well-studied SSL algorithms (Goldman and
Zhou, 2000; Balcan and Blum, 2005). Expectation-Maximization (EM) (Dempster
et al., 1977; Bilmes, 1998) can also be seen as an SSL algorithm. EM is a general
procedure to maximize the likelihood of data given a model with hidden variables
and is guaranteed to converge to a local optimum. EM lends itself naturally to SSL
as the labels of the unlabeled samples can be treated as missing (or hidden). Ex-
amples of algorithms that use EM within a SSL setting include (Hosmer, 1973;
Nigam, 2001; McLachlan and Ganesalingam, 1982). Self-training, co-training and
EM all make use of the smoothness assumption in one way or another.

Transductive support vector machines (TSVM) (Vapnik, 1998) are based on the
premise that the decision boundary must avoid high density regions in the input
space (i.e., the low density separation assumption). They are related to support
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vector machines (SVM) used for supervised learning. Computing the exact TSVM
solution is in general NP hard and a number of approximation algorithms have been
proposed (Zhu, 2005a). Gaussian processes with a “null category noise model” is
yet another technique for SSL (Lawrence and Jordan, 2005) and are related to
TSVMs.

Graph-based SSL algorithms are an important sub-class of SSL techniques that
have received much attention in the recent past (Blum and Chawla, 2001; Zhu et al.,
2003; Joachims, 2003; Belkin et al., 2005; Corduneanu and Jaakkola, 2003; Tsuda,
2005; Szummer and Jaakkola, 2001; Zhu and Ghahramani, 2002a; Zhu, 2005a;
Chapelle et al., 2007; Subramanya and Bilmes, 2008, 2009b,a, 2011). Here one
assumes that the data (both labeled and unlabeled) lies on a low-dimensional man-
ifold that may be reasonably approximated by a graph (this constitutes the mani-
fold assumption). Each data sample is represented by a vertex in an edge-weighted
graph with the weights providing a measure of similarity between vertices. We dis-
cuss graph-based SSL in section 1.3. We refer the reader to Seeger (2000); Zhu
(2005a); Chapelle et al. (2007); Blitzer and Zhu (2008); Zhu and Goldberg (2009).
for additional discussion regarding SSL in general.

In the present chapter, we discuss the scalability to very large problems sizes
(> 100 million nodes) of graph-based SSL algorithms on different types of par-
allel machines, either shared-memory symmetric multi-processors (SMPs) or dis-
tributed computers. A common feature of most graph-based algorithms that we
exploit is that their optimization can be expressed as simple and efficient mes-
sages passed along edges of the graph (see Figure 1.1). This is also true of a re-
cent graph-based SSL algorithm proposed by the authors, and that seems to per-
form better than most other graph-based SSL algorithms (Subramanya and Bilmes,
2009a, 2011). For shared-memory symmetric multi-processors (SMP), we propose
a simple generic linear-time (in the number of graph nodes) cache-cognizant node
ordering heuristic to improve the efficiency of message passing. On distributed
computers, we propose a modification of this heuristic that is still linear time and
generic, but that is more intelligent regarding the nonuniform memory access on
such machines. We test these heuristics on a large semi-supervised learning task
consisting of a graph with 120 million nodes, and show that for both a 16-node
SMP and a 1000-node distributed computer, significant improvements in machine
efficiency can be obtained.

1.2 Scaling SSL to Large Data Sets

As SSL is based on the premise that unlabeled data is easily obtained, and adding
large quantities of unlabeled data leads to improved performance1, it is thus impor-
1 Note, there are recent exceptions (Nadler et al., 2010) where more data can in fact hurt certain algorithms.
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tant that SSL algorithms scale easily to large amounts of (unlabeled) data. In recent
times, the degree to which an algorithm scales has become practically synonymous
with the ease and efficiency at which it can be parallelized.

In general, previous work has focused more on improving SSL algorithms and
less on parallelization. For example, in the case of TSVMs which as stated above
are NP hard, early work could only handle a few thousand samples (Bie and Cris-
tianini, 2003). Therefore, Collobert et al. (2006) proposed a method based on the
convex-concave procedure (CCCP) to scale TSVMs to larger data set sizes. More
recently, Sindhwani and Selvaraj (2006) proposed an efficient implementation of
TSVMs with linear kernels suitable for text applications. Current state-of-the-art
TSVMs can only handle tens of thousands of samples when using an arbitrary
kernel. For example, Karlen et al. (2008) report that for a problem with about
70,000 samples (both labeled and unlabeled included), a CCCP-TSVM took about
42 hours to train.

In the case of graph-based approaches, Delalleau et al. (2005) proposed to create
a small graph with a subset of the unlabeled data thereby enabling fast computa-
tion. We are not aware, however, of a published principled algorithm to choose
such a subset. Garcke and Griebel (2005) proposed the use of sparse grid for semi-
supervised learning. The idea was to approximate the function space with a finite
basis with sparse grids. While their approach scales linearly in the number of sam-
ples, in practice, it only works for relatively low-dimensional (< 20) data. Karlen
et al. (2008) solved a graph transduction problem with 650,000 samples using a
Neural Network. They make use of standard stochastic gradient techniques to scale
the approach. However the lack of convexity of the neural network training objec-
tive means that there are no convergence guarantees. Gradient based approaches,
moreover, pose other challenges such as the setting of learning rates and conver-
gence criteria. Note that we are not arguing against the general use of stochastic
gradient techniques to find optima of non-convex objectives (e.g., the discrimi-
native training of hidden Markov models (HMM), or our own previous work on
the semi-supervised training of parametric discriminative classifiers (Malkin et al.,
2009)) but when other convex alternatives are available (such as the ones described
below) and are suitable for a given application, and when they work well in prac-
tice, it may be more prudent to use the convex formulations. To the best of our
knowledge, the largest graph-based SSL problem solved to date had about 900,000
samples (including both labeled and unlabeled data) (Tsang and Kwok, 2006).
Clearly, this is a fraction of the amount of unlabeled data at our disposal. For exam-
ple, on the Internet, society creates over 1.6 billion blog posts, 60 billion emails, 2
million photos and 200,000 videos every day (Tomkins, 2008). SSL holds promise
to produce a proper and practical taxonomy of this enormous wealth of informa-
tion.



1.3 Graph-based SSL 5

1.3 Graph-based SSL

In general, graph-based SSL algorithms often have a global objective (see, for ex-
ample, Section 1.3.2). This objective might even be convex and have an analytic
solution that uses matrix inversion (Zhu et al., 2003; Belkin et al., 2005) or eigen-
based matrix decomposition (Joachims, 2003), but because of the inherent O(m3)

computation associated with these approaches (where m is the data set size), they
are difficult to scale to large problems.

We are interested in graph-based SSL algorithms, however, for the following
important reasons:

1. Time and again, and for many applications, they have performed better than
most other SSL algorithms in comparative evaluations (see chapter 21 in Chapelle
et al. (2007));

2. Most graph-based methods have a convex objective thereby providing conver-
gence guarantees, making them attractive for solving large-scale problems;

3. For most graph-based SSL approaches, optimizing the objective can be achieved
via message passing on graphs. Each iteration of the algorithm consists of a set
of updates to each graph node. An updated node value is computed based on
the node’s current value as well as the neighbors’ current set of values (see
Figure 1.1). Unlike other algorithms such as Transductive SVMs that require a
specialized design and implementation, a majority of the graph-based SSL algo-
rithms may be represented within this common framework of message passing
with respect to a given graph (further discussion of this framework is given in
the next section);

4. The message passing approach to optimizing a graph-based SSL objective will
often have its own convergence guarantees. For example, it can sometimes be
shown that the simple message passing algorithm linearly converges to the true
global optimum of the convex objective (Subramanya and Bilmes, 2011);

5. It is possible (as we show in the present chapter) to derive simple fast heuris-
tics that enable such algorithms to scale to large parallel machines with good
machine efficiency.

Graph-based SSL algorithms broadly fall under two categories – those that use
the graph structure to spread labels from labeled to unlabeled samples (Szummer
and Jaakkola, 2001; Zhu and Ghahramani, 2002a; Baluja et al., 2008) and those
that optimize a loss function based on smoothness constraints derived from the
graph (Blum and Chawla, 2001; Zhu et al., 2003; Joachims, 2003; Belkin et al.,
2005; Corduneanu and Jaakkola, 2003; Tsuda, 2005). These categories, however,
are often different only in form rather than in their underlying goal. For example,
label propagation (Zhu and Ghahramani, 2002a) and the harmonic functions algo-
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rithm (Zhu et al., 2003; Bengio et al., 2007) optimize a similar loss function (Zhu,
2005b; Bengio et al., 2007). Next we describe some of the previous work in graph-
based SSL in more detail.

Spectral graph transduction (SGT) (Joachims, 2003) is an approximate solution
to the NP-hard normalized cut problem. The use of norm-cut instead of a min-cut
(as in (Blum and Chawla, 2001)) ensures that the number of unlabeled samples in
each side of the cut is more balanced. SGT requires that one compute the eigen-
decomposition of an m ×m matrix which can be challenging for very large data
sets (where m is the total number of samples in the data set). Manifold regular-
ization (Belkin et al., 2005) proposes a general framework where a parametric
loss function is defined over the labeled samples and is regularized by a graph
smoothness term defined over both the labeled and unlabeled samples. When the
loss function satisfies certain conditions, it can be shown that the representer the-
orem applies and so the solution is a weighted sum over kernel computations. The
goal of the learning process is thus to discover these weights. When the parametric
loss function is based on least squares, the approach is referred to as Laplacian
Regularized Least Squares (LapRLS) (Belkin et al., 2005) and when the loss func-
tion is based on hinge loss, the approach is called Laplacian Support Vector Ma-
chines (LapSVM)) (Belkin et al., 2005). In the case of LapRLS, the weights have a
closed form solution which involves inverting anm×mmatrix while in the case of
LapSVM, optimization techniques used for SVM training may be used to solve for
the weights. In general, it has been observed that LapRLS and LapSVM give simi-
lar performance (see chapter 21 in Chapelle et al. (2007)). Note that while LapSVM
minimizes hinge loss (over the labeled samples) which is considered more optimal
than squared loss for classification, the graph regularizer is still based on squared
error.

A majority of the graph-based SSL algorithms discussed above attempt to mini-
mize squared-loss. While squared-loss is optimal under a Gaussian noise model, it
is not optimal in the case of classification problems. We discuss more about the rel-
ative merits of using a squared-loss based objective in section 1.3.2. Another poten-
tial drawback in the case of some graph-based SSL algorithms (Blum and Chawla,
2001; Joachims, 2003; Belkin et al., 2005) is that they assume binary classification
tasks and thus require the use of suboptimal (and often computationally expensive)
approaches such as one vs. rest to solve multi-class problems. Yet another issue
relates to the use of priors – most graph-based SSL algorithms are not capable of
tightly integrating priors into their training objective. To address the above issues,
in Subramanya and Bilmes (2008, 2009a, 2011), we have proposed a graph-based
SSL algorithm based on minimizing Kullback-Leibler divergence (KLD) between
probability distributions which we call Measure Propagation. We discuss this in
more detail in Section 1.3.2. Next we describe the two stages of solving a semi-
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Figure 1.1 I: A graph G = (V,E) with V = {a, b, c, d, e, f, g, h} and edges
as indicated. II-V: Various messages on the graphs are given. For example, in II,
node f is being processed which requires reading information not only from f
but also from all of f ’s neighbors Γ(f) = {d, g, h}— this essentially constitutes
a “message” being sent to node f from its neighbors.

supervised learning problem using graph-based methods – (a) graph construction,
(b) the use of the graph as a regularizer to solve the graph-based SSL problem.

1.3.1 Graph Construction

Let Dl = {(xi, ri)}li=1 be the set of labeled samples, Du = {xi}l+ui=l+1 the set of
unlabeled samples and D , {Dl,Du}. Here ri is an encoding of the labeled data
and will be explained shortly. We are interested in solving the transductive learning
problem, i.e., given D, the task is to predict the labels of the samples in Du (for
inductive extensions, see Subramanya and Bilmes (2009a, 2011)). We are given an
undirected weighted graph G = (V,E), where the vertices (equivalently nodes)
V = {1, . . . ,m} (with m = l + u) represent the data points in D and the edges
E ⊆ V × V connect related nodes. Let Vl ∪ Vu = V be a partition of V where
Vl is the set of labeled vertices and Vu the set of unlabeled vertices. G may be
represented via a matrix W = {wij}i,j with nonnegative values referred to as the
weight or affinity matrix. If wij > 0 we say that vertices i and j are adjacent or are
neighbors in G. Given a vertex v ∈ V , let Γ(v) ⊆ V denote the set of neighbors
of the vertex v, and given a set S ⊂ V let Γ(S) ⊆ V be the set of neighbors of
nodes in S. Thus, by definition, Γ(v) = Γ({v}) for a single vertex v. For example,
in Figure 1.1-I, Γ(a) = {c, h, b} and Γ({a, f}) = {c, h, b, d, g}. Also Γ(S) might
include some or all of S when |S| > 1 — in the figure, Γ({a, b}) = {c, h, d, a, b}
so Γ(S) \ S is the set of neighbors of S not including S. In this work, no two
vertices have more than one edge between them, and thus |Γ(i)| represents vertex
i’s degree.

There are many ways of constructing a graph for a given data set. In some ap-
plications, it might be a natural result of a relationship between the samples in
D. For example, consider the case where each vertex represents a web page and
the edges represent the links between web pages. In other cases, such as the work
of (Wang and Zhang, 2006), the graph is generated by performing an operation
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similar to local linear embedding (LLE) with the constraint that the LLE weights
are nonnegative. In the majority of applications, including those considered in this
chapter, we use k-nearest neighbor (k-NN) graphs. In fact, we make use of sym-
metric k-NN graphs with edge weights wij = [W]ij given by

wij =

{
sim(xi,xj) if j ∈ K(i) or i ∈ K(j)

0 otherwise

where K(i) is the set of k-NNs of xi (|K(i)| = k, ∀i) according to sim, and
sim(xi,xj) is a measure of similarity between xi and xj (which are represented
by nodes i and j). We note that sim is implicit in K(i), in that K(i) contains the
k data points nearest to i based on sim. The neighbors function, Γ(i), on the other
hand, is based on a graph once it has already been constructed.

It is assumed that the similarity measure is symmetric, i.e., sim(x, y) = sim(y, x).
Further sim(x, y) ≥ 0. Choosing the correct similarity measure and k are crucial
steps in the success of any graph-based SSL algorithm as it determines the graph.
Some popular similarity measures include

sim(xi,xj) = e−
‖xi−xj‖

2
2

2σ or sim(xi,xj) = cos(xi,xj) =
〈xi,xj〉

‖ xi ‖2‖ xj ‖2

where ‖ xi ‖2 is the L2 norm, and 〈xi,xj〉 is the inner product of xi and xj . The
first similarity measure is a radial-basis function (RBF) kernel of width σ applied
to the squared Euclidean distance while the second is cosine similarity. The choice
of W depends on a number of factors such as whether xi is continuous or discrete
and characteristics of the problem at hand.

1.3.2 Graph Regularization

For each i ∈ V and j ∈ Vl, we define multinomial distributions pi and rj respec-
tively over the set of classifier outputs Y. That is, for each vertex in the graph, we
define a measure pi, and for each labeled vertex we also define ri (we explain the
reason for including ri shortly). Here |Y| = 2 yields binary classification while
|Y| > 2 yields multi-class classification. Note that pi(y) represents the probability
that the sample represented by vertex i belongs to class y. We assume that there is
at least one labeled sample for every class.

We have that
∑

y pi(y) = 1, pi(y) ≥ 0,
∑

y ri(y) = 1, and ri(y) ≥ 0.
Thus pi and ri lie within a |Y|-dimensional probability simplex which we de-
pict using M|Y| and so pi, ri ∈M|Y| (henceforth, we abbreviate M|Y| as M). Also
let p , (p1, . . . , pm) ∈Mm denote the set of distributions to be learned, and
r , (r1, . . . , rl) ∈Ml are the set of measures (representing labels, more on this
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below) which are given. Here, Mm,M × . . .× M (the Cartesian product of M re-
peated m times). Finally let u be the uniform probability measure defined over Y,
i.e,̇ u(y) = 1

|Y| ∀ y ∈ Y.
The {ri}i’s represent the labels of the supervised portion of the training data and

are derived in one of the following ways: (a) if ŷi is the single supervised label for
input xi then ri(y) = δ(y = ŷi), which means that ri gives unity probability for
y equaling the label ŷi; (b) if ŷi = {ŷ(1)

i , . . . , ŷ
(t)
i }, t ≤ |Y| is a set of possible

outputs for input xi, meaning an object validly falls into all of the corresponding
categories, we set ri(y) = (1/t)δ(y ∈ ŷi) meaning that ri is uniform over only the
possible categories and zero otherwise; (c) if the labels are given in the form of a
set of nonnegative scores, or even a probability distribution itself, we just set ri to
be equal to those scores (possibly) normalized to become a valid probability dis-
tribution. Thus, the ri’s can represent various degrees of label uncertainty, ranging
from completely certain (the label is a single integer) to fairly uncertain (ri has rel-
atively high entropy), and there can be differing degrees of uncertainty associated
with different labels. It is important to distinguish between the classical multi-label
problem and the use of uncertainty in rj . In our case, if there are two nonzero out-
puts during training as in rj(ȳ1), rj(ȳ2) > 0, ȳ1, ȳ2 ∈ Y, it does not imply that the
input xj is necessarily a member of both of the two corresponding classes. Rather,
there is uncertainty regarding truth, and we utilize a discrete probability measure
over the labels to represent this uncertainty. This can be useful in the document
classification task where in the case of a majority of documents, there is an uncer-
tainty associated with the appropriate topic (label) for the document (Subramanya
and Bilmes, 2008). To express the alternate case, where an xj can be a member
of more than one class, we would need multiple binary distributions for each data
point — we do not consider this case further in the present chapter.

We define two graph-based SSL objectives, the first uses a squared-error objec-
tive while the second makes use of KLD to measure distance between probability
distributions at the vertices.

Algorithm Based on Squared Error: Consider the optimization problem P1 :

min
p∈Mm

C1(p) where

C1(p) =
l∑

i=1

‖ ri − pi ‖2 +µ
m∑
i=1

∑
j∈Γ(i)

wij ‖ pi − pj ‖2 +ν
m∑
i=1

‖ pi − u ‖2

where ‖ p ‖2=
∑

y p
2(y). P1 can also be seen as a multi-class extension of the

quadratic cost criterion (Bengio et al., 2007) or as a variant of one of the objectives
in (Zhu and Ghahramani, 2002b; Talukdar and Crammer, 2009).

The goal of the above objective is to find the best set of measures pi that attempt
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to: 1) agree with the labeled data rj wherever it is available (the first term in C1);
2) agree with each other when they are close according to a graph (the second
graph-regularizer term in C1); and 3) not be overconfident (the last term in C1). In
essence, SSL on a graph consists of finding a labeling forDu that is consistent with
both the labels provided in Dl and the geometry of the data induced by the graph.
In this case the error is measured using squared-loss.
P1 can be reformulated as the following equivalent optimization problem P1 :

min
p∈Mm

C1(p) where

C1(p) = Tr
(
(Sp− r′)(Sp− r′)T

)
+ 2µTr(LppT ) + νTr((p− u)(p− u)T ),

S ,

(
Il 0

0 0

)
, r′ ,

(
r 0

0 0

)
, u , (u, . . . , u) ∈Mm,

1m ∈ Rm is a column vector of 1’s, and Il is the l × l identity matrix. Here
L , D −W is the unnormalized graph Laplacian, D is a diagonal matrix given
by di = [D]ii =

∑
j wij . C1 is convex if µ, ν ≥ 0 and, as the constraints that

ensure p ∈M are linear, we can make use of the KKT conditions (Bertsekas, 1999)
to show that the solution to P1 is given by

p̂ = (S + 2µL + νIm)−1

[
Sr + νu +

2µ

|Y|
L1m1

T
|Y |

]
.

Henceforth we refer to the above approach to solving P1 as SQ-Loss-C. The above
closed-form solution involves inverting a matrix of size m×m. As a result it may
not be amenable to very large problems. In such cases, one may solve P1 in an
iterative fashion. It can be shown that the iterative update for each pi is given by

p
(n)
i (y) =

ri(y)δ(i ≤ l) + νu(y) + µ
∑

j wijp
(n−1)
j (y)

δ(i ≤ l) + ν + µ
∑

j wij
.

Here n is the iteration index. More interestingly, it can be shown that p(n) →
p̂ (Bengio et al., 2007). We refer to the iterative approach to solving P1 as SQ-
Loss-I.

Measure Propagation: Next we consider a graph regularization framework based
on KLD (Subramanya and Bilmes, 2009a, 2011). Consider the optimization prob-
lem P2 : min

p∈Mm
C2(p) where

C2(p) =
l∑

i=1

DKL

(
ri||pi

)
+ µ

m∑
i=1

∑
j∈Γ(i)

wijDKL

(
pi||pj

)
− ν

n∑
i=1

H(pi).

Here H(p) = −
∑

y p(y) log p(y) is the Shannon entropy of p and DKL(pi||qj) is

the KLD between measures pi and qj and is given byDKL(p||q) =
∑

y p(y) log p(y)
q(y) .
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(µ, ν) are hyper-parameters that can be set via cross-validation. The three terms in
C2(p) have the same purpose as the three terms in C1(p) but in this case, loss is
measured in the KLD sense. We note that C2 is still convex in p. We solve C2(p)

using alternating minimization (AM) and the updates are given by

p
(n)
i (y) =

exp{ µγi
∑

j w
′
ij log q

(n−1)
j (y)}∑

y exp{ µγi
∑

j w
′
ij log q

(n−1)
j (y)}

and

q
(n)
i (y) =

ri(y)δ(i ≤ l) + µ
∑

j w
′
jip

(n)
j (y)

δ(i ≤ l) + µ
∑

j w
′
ji

where γi = ν + µ
∑

j w
′
ij , and where q(n) , (q

(n)
1 , . . . , q

(n)
m ) ∈Mm is another

set of m distributions that are learned simultaneously with p. In Subramanya and
Bilmes (2009a, 2011) we show that limn→∞DKL

(
q

(n)
i ||p

(n)
i

)
= 0 for each i, and

moreover that they both converge to the minimum of C1. We call this iterative
procedure measure propagation (MP).

There are number of reasons to prefer the KLD-based objective to the one de-
fined in terms of squared-error. Firstly, as shown in (Subramanya and Bilmes,
2008, 2009b,a), the KLD-based objective outperforms other squared-loss based ap-
proaches on a wide variety of datasets. Secondly, while squared-error has worked
well in the case of regression problems (Bishop, 1995),2 for classification, it is
often argued that squared-loss is not the optimal criterion and alternative loss func-
tions such as the cross-entropy (Bishop, 1995), logistic (Ng and Jordan, 2002),
hinge-loss (Vapnik, 1998) have been proposed. Thirdly, for measuring the dissimi-
larity between measures, KLD is said to be asymptotically consistent w.r.t. the un-
derlying probability distributions (Bishop, 1995). Finally, KLD based loss is based
on relative error rather than absolute error as in the case of squared-error. Indeed,
the results given in Figure 1.2 show that the KLD-based SSL objective significantly
outperforms algorithms based on the squared-error objective, and also based on an
multi-layered perceptron (MLP) trained using only on the labeled data.

Table 1.1 gives a summary of the update equations for different graph-based
algorithms. Note that SQ-Loss-C and SQ-Loss-I are in-fact reformulations of the
popular squared-loss based objectives in terms of multinomial distributions. MP,
SQ-Loss-I and LP, however, are iterative and in fact correspond precisely to mes-
sage passing on graphs as depicted in Table 1.1. SQ-Loss-C has a closed form
solution that involves inverting an m×m matrix. In practice, such a matrix will be
sparse, but implementing SQ-Loss-C is arguably not as straightforward as the iter-
ative message-passing cases. Moreover, in the message-passing cases, the updates
at every vertex are a function of the values of its neighbors and so are quite easy
2 Assuming a Gaussian noise model in a regression problem leads to an objective based on squared-loss.
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Figure 1.2 Phone Accuracy vs. Percentage of switchboard (SWB) I training data.
The STP portion of SWB is fully described in Section 1.4. Phone Accuracy was
measured on the STP data. Note that when all the Switchboard I data was added,
the resulting graph had 120 million vertices! The dashed black line shows the
performance of a multi-layered perceptron (MLP) in the no unlabeled data case,
measured using the same training, development and test sets as MP and LP. That
is, the MLP here is trained fully supervised, unlike in our other work (Malkin
et al., 2009). More details may be found in Subramanya and Bilmes (2011).

to parallelize. We thus turn our attention to how best to parallelize such message
passing algorithms.

1.4 Data set: A 120 Million Node Graph

Our interest in this chapter is on fast parallel implementations of message-passing
based semi-supervised learning algorithms, and we therefore need a large real-
world dataset that is deserving of our efforts.

We therefore utilized the popular speech dataset Switchboard I (SWB) which is
a collection of about 2,400 two-sided telephone conversations among 543 speakers
(302 male, 241 female) from all areas of the United States (Godfrey et al., 1992).
A computer-driven system handled the calls, giving the caller appropriate recorded
prompts, selecting and dialing another person (the callee) to take part in a conver-
sation, introducing a topic for discussion and recording the speech from the two
subjects into separate channels until the conversation was finished. SWB consists
of about 300 hours of speech data and is very popular in the speech recognition
community for the training of large vocabulary conversational speech recognition
systems (Evermann et al., 2005; Subramanya et al., 2007).

SWB has been annotated in multiple ways. There are manually produced word-
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Algorithm Update Equation(s)

MP (Subramanya and Bilmes, 2009a)

p
(n)
i (y) =

exp{ µγi
∑
j w
′
ij log q

(n−1)
j (y)}∑

y exp{ µγi
∑
j w
′
ij log q

(n−1)
j (y)}

q
(n)
i (y) =

ri(y)δ(i≤l)+µ
∑
j w
′
jip

(n)
j (y)

δ(i≤l)+µ
∑
j w
′
ji

γi = ν + µ
∑
j w
′

ij

SQ-Loss-C p̂ = (S + 2µL + νIm)−1
[
Sr + νu + 2µ

|Y|L1m1Tc

]
L , D−W, [D]ii =

∑
j wij

SQ-Loss-I p
(n)
i (y) =

ri(y)δ(i≤l)+νu(y)+µ
∑
j wijp

(n−1)
j (y)

δ(i≤l)+ν+µ
∑
j wij

LP (Zhu and Ghahramani, 2002a) p
(n)
i (y) =

ri(y)δ(i≤l)+δ(i>l)
∑
j wijp

(n−1)
j (y)

δ(i≤l)+δ(i>l)
∑
j wij

Table 1.1 A summary of update equations for various graph-based SSL
algorithms. µ and ν are hyper-parameters.

level transcriptions. In addition, one also has access to less reliable phone-level an-
notations generated in an automatic manner by a speech recognizer with a nonzero
error rate (Deshmukh et al., 1998).

Most interesting from the perspective of SSL, the Switchboard Transcription
Project (STP) (Greenberg, 1995; Greenberg et al., 1996) was undertaken to ac-
curately annotate SWB at the phonetic and syllabic levels. Within the annotated
portion of the STP data, every phone (or syllabic) segment is marked with a tem-
porally high-resolution start- and end-time and a phone (or syllable) identity, and
this is done painstakingly by a human annotator. These segments can be used to
make a decision regarding the phone identity of every 25ms (millisecond) window
of speech, a process known as frame annotation. One of the hopes for the STP
data was that it could be used to improve the performance of conversational speech
recognition systems — each frame label could be used to train an HMM by having
a phonetic label determine each state variable at each time frame during training.
As the transcription task was time-consuming, costly, and error prone, only 75 min-
utes of speech selected from different SWB conversations were annotated at the
phone level. Completing this annotation task is thus the perfect job for transductive
SSL: produce labels for the unlabeled data. Having access to such annotations for
all of SWB could potentially be useful for large vocabulary speech recognition and
speech research in general and this, in fact, was the process we undertook in (Sub-
ramanya and Bilmes, 2009b). This data is also an ideal real-world task for SSL, and
accuracy results showed that measure propagation was significantly more accurate
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than alternatives on this data (Subramanya and Bilmes, 2009a, 2011). The STP
data is useful for a third purpose, as it corresponds to a very large real-world graph
(approximately 120 million nodes, corresponding to 120 million speech frames),
suitable for developing scalable SSL algorithms, the topic of this chapter (also see
Figure 1.2).

The following process was used to construct this graph from the STP data. The
speech wave files were first segmented and then windowed using a Hamming win-
dow of size 25ms at 100Hz (15ms window overlap). We then extracted 13 Percep-
tual Linear Prediction (PLP) (Huang et al., 2001) coefficients from these windowed
features and appended both deltas and double deltas resulting in a 39-dimensional
feature vector. To increase context information, we used a 7 frame context window
(3 frames in the past and 3 in the future) yielding a 273-dimensional sample xi. We
used

sim(xi,xj) = exp{−(xi − xj)
TΣ−1(xi − xj)}

as the similarity measure to generate the weights wij , where Σ is the “grand” co-
variance matrix computed using all the data. Our task is the phone classification
problem, and so Y is the set of phones (an approximately 40-class multi-class clas-
sification problem). We constructed a symmetrized k-NN graph using the above
data with each vertex having at least k = 10 neighbors using the procedure de-
scribed in section 1.4.1. The graph, hereinafter referred to as the SWB graph, had
about 120 million vertices. More details are given in (Subramanya and Bilmes,
2009b,a, 2011).

1.4.1 Graph Construction in large problems

Graph construction is an important step in the use of a graph-based algorithm for
solving a SSL problem. At a very high level, the graph determines how information
flows from one sample to another and thus an incorrect choice of a neighborhood
can lead to poor results. Improper choice of a graph can also lead to degenerate
solutions (where either all samples belong to a single class or all samples have
a uniform distributions) (Blum and Chawla, 2001; Joachims, 2003). In general,
graph construction “is more of an art, than science” (Zhu, 2005b) and is an active
research area (Alexandrescu and Kirchhoff, 2007).

Constructing a graph over a large number of samples (> 1 million) itself poses
an interesting computational challenge – conventional brute-force construction of
k-NN graphs does not scale to large datasets as it is O(m2). Nearest neighbor
search is a well researched problem, however, with many approximate solutions.
A large number of solutions to this problem are based on variations of the classic
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kd-tree data structure (Friedman et al., 1977). However kd-trees or their derivatives
are not ideally suited to the case of high-dimensional data, as we have.

As we have continuous data in this work, we make use of the Approximate
Nearest Neighbor (ANN) library (see http://www.cs.umd.edu/˜mount/
ANN/) (Arya and Mount, 1993; Arya et al., 1998). It constructs a modified version
of the kd-tree data structure which is then used to query the NNs. The query process
requires that one specify an error term, ε, and guarantees that sim(xi,N(xi))/sim(xi,Nε(xi))

≤ 1+εwhere N(xi) is a function that returns the exact nearest neighbor of xi while
Nε(xi) returns the approximate NN. Larger values of ε improve the speed of the
nearest neighbor search at the cost of accuracy. For more details, see (Arya and
Mount, 1993; Arya et al., 1998). We note that one could also use b-matching (Je-
bara et al., 2009) to obtain a symmetrized k-NN graph but it is quadratic in the
graph size so does not scale well to problem at hand.

1.5 Large-Scale Parallel Processing

In the next few sections, we discuss the scaling up of graph-based message passing
algorithms for SSL learning on both a shared-memory computer (the next section),
and a distributed memory computer (Section 1.5.3). .

1.5.1 Inference on a Shared-Memory Symmetric Multi-Processor

In an SMP, all processing units share the same address space and are often cache co-
herent. Such computing environments are important, as individual modern micro-
processors are becoming ever more like SMPs, with multi-core (and soon “many
core”) units being available in a single package.

Recall from Table 1.1 that in the case of most graph-based algorithms the update
at each node is a function of the current value of its neighbors. In the case of
Measure Propagation (MP), for example, we see that one set of measures is held
fixed while the other set is updated without any required communication amongst
set members, so there is no write contention. In the case of SQ-Loss-I, the same
holds if one considers p(n−1) as the set of measures that are held fixed while a new
separate p(n) may change. This immediately yields a T -threaded implementation
where the graph is evenly but otherwise arbitrarily T -partitioned and each thread
operates over only a size m/T = (l + u)/T subset of the graph nodes, the intent
being of course that each of the T threads runs in parallel.

We implemented such a multi-threaded application and ran timing tests on the
aforementioned graph with about 120 million nodes. We ran a timing test on a 16
core SMP with 128GB of RAM, each core operating at 1.6GHz. We varied the
number T of threads from 1 (single threaded) up to 16, in each case running three

http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
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iterations of MP (i.e., three each of p and q updates). Each experiment was repeated
10 times, and we measured the minimum CPU time over these 10 runs. CPU time
does not include the time taken to load data structures from disk. The speedup for T
threads is typically defined as the ratio of time taken for single thread to time taken
for T threads. The solid line in Figure 1.4 (a) represents the ideal case (a linear
speedup), i.e., when using T threads results in a speedup of T . The pointed line
shows the actual speedup of the above procedure, typically less than ideal due to
inter-process communication and poor shared L1 and/or L2 microprocessor cache
interaction. When T ≤ 4, the speedup is close to ideal, but for increasing T the
algorithm increasingly falls away from the ideal case.

1.5.2 Graph Reordering Algorithm for SMP

We assert that the sub-linear speedup is due to the poor cache cognizance of the
algorithm. At a given point in time, suppose thread t ∈ {1, . . . , T} is operating
on node it. The collective set of neighbors that are being used by these T threads
are {∪Tt=1Γ(it)} and this, along with nodes ∪Tt=1{it} (and all memory for the as-
sociated measures), constitute the current working set. The working set should be
made as small as possible to increase the chance it will fit in any shared machine
caches, but this becomes decreasingly likely as T increases since the working set
is monotonically increasing with T . Our goal, therefore, is for the nodes that are
being simultaneously operated on to have a large amount of neighbor overlap thus
minimizing the working set size.

Recall that Γ(v) is the set of v’s neighbors. Also, Γ(Γ(v)) is the set of v’s neigh-
bors’ neighbors or equivalently, the neighbors of v’s neighbors. For example, in
Figure 1.1-I, Γ(a) = {c, h, b} and Γ(Γ(a)) = V . Note that v ∈ Γ(Γ(v)) but this
will not affect any decisions made by our procedure. For notational simplicity, for
a given set S ⊆ V , we define Γ2(S) , Γ(Γ(S)).

Viewed as the optimization problem, our goal is to find a partition of V into a
set of clusters (V1, V2, . . . , Vm/T ) that minimizes maxj∈{1,...,m/T} | ∪v∈Vj Γ(v)|,
where |Vi| = T and the nodes in Vi are run in parallel. With such a partition, we
may also produce an order π = (π1, . . . , πm/T ) of the clusters so that the neighbors
of Vπi would have maximal overlap with the neighbors of Vπi+1 . We then schedule
the clusters according to this order, so that the nodes in Vπi run simultaneously, and
which would also act to prefetch many of the neighbors of the nodes in Vπi+1 .

The time to produce such a partition, of course, must not dominate the time to run
the algorithm itself. Therefore, we propose a simple linear-time (i.e., O(m)) node
ordering procedure (Algorithm 1) that can be run once before the parallelization
begins. The algorithm produces a node ordering σ = (σ1, σ2, . . . , σm) such that
successive nodes are likely to have a high amount of neighbor overlap with each
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Algorithm 1: Graph Node Ordering Algorithm Pseudocode, SMP Case
Input: A Graph G = (V,E)

Result: A node ordering, by when they are marked.
1 Select an arbitrary node v ;
2 while There are unselected nodes remaining do
3 Select an unselected v′ ∈ Γ2(v) that maximizes |Γ(v) ∩ Γ(v′)|. If the

intersection is empty, select an arbitrary unselected v′. ;
4 Mark v′ as selected.; // v′ is next node in the order
5 v ← v′. ;

other and, by transitivity, with nearby nodes in the ordering. It does this by, given
a current node v, choosing as the next node v′ in the order (from amongst v’s
neighbors’ neighbors) the one that has the largest number of shared neighbors.
We need not search all m nodes for this, since anything other than v’s neighbors’
neighbors has no overlap with the neighbors of v.

Assuming the nodes are ordered according to σ (something that in practice is
done only implicitly), the tth thread operates on nodes {t, t+m/T, t+2m/T, . . . }.
If the threads proceed synchronously at the graph node level (which we do not
enforce in our implementation) the set of nodes being processed by multiple pro-
cessors at time instant j are Vj = {1 + jm/T, 2 + jm/T, . . . , T + jm/T}. This
assignment is beneficial not only for maximizing the set of neighbors being simul-
taneously used, but also for successive chunks of T nodes since once a chunk of T
nodes have been processed, it is likely that many of the neighbors of the next chunk
of T nodes will already have been prefetched into the caches. With the graph rep-
resented as an adjacency list, and sets of neighbor indices sorted, our algorithm is
O(mk3) in time and linear in memory since the intersection between two sorted
lists may be computed in O(k) time. Here k is the number of neighbors of a given
vertex in the graph. This can be better than O(m logm) since k3 < logm for very
large m.

The utility of this heuristic is depicted in Figure 1.3. On the left, we see a parti-
tion that might at first look reasonable, since each cluster consists of neighboring
nodes (e.g., V1 consists of nodes {c, e}) but this clustering is poor since each pair
of nodes, in all clusters but one, shares only one neighbor (e.g., c and e in V1 have
only one neighbor in common, namely h). On the right, we see a much better clus-
tering, where each pair of nodes in all clusters shares two neighbors (e.g., e and
a in V1 share neighbors c and h). In fact, this clustering can result from running
Algorithm 1.

We ordered the SWB graph nodes, and ran timing tests using MP as explained
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Figure 1.3 I-Left: The graph from Figure 1.1 that has been partitioned into four
subsets of nodes (marked as regions V1, V2, V3, and V4), where each subset is
to be processed on a separate processor (on a four-processor parallel machine).
Within V1, V3, and V4, each node has only one common neighbor with the other
node, while in region V2, the two nodes (g and h) have two neighbors in common
(e and f ). In regions V1, V3, and V4, therefore, reading one node’s neighbors will
not prefetch as much useful information as in region V2, thereby slowing down
the entire parallel computation. II-Right: Here, every node in each region has a
neighbor overlap of two with the other node in its region. For example, in region
V1, nodes e and a both have as neighbors nodes {c, h}. Therefore, processing the
neighbors of one node in each region will prefetch more of what the other node
in a region needs. This region allocation is what Algorithm 1 can produce, when
starting at node a — the ordering is (a, e, f, b, c, g, d, h).

above. To be fair, the CPU time required for ordering the nodes by the heuristic is
included in every run along with the time for running MP. The results are shown in
Figure 1.4(a) (pointed line) where the results are much closer to ideal, and there are
no obvious diminishing returns like in the unordered case. Running times are given
in Figure 1.4(b). Moreover, the ordered case showed better performance even for
a single thread T = 1 (the CPU time is about 790 minutes for the ordered case,
vs. about 815 minutes for the unordered case, on 2 iterations of MP). The reason
for this difference is that the ordering heuristic exhibits better cache behavior even
on a single node, since nearby nodes in the order tend to share neighbors (see
Figure 1.5).

Finally, we note that since we made use of speech data to generate the graph, it
is already naturally well-ordered by time. This is because human speech is a slowly
changing signal, so the nodes corresponding to consecutive frames are similar, and
can be expected to have similar neighbors. This is confirmed by Figure 1.5, which
shows the average neighbor overlap as a function of distance, for a random order,
the speech order, and for an ordering produced by our heuristic. Therefore, we ex-



1.5 Large-Scale Parallel Processing 19

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
−

U
p

 

 

Linear Speed−Up
Re−Ordered
Speech Temporal Ordering
Random Ordering

0 2 4 6 8 10 12 14 16
3.4

3.6

3.8

4

4.2

4.4

4.6

Number of Processors

lo
g(

C
P

U
 T

im
e)

 

 

Random Ordering
Speech Temporal Ordering
Re−Ordered

Figure 1.4 (a) speedup vs. number of threads for the SWB graph. The process
was run on a 128GB, 16 core machine with each core at 1.6GHz. (b) The actual
CPU times in seconds on a log scale vs. number of threads for with and without
ordering cases. “Random” corresponds to the case where we choose a random
unselected node rather than the one with maximum overlap (see Algorithm 1).

pect our “baseline” speech graph to be better than an arbitrary order, one that might
be encountered in a different application domain. In order to measure performance
for such arbitrarily ordered graphs, we took the original graph and reordered uni-
formly at random (a uniform node shuffle). As seen in Figure 1.5, the random order
had the least degree of neighbor overlap at nearby distances. We ran timing experi-
ments on the resulting graph and the results are shown in Figure 1.4 as “Random”.
As can be seen, there is indeed a benefit from the speech order, and relative to this
random baseline, our node ordering heuristic improves machine efficiency quite
significantly.

We conclude this section by noting that: 1) reordering may be considered a pre-
processing (offline) step; 2) the SQ-Loss algorithm may also be implemented in
a multi-threaded manner and this is supported by our implementation; and 3) our
reordering algorithm is general and fast and can be used for any graph-based algo-
rithm where the iterative updates for a given node are a function of its neighbors
(i.e., the updates are harmonic w.r.t. the graph (Zhu et al., 2003)).

1.5.3 Inference in a Distributed Computing Environment

Our results in the previous section for the SMP show that it is possible to get good
efficiency on an SMP using only a simple node ordering heuristic. Unfortunately,
an SMP does not scale to tens of thousands (or even thousands) of processing units,
as is typical in large distributed computing environments. Distributed computers
do not have shared memory, and any communication between them is typically
done via a form of messaging library. Such environments, moreover, are likely
to be more realistic for the case when one wishes to utilize inexpensive massive
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Figure 1.5 Left; Average cardinality of the intersection between neighbors of
node i and node i + k where k was varied between 1 and 50 (all using natural
logarithm). “Speech Temporal Ordering” is the graph generated from the data,
“Re-ordered” is the above graph ordered using Algorithm 1, and “Random Order-
ing” is a random shuffle of the nodes. Right: With the nodes ordered according to
Algorithm 2, and with the clustering as specified in Section 1.5.3, this plot shows
the average cardinality of neighbor intersection for successive nodes, as a func-
tion of the cluster index (equivalent to processor number). Note that the overall
average in this figure is approximately equal to the distance-1 average on the left
figure (ln(3.5) ≈ 1.25). Note also that, due to the greedy nature of Algorithm 2,
the average intersection decreases as the heuristic proceeds.

parallelism. In this section, we see how it is possible to modify our SMP reordering
algorithm for the distributed computer case, while retaining its linear time.

On a distributed computer, things are quite different than on an SMP. On each
individual distributed computer node, there is still a benefit for successive nodes to
have a large amount of neighbor overlap. The reason is that if node i is adjacent to
a set of neighbors common with node i + 1, node i will essentially prefetch, into
microprocessor caches, data useful for node i+ 1. This is the reason for the single
thread speedup exhibited in Section 1.5.2.

Assume we have a T processor distributed computer. We then we want to parti-
tion the graph G = (V,E) into T clusters (V1 ∪V2 ∪ · · · ∪VT ), where the nodes in
Vi are to be run by processor t. Each of the nodes in Vi can thus be ordered locally
on each processor using Algorithm 1 to maximize within-processor neighbor over-
lap to take advantage of the node’s local caches. On the other hand, there should be
as little communication cross processing elements as possible, to reduce potential
waiting time for necessary data. This means that the neighbors of nodes assigned
to different processors |Γ(Vi) ∩ Γ(Vj)|, for i 6= j should be as small as possible,
reducing the chance that any processing element will need to wait for data.

One possible solution to this problem is to perform a minimum T -cut (or T -
partition) of the graph, which is a known NP-complete optimization problem (Vazi-
rani, 2001). This, if solved optimally, would produce a graph clustering that min-
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Algorithm 2: Graph Node Ordering Algorithm for a Distributed Computer
Input: A Graph G = (V,E) with m = |V | nodes. Parameter T indicating the

number of compute nodes. A positive integer threshold τ .
Result: A node ordering, by when they are marked.

1 Select an arbitrary node v ;
2 i← 0 ;
3 while There are unselected nodes remaining do
4 if min` |i− `m/T | < τ then // near a transition
5 Select uniformly at random any unselected node v′ ;
6 else // not near a transition
7 Select an unselected v′ ∈ Γ2(v) that maximizes |Γ(v) ∩ Γ(v′)|. If the

intersection is empty, select an arbitrary unselected v′. ;

8 Mark v′ as selected.; // v′ is next node in the order
9 v ← v′ ;

10 i← i+ 1 ;

11 foreach ` do // randomly scatter boundary nodes to
internal locations

12 Define segment ` boundary node indices as
B` = {i : 0 ≤ i− `m/T < τ or 0 ≤ (`+ 1)m/T − i < τ} ;

13 foreach i ∈ B` do
14 Insert node i uniformly at random between nodes `m/T + τ and

(`+ 1)m/T − τ ;

imizes the total number of edges that crosses between any two clusters. The good
news is that this can be constant-factor ((2 − 2/T )) approximated. The bad news,
however, is that even this approximation algorithm is too expensive for the large
graphs we wish to use (the approximation algorithm requires a Gomory-Hu tree (Vazi-
rani, 2001) which requires computing |V |−1 (s, t)-cuts). Perhaps even more prob-
lematic, we have another constraint which is that each cluster should have about
the same number of nodes to achieve a good load balance (and thereby, high com-
puter efficiency). The approximation algorithm for T -cut is quite outlier sensitive,
and some processors could easily end up with very little work to do. Therefore,
we desire a procedure for normalized T -partition, and it needs to run very fast.
Performing even normalized 2-partition is NP-complete (Shi and Malik, 2000),
however, so we must resort to a heuristic.

Fortunately, our SMP heuristic (Algorithm 1) can be modified to suit the dis-
tributed case, and the clues on how to do so lie within Figure 1.5. We see that in the
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Figure 1.6 Speedup vs. number of processors for the SWB graph.

re-ordered case, successive nodes have many neighbors in common. Due to transi-
tivity, nearby nodes also have neighbors in common. As we move away in distance,
the number of neighbors in common decreases. Moreover, the degree of neighbor
overlap is much higher than the speech ordering, and also much higher than the
random order which, as expected, has very little neighbor overlap. While such a
random order might seem to be pointless, we can exploit this property of random
orders to ensure that Vi and Vj , for i 6= j, has a small neighbor intersection.

Thus, a very simple heuristic is to do the following: Produce a hybrid node or-
dering heuristic that switches between: A) choosing the next node from the set of
neighbors’ neighbors, based on maximizing the neighbor overlap, and B) choosing
the next node uniformly at random. Under the assumption of uniform load balance
(i.e., every processor gets m/T nodes allocated to it, but see below where this as-
sumption no longer holds), the transitions in the order between processors are at
locations `m/T for ` = 0 . . . T . Let R = {`m/T : ` = 0 . . . T} be the set of
transitions. Let i refer to the current position in the ordering. When i is nowhere
near any of the transitions, nearby nodes should have a large degree of neighbor
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overlap, but as i approaches one of the transitions (i.e., i is on the “boundary” re-
gions), the amount of neighbor overlap should decrease. We can choose a threshold
τ such that if i is within τ nodes of a transition, it is a boundary node, and it should
be chosen at random. This is described in Algorithm 2, lines 3 through 10.

We implemented this heuristic on a 1000 node distributed computer. We did
not have available detailed information about this computer such as speed and/or
topology of the communications network. Therefore, the heuristics we describe
in this section are generic, rather than being specific to this (or any) distributed
computer. As a result, given more information about the machine, we believe it
would be possible to further improve machine efficiency over what our current
results for these heuristics show.

Figure 1.6 shows the results. The first thing to note is that a purely random or-
der (marked as “Random”) does poorly, as it did for an SMP in Figure 1.4. The
random order is what we might expect using an arbitrary order for a given ap-
plication. When we use the speech temporal order, the situation improves. Fur-
ther improvement can be acquired by running the SMP heuristic (Algorithm 1) on
the distributed computer, marked as “SMP Heuristic” in the figure. As mentioned
above, this heuristic makes no attempt to ensure that |Γ(Vi) ∩ Γ(Vj)| is small for
i 6= j. When we use a heuristic consisting of just lines three through ten in Al-
gorithm 2, we see a significant efficiency improvement over the SMP heuristic —
this is marked as “Dist. Heuristic” in the figure. The results correspond to a τ = 25

which was obtained empirically, but other values might be better still.
On the other hand, there is still a problem in that all communication on the ma-

chine is happening simultaneously. That is, when only lines three through ten are
executed, the message passing algorithm has two phases with very different com-
munications network behavior. Phase one is when all processors are operating on
non-boundary nodes (and there is very little network communication). Phase two
is when all processors are operating on boundary nodes, and the communications
network is being flooded with requests for data. To mitigate this problem, we can
randomly scatter the boundary nodes onto points internal to a segment, as done in
lines 11-14 of Algorithm 2. Performing this scatter results in improved efficiency,
as shown in Figure 1.6 “Dist. Heuristic with Scat”.

A further improvement can be obtained by taking advantage of the fact that once
the scatter has been performed, we still know exactly which nodes are likely to have
most or all off their neighbors on processor (i.e., those that have not been scattered),
and those that are likely to have most or all of their neighbors off processor (i.e.,
those that have been scattered). This information can be exploited by prefetching
the cross-processor neighbors of the scattered nodes early. This is controlled by
parameter κ, which states that scattered node i’s off-processor neighbors should be
asynchronously prefetched at the time that we are processing node i−κ. With κ =
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250, this results in further improvements as shown in Figure 1.6 “Dist. Heuristic
with Scat + Pref.”

Both Algorithm 1 and Algorithm 2 are “greedy” in the sense that they select and
then commit to the next node that looks best at the time, without regard to how this
decision might adversely affect decisions made later. There are some cases where
greedy algorithms are indeed optimal (White, 1986) but we do not expect this to
be one of them. Indeed, Figure 1.5-right shows that as the distributed heuristic pro-
ceeds, the average cardinality of neighbor intersection (over adjacent nodes in the
order, and within each cluster) decreases from about 5.2 at the beginning of the
heuristic to about 2.3 at the end. Therefore, processor 0 has a set of nodes with sig-
nificantly more neighbor overlap on average than processor 1000. While this was
not a significant issue on the SMP (with only 16 processors), on a large distributed
computer this decreases efficiency significantly. We note that any imbalance be-
tween processors is only due, in this case, to the fact that earlier processors will
have better locality properties in their local caches. One solution to this problem is
for multiple orderings to be deduced simultaneously (and in parallel) along with a
collision avoidance scheme and a restart mechanism on reaching a dead end. On
the other hand, a simpler solution is to simply give earlier processors more nodes
than later processors, thus recovering balance. We have done this and show the
results in Figure 1.6 “Dist. Heuristic with Scat + Bal.” To achieve balance, we de-
rived a simple re-balance mechanism based on a fraction of the slope of the plot in
Figure 1.5-right. This fraction corresponds to how important local cache misses on
each processor are relative to their computational workloads and network commu-
nication costs. As can be seen, further significant improvements are obtained.

Lastly, prefetching and load balancing can be utilized simultaneously to achieve
further gains as shown in Figure 1.6 “Dist. Heuristic with Scat + Bal + Pref.” As
mentioned above, these heuristics are fairly generic and could be easily exploited
on any distributed computer. With more knowledge about the latency and band-
width of the underlying communications network, we expect that we could improve
machine efficiency even further.

1.6 Discussion

In this chapter we have proposed graph node reordering heuristics that make it
possible to scale graph-based SSL algorithms to large datasets. We have shown
that it is possible to recover a near linear speedup relative to standard order on an
SMP and have achieved an 85% efficiency on a 1000-node distributed computer. In
(Subramanya and Bilmes, 2009b,a, 2011), we use the above SMP implementation
of measure propagation on STP data, and show that it significantly outperforms
the only other SSL algorithms that can scale to such large data sets (label propaga-
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tion). More importantly, we found that the performance on the STP data improves
with the addition of increasing amounts of unlabeled data, and MP seems to get
a better benefit with this additional unlabeled data, although even SQ-Loss-I has
not reached the point where unlabeled data starts becoming harmful (Nadler et al.,
2010). This portends well for large scale semi-supervised learning approaches.

We also wish to point out that since the graph-based SSL algorithms listed in
Table 1.1 are all instances of the more general procedure of message passing on
graphs (which includes random walks (Woess, 2000), (loopy) belief propagation
(Pearl, 1988), affinity propagation (Frey and Dueck, 2007), and others (Baluja
et al., 2008)). All of these algorithms could stand to benefit from the simple node
ordering algorithms presented in this work.

This work was supported by ONR MURI grant N000140510388, by NSF grant
IIS-0093430, by the Companions project (IST programme under EC grant IST-
FP6-034434), and by a Microsoft Research Fellowship.
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