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Abstract
We describe a new method for pruning in dynamic mod-

els based on running an adaptive filtering algorithm online dur-
ing decoding to predict aspects of the scores in the near future.
These predictions are used to make well-informed pruning de-
cisions during model expansion. We apply this idea to the case
of dynamic graphical models and test it on a speech recognition
database derived from Switchboard. Results show that signifi-
cant (factor of 2) speedups can be obtained without any increase
in word error rate.
Index Terms: graphical models, decoding, speech recognition,
online learning

1. Introduction
The process of decoding, also known as the Viterbi algorithm, in
automatic speech recognition (ASR) is critical to the efficiency
and quality of any ASR system. There have been many methods
proposed for ASR decoding in the past all of which are based,
in one way or another, on the concept of dynamic programming
[1]. These methods moreover end up being special cases of
the junction tree algorithm in graphical models [2]. In fact, [3]
was one of the first to show that belief propagation in graphical
models was the same process as the standard forward-backward
algorithm for hidden Markov models (HMM).

Most ASR systems are based on, and in fact most ASR
decoding architectures have been developed for, the hidden
Markov model. In that realm, a variety of techniques have been
developed that can produce decoders on real-world systems that
are fast enough to be quite practical [4, 5]. Loosely speaking,
there have been two decoding choices, which correspond to two
different ways of structuring the dynamic programming algo-
rithm when it extends over a temporal signal such as speech:
stack (or time-asynchronous) decoding [6], and “Viterbi” (or
time-synchronous) decoding [7].

An alternative model for speech recognition extends the
HMM in such a way that the state space is factored. This is the
case for dynamic graphical models [8] which includes dynamic
Bayesian networks (DBNs) [9], and factored-state conditional
random fields [10]. While factored state representations help
in that they reduce the pressure on the amount of training data
needed to produce robustly estimated parameters (the factor-
ization properties act as a form of regularizer), due to the “en-
tanglement problem” (which is a consequence of Rose’s theo-
rem [11]), the inherent state space is often not (significantly) re-
duced, which is something of a disappointment since the “struc-
turing” of the state space via factorization is exactly the type
of model change that we would hope would reduce computa-
tional demands. In the dynamic Bayesian network literature,
there have been a number of ways to help reduce the effect
of entanglement [12, 13, 14]. An alternative approximate in-

ference procedure is to extend the beam-search methods used
in speech recognition to the case of dynamic graphical mod-
els. Such methods are critical, as it is often the case that in the
domain of speech recognition where the state spaces are very
large, the approximation procedures commonly used for graph-
ical models often do not apply in the dynamic graphical model
case: for example, variational inference methods, where fac-
torization assumptions are made on the model work best when
there are variables that are only loosely dependent on each other.
Often, however, such loose dependence does not exist.

In this paper, we empirically investigate a few of the meth-
ods that in the ASR literature have been of significant help to the
process of decoding large vocabulary speech recognition sys-
tems using a practical amount of computing demands. In par-
ticular, beam-pruning approaches [15, 7, 16] that are common
in ASR are extended to the case of dynamic graphical models
and are evaluated on a standard graphical-model based speech
recognition system. In addition, a new beam pruning approach
is introduced that we call “predictive pruning” — this method
uses a predictive filter that is learnt online as the inference pro-
cedure progresses in time to predict aspects of the scores in the
future. These predicted scores are then used to make better in-
formed pruning decisions than what would be possible without
the use of these scores. Results show that significant speedups
can be achieved via the use of our new predictive pruning ap-
proach over standard approaches.

2. Dynamic Graphical Models
A dynamic graphical model (DGM) is a template-based graph-
ical model, where a template can be expanded in time based on
certain rules of expansion. That is, a dynamic graphical model
consists of a graph G = (V,E) template, a set of rules, and
an expansion integer parameter T ≥ 0. Like any graphical
model, there is a family associated with a DGM. Any probabil-
ity distribution p in the member of the family must obey the all
properties, and these properties are specified by expanding G
by T using rules. Unlike a static graphical model, the family
changes as a function of T . Often, the template G is partitioned
into three sections, an (optional) prologue Gp = (Vp, Ep), a
chunk Gc = (Vc, Ec) (which is to be repeated in time), and an
(optimal) epilogue Ge = (Ve, Ee) [17]. Given a value T , an
“unrolling” of the template is an instantiation where Gp appears
once (on the left), Gc appears T + 1 times arranged in succes-
sion, and Ge appears once on the right.

Unlike static models, DGMs are typically much longer than
they are higher since T can be arbitrarily large. Moreover, in
such a model, there will always be some form of temporal inde-
pendence property (the “Markov property”), where some notion
of the present renders some notion of the future, and of the past,
independent. Enabled by the Markov property, parameter shar-



ing allows a model of any length to be described using only a
finite length description.
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Figure 1: A dynamic junction tree of cliques.

Any of the aforementioned three sections contains a set of
random variables and a sub-graphical model over those random
variables. The associated graphical model determines how the
state space is structured: if the graph is a clique, then there is no
inherent structure and the model might as well be an HMM. On
the other hand, if the graph is very simple (like a chain or a tree
of some sort) there are quite a large number of ways to produce
efficient inference. Much more common is something between
these two streams, and in such case, each of Gp, Gc, and Ge

are triangulated [14] to form a junction tree [2] of cliques upon
which a message passing algorithm [2] can be use used to per-
form probabilistic inference. In the dynamic case, however, the
junction tree has a shape that looks something akin to Figure 1.

3. Search Methods in Speech Recognition
Search methods in ASR have a long history [7, 18, 19]. The
methods can for the most part be broken down into one of two
approaches: synchronous vs. asynchronous.

Figure 2: Left: asynchronous search. Right: synchronous
search. Green depicts partially expanded hypotheses, red unex-
panded portions of the space, and yellow continuation heuris-
tics.

In synchronous (also called Viterbi) search, hypotheses are
expanded in temporal lock-step, where partial hypotheses that
end at time t are expanded one at a time so that new partial
hypotheses end at time t + 1. This then continues for all t so
that at any given time there are never extant partial hypothe-
ses with end-points at more than two successive time points.
Asynchronous search, on the other hand, is such that the end-
point of partial hypotheses can have a wide variety. That is,
each partial hypothesis ht has its own end-point consisting of a
time-state pair, its own current score st, and it may be expanded
without any temporal constraint. Asynchronous search is also
called stack decoding, the reason being that one often keeps a
priority-queue (implemented as a stack) of hypotheses and the
hypotheses expansion occurs in a best-first order: the highest
scoring hypothesis is expanded first. It is also useful in stack-
decoding to have a form of continuation-heuristic (a value that
estimates the score of continuing from the current point to the
end of the utterance) so that the best-first decisions are based
on the combined current hypothesis score and the continuation
heuristic. If the continuation heuristic is optimistic (i.e., it is

an upper bound of the true score if the scores are probabilities),
then the continuation heuristic is admissible and we have an
A*-search procedure [6, 20].

Both synchronous and asynchronous search procedures
have been used for speech recognition in the past, and the cur-
rent prevailing wisdom is that synchronous procedures have for
the most part bested their asynchronous brethren in popularity
perhaps due to their overall efficiency, simplicity, and word-
error performance [19]. One of the advantages of synchronous
search is that beam-pruning is quite simple. Assuming that Mt

is the maximum score of a set of states at time t, two simple
widely used beam pruning strategies [21, 16] are as follows:
with beam pruning, we remove all partial hypotheses that are
some fraction belowMt, and withK-state pruning, (sometimes
called histogram pruning ) only the top K states are allowed to
proceed. K-state pruning is particularly attractive since it can
be efficiently implemented using either a histogram [21], or by
using a fast quick-sort like algorithm to select unsorted the top
K out of N > K entries in an array.

All need not lie in the extremes, however, as there can con-
ceivably be hybrid approaches that straddle the fence between
asynchronous and synchronous approaches. For example, a
constraint can be placed on the maximum temporal distance
between the end-point of any two partial hypotheses. Another
approach would be to expand hypotheses based on some un-
derlying (but constraining) data structure. In fact, this is some-
thing that a junction tree could easily do. Normally in a junc-
tion tree, the form of message passing is based either on the
Hugin or the Shenoy-Schafer architectures [22]. Each of these
approaches, however, assume that the cost of a single message
is itself tractable, which is not the case in speech recognition
due to the very large number of possible random variable values
(e.g., consider the typical vocabulary size of a large vocabulary
system). Therefore, even individual exact messages in a junc-
tion tree might be computationally infeasible and this is where
the search methods from speech recognition apply.

We consider the case where a search procedure is used to
perform the junction tree message by expanding the clique. The
expansion is constrained to apply only within the clique so that
the decoding is “synchronous” but only at the clique level (we
are not allowed to expand a clique Ct+1 until clique Ct has
been expanded). Within a clique, however, the expansion can
occur in any order, much like an asynchronous decoding pro-
cedure. However, since cliques can consist of any number of
random variables, and could even span over short stretches of
more than two time steps [14], then the cliques in the junc-
tion tree effectively limit the extent of the hypothesis expansion.
By forming various triangulations (and corresponding junction
trees) we can experiment with a wide variety of different search
expansion constraints.

We note that the two aforementioned pruning options can
easily be extended to the junction tree case. Once a clique is
expanded, we can compute the top scoring set of random vari-
ables in the clique, say it has scoreMt. Then, any clique entries
with score outside of the beam (using either beam pruning or
K-state pruning) can be removed, and then the messages can
proceed from there.

Since the expansion can be asynchronous within a clique,
moreover, it can be useful to establish a continuation heuristic
so that only the most promising hypotheses are expanded (sim-
ilar to a best-first search), but in this case, since we know that
the expansion is limited to go no farther than the temporally lat-
est variable within a clique, the continuation heuristic need not
extend beyond a clique. On the other hand, since we are not



expanding the model out to the last frame T (as is done in stan-
dard asynchronous decoding) to do this well, we would need to
knowMt before we compute it. This chicken-and-egg problem,
however, has a solution that suggests new approach to pruning
based on online-prediction, as described in the next section.

4. Predictive Pruning
Our goal is to expand the hypotheses in the clique asyn-
chronously. We also wish to prune while we are performing
the clique expansion. For a given clique at time t, let Mt be
the maximum score in the clique. The essential algorithm is to
expand the hypothesis by considering the variables in a clique,
and prune at the current point only if

st + ct < M̃t − b (1)

where st is the score of the current hypothesis, ct is a contin-
uation heuristic, M̃t is an estimate of the maximum score in
the current clique, and b is the beam width. In practice, for
ct, we use the maximum value possible continuation which
is an admissible heuristic if M̃t is exact. In normal search
methods, it would not typically be the case that it is possible
to easily estimate Mt. With dynamic models, however, since
similar repeated work has been performed for each past clique
{Cτ : τ < t}, we can reasonably compute M̃t. Assuming that
we have stored a history M1:t−1 of these maximum values, we
may run a learning algorithm to produce a parametric estimate
M̃t = fθ(M1:t−1) of Mt. In practice we would use only a
fixed-length history, e.g., fθ(Mt−`:t−1). Once we have the real
Mt we can correct θ given the error et =Mt − M̃t. Important
in any estimate is that since this is running during decoding,
it must be both very fast to compute and accurate. There is
likely a tradeoff in that accuracy could be improved by spend-
ing more time in estimation. This procedure is the essence of
online adaptive filtering [23], and it includes methods such as
the well-known LMS and RLS algorithms, both linear models
which are quite fast to compute and update but are often quite
accurate. We therefore use these algorithms for doing our clique
expansion pruning in our experimental section below.

5. Experiments
We evaluate our approach on the 500 word task of the SVitch-
board corpus [24]. SVitchboard is a subset of Switchboard-I
that has been chosen to give a small and closed vocabulary.
Standard procedures were used to train state-clustered within-
word triphone models. A DBN with trigram language model
[8] was used for decoding. As is well known, going from a bi-
gram to a trigram will increase the state space of the model by
a factor of the vocabularity size. The DBN for trigram decod-
ing we used here is no exception. In this model, an additional
word variable is added to explicitly keep track of the identity
of the word that was most recently different. This additional
word variable increases the complexity significantly. For this
particular task, the state space of clique Ct is about 1011.

5.1. Prediction performance of adaptive filtering

The performance of predictive pruning greatly depends on how
accurate the estimation of the maximum score is. In this subsec-
tion, we show the experiment results on evaluating the predic-
tion performance of LMS filters. The relative prediction error
rate Rt is used:

Rt = 100
|M̃t −Mt|
|Mt|

.

Figure 3 illustrates the true maximum scores along with the
estimated maximum scores (using a 2nd order LMS filter with
a learning rate of 1) on a particular Switchboard-I utterance.
Notice that the true maximum score gradually and regularly de-
creases as time involves, making the prediction relatively easy.
Indeed, the prediction is quite accurate as we can see from the
figure.
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Figure 3: Comparison between the estimated maximum scores
and the true maximum scores.

We further evaluated the average prediction error rates (with
prediction beam width 100) of different filters on the whole
SVitchboard development set, along with the word error rates
(WERs). In addition to comparing LMS filters with differ-
ent orders and learning rates, we also compared LMS filters
to a non-adaptive filter, i.e. a fixed 2nd-order filter defined as:
M̃t = 2Mt−1 −Mt−2. The results are reported in Table 1.

Filter Order Learning rate Relative err. (%) WER(%)
fixed 2 - 0.187929 46.7
LMS 2 0.01 0.206927 46.7
LMS 2 0.1 0.214376 46.8
LMS 2 1 0.289184 47.4
LMS 3 0.01 0.194498 46.7
LMS 3 0.1 0.201394 46.7
LMS 3 1 0.275253 47.4
LMS 5 0.01 0.173869 46.8
LMS 5 0.1 0.182693 46.7
LMS 5 1 0.252643 47.3
LMS 8 0.01 0.151899 46.8
LMS 8 0.1 0.161720 46.7
LMS 8 1 0.229042 47.3

Table 1: Prediction performance of adaptive filtering.

In general, with higher order, LMS filter performs better.
Also, smaller learning rate seems to be preferred. In all cases,
adaptive filters estimate the maximum scores near optimally –
the average relative error rate is always within 0.3% across dif-
ferent parameter settings. Another observation is that, given
small relative prediction error rates, all filters perform similarly
in terms of WERs.

5.2. Comparison of pruning methods

A good pruning algorithm should maintain a reasonable decod-
ing accuracy while being faster, using less memory, or both.
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Figure 4: Learning curves of various pruning options. LMS
filter 1 is a 2nd order LMS filter with learning rate 0.01. LMS
filter 2 is a 3rd order LMS filter with learning rate 0.01. The
RLS filter is a 5th order filter.

Therefore, we measured both memory usage and computation
time of each pruning method on the SVitchboard development
set. We use the accumulated clique state space of all the time
frames of all utterances in the development set as an indication
of memory usage. As for the speed measure, we performed all
experiments three times independently on machines with Intel
Xeon 2.33GHz CPUs, and the minimum CPU time of the three
runs was used as the CPU time spent by that experiment.

We compared the memory and time usage performances
of various pruning methods including beam pruning, K-state
pruning, percentage pruning, probability mass pruning (i.e.
minimum divergence beam pruning [25]), and our proposed
predictive pruning. Beam pruning and K-state pruning have
been described in Section 3. Percentage pruning is a pruning
method that retains top n% of clique entries with highest scores,
while probability mass pruning retains clique entries that con-
sist of the n% of the probability mass. Notice that all these
pruning methods are performed after all the hypotheses of the
clique has been expanded, while predictive pruning happens
during the clique expansion process.

Figure 4 shows the CPU time v.s. WER plot and state space
usage v.s. WER plot for various pruning methods respectively.
In general, both beam pruning and the K-state pruning perform
reasonable well for the trigram decoding DBN. As mentioned

before, doing exact inference on this DBN is extremely expen-
sive. At least 100G memory is required in order to get through
all the utterances in our development set without any pruning.
By doing beam pruning or K-state pruning, decoding is much
faster, and at most only 2G of memory is used without hurting
decoding performance (i.e., within 1% absolute difference of
the WER of doing exact inference). Compared to beam prun-
ing, K-state pruning makes the memory usage behavior more
predictable and thus more controllable as one knows exactly an
upper-bound on how many states the decoding will retain.

As Gaussians were used in the model, the probability mass
over the states can get quite concentrated on a small number
of states. The consequence of such high concentration is that
probability mass pruning either prunes off most of the states or
does not prune at all. For instance, we observed that by keep-
ing as much as (1− 10−10) of the probability mass, probability
mass pruning results in a WER over 70% since after each prun-
ing step, fewer than 10 hypotheses survived. To mitigate this
problem, we exponentiated the scores (only for the purposes of
pruning), but while this retained more states, the non-linear dis-
tortions to the scores resulted in suboptimal performance.

Compared to beam andK-state pruning, predictive pruning
is significantly faster (upper plot in Figure 4) while using nearly
identical memory (lower plot in Figure 4). As mentioned above,
since predictions of the maximum scores are quite accurate for
most of the filter setups, and since the additional computation
due to the adaptive filter learning is negligible, predictive prun-
ing with a 3rd order LMS filter performs similarly to a 5th order
RLS filter, as shown in Figure 4.
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