Abstract

Most automatic speech recognition (ASR) systems express probability densities over sequences of acoustic feature
vectors using Gaussian or Gaussian-mixture hidden Markov models. In this chapter, we explore how graphical models
can help describe a variety of tied (i.e., parameter shared) and regularized Gaussian mixture systems. Unlike many
previous such tied systems, however, here we allow sub-portions of the Gaussians to be tied in arbitrary ways. The
space of such models includes regularized, tied, and adaptive versions of mixture conditional Gaussian models and
also a regularized version of maximum-likelihood linear regression (MLLR). We derive expectation-maximization
(EM) update equations and explore consequences to the training algorithm under relevant variants of the equations.
In particular, we find that for certain combinations of regularization and/or tying, it is no longer the case that we may
achieve a closed-form analytic solution to the EM update equations. We describe, however, a generalized EM (GEM)
procedure that will still increase the likelihood and has the same fixed-points as the standard EM algorithm.
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1 Introduction

In most speech recognition systems, Gaussian and Gaussian-mixture hidden Markov models (HMMs) are used to
represent density functions over sequences of acoustic observation vectors. The acoustic observations most often used
are Mel-frequency cepstral coefficients (MFCCs) [35] or variants thereof — MFCCs, for example, are features that
are particularly well suited to Gaussian models and work quite well in general. Moreover, when training such models,
the expectation-maximization (EM) update equations are well understood [15, 49, 6].

As the need for more accurate speech recognition systems has grown, ASR systems have become more complex.
Correspondingly, they possess more underlying system parameters, most often in the form of more HMM states and/or
more Gaussian components within each Gaussian mixture. The dimensionality of each Gaussian component may also
grow. If the amount of training data does not increase correspondingly, then a parameter optimization procedure
(such as EM) that operates without parameter constraints will produce a poorly trained system. The problem can be
explained using a bias-variance argument [31]: the parameter variance increases as the number of parameters grows
without an increase in training data. One must thus resort either to hard constrained optimization, to regularization, or
to both.

In speech recognition, constrained optimization most often takes the form of parameter sharing, where a priori
fixed decisions are made regarding which Gaussian components should share its parameters with some other Gaussian
component. Often these decisions can be made based on phonetic or other high-level knowledge. For example, in a
tri-phone system, the center phone might share many of the same Gaussians if the phones are similar, regardless of
the context, and often the sharing is decided in a combined knowledge- and data-driven fashion [61]. Other forms of
constrained optimization are possible, including partial Gaussian parameter sharing, where a sub-portion of different
Gaussian components are shared [23], or sparse Gaussians [8], where Gaussian parameters are constrained to contain
a certain set of zeros.

We note that parameter sharing, however, may come at a cost since learning algorithms often assume parameter
independence [32, 33, 34, 19], which intuitively means that adjusting one part of a model (either structurally or
parameter-wise) will not influence another part. In this case, penalized log likelihoods will decompose into separate
terms which may be optimized separately. With parameter sharing, this need not be the case. Indeed, both dynamic
Bayesian networks [14, 42] and probabilistic relational models [20] can be thought of as network templates and rules,
where the rules explain how a template may be expanded into a larger network, and how this larger network should
share its parameters among the resulting expanded factors.

Another common procedure to avoid over-training a complex model given a fixed amount of data is regularization,
which is generally applicable to regression, classification, and statistical model selection. Regularization is an exam-
ple of Occams razor, which roughly states that out of all possible models that can accurately explain an observable
phenomenon (i.e., in our case, the data), we should prefer the simplest one possible. There are a variety of ways of
measuring simplicity, including Kolmogorov complexity, the VC-dimension, entropy, minimum description length,
number of total parameters, Bayesian information criterion, or a general Bayesian prior. From a pattern recognition
perspective, we desire a model that achieves a low empirical error on training data while being as simple as possible.
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The trade-off between these two goals is determined using a “trade-off coefficient” which determines the regulariza-
tion path [30] or the “accuracy-regularization frontier.” This concept is the key behind support-vector and Kernel
methods [54], where the function to minimize is a sum of a (hinge) loss function and a regularizer (which is typically
the /5-norm due to its mathematical tractability). Regularization is also commonly used for training neural networks
(weight decay [9]), regression (i.e., ridge-regression [31]), and splines [55].

Parameter sharing can also be seen as a form of regularization [31], as the goal is to optimize the parameters
of a model that has been constrained to be “simple.” In the parameter sharing case, however, simplicity corresponds
roughly to the number of free parameters that are available to explain the data, but these free parameters may be pieced
together in arbitrarily intricate ways. In other words, more regularization corresponds essentially to more sharing, or to
reducing the number of free parameters, but collections of these parameters may combine in a large variety of ways to
produce the portion of a model that governs a specific phenomenon needing to be represented (e.g., an individual phone
in a speech utterance). There has not, however, been much discussion in the speech recognition literature regarding
general forms of regularization as it may be applied to Gaussian mixture modeling other than what has appeared in
the Bayesian adaptation area (see, for example [26, 11]). Recently, the notion of regularization has been applied to
produce new forms of speaker adaptation [59, 58].

In this chapter, we explore how Gaussians, Gaussian mixtures, Gaussian mixture HMMs, and auto-regressive
Gaussian mixture HMMs (what we end up calling a “generic Gaussian mixture”) can benefit from the simultaneous
use of fine-grained sub-Gaussian component parameter tying and also parameter regularization. We utilize aspects of
graphical models only to assist in our exposition. Graphical models are a visual mathematical abstraction that are used
to describe certain properties of families of probability distributions [39, 36, 47]. Different types of graphical model
(e.g., directed or undirected) can be used to represent factorization properties of such distributions; factorization is the
key that allows the distributive law to be used so that algorithms can be developed that are both mathematically sound
and algorithmically efficient. Alternatively, many have also ascribed certain high-level meanings (such as causality)
to various types of graphs [48]. There have in the past been descriptions of how graphical models can be used to
describe certain aspects of speech recognition systems [5]. In this chapter, we use graphical models only to assist us
in describing how Gaussian mixture HMMs can be decomposed into partially tied components.

Our main contribution is to derive general forms of EM learning equations in these models. We consider such
models “acoustic” since in the field of automatic speech recognition, the Gaussian is where the rubber meets the
road — specifically, we consider here only the portion of the statistical model that makes a connection between the
acoustic speech signal (or better, the acoustic signal after having undergone some non-probabilistic processing, such
as MFCC feature extraction [35]) and the inherent discrete processing that ultimately must correspond to word string
(or other high- or meta-level) hypotheses. These models include, as described above, Gaussians and their various
flavors, including sparse Gaussians, auto-regressive Gaussians and what are known as “trajectory models”, where a
Gaussian model regresses (or conditions) on other elements in the same or other feature streams. We treat in some
detail the various forms of sub-Gaussian parameter sharing (using a tri-part decomposition of a Gaussian’s parameters
based on Cholesky factorization) that can arise under these scenarios. We also describe the training algorithms using
a regularized EM framework. In particular, we find that for certain combinations of regularization and tying, we no
longer arrive at a closed-form solution to the EM update equations. We describe, however, a generalized EM (GEM)
procedure that will still increase the likelihood and has the same fixed-points as the EM algorithm.

This chapter consists of the following sections: Section 2 gives a brief background on maximum likelihood train-
ing, Gaussians, and Gaussian mixtures. Section 3 derives EM update equations for training regularized Gaussians,
using a three-way decomposition of the parameters of each Gaussian component. Next, Section 4 derives EM update
equations for arbitrary patterns of tying, and these equations immediately lead to adaptation algorithms for mixture
conditional Gaussians, and also a regularized maximum-likelihood linear regression [40] procedure. Section 5 de-
scribes various methods for training these parameters, and explain how one method is a generalized EM, and lastly
Section 6 concludes. Of particular relevance to this chapter (both conceptually and in terms of useful notation) are
references [6, 5, 4].

2 Background

We begin with notation. Random variables will be depicted using capital letters (e.g., X, Y and ()), and lower case
variables will be used to indicate their possible values (x, y, g). Given a set of M variables, the index set 1... M
will be depicted using the matlab-like notation 1 : M. Given a subset of variables A = {a1,as,..., a4}, Where
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a; € 1: M, then X4 = {Xa,, Xay, - -+ s Xajy -

Many of the models we describe correspond to temporal sequences of data. We have a size-N sample of training
data D" = {z() ¢@W}N | where 2(") = (12)T is a length T; sequence of observation vectors. Each observation vector
xgi) = {:cgq, xgg, cee 3:%[} will be of length M, and may correspond to a processed acoustic frame of speech (e.g.,
(@)

it could be a sequence of MFCCs and their deltas). The m'" scalar element is denoted z;’,,

the m!" element of vector z as Z.m. Thus, we have that x = x_1.57. Also, qil)T is a length T; sequence of integer
labels or states, so that qgl) is the t*" integer of the i'" training sequence. When unambiguous, we will often use {x, ¢}
as a particular training pair. Each of the training pairs are assumed to be drawn from the same unknown underlying
distribution, so that (z(¥), ¢(V) ~ p(z,q) Vi, where p(z, q) factors according to the rules that define an HMM. We
will also discuss static (non-temporal) data. In this case, we will treat {z(?) ¢} as a training pair, where =(*) is a
fixed length vector. In this case, p(z, ¢) will be a fixed length distribution. We will express conditional independence
relations between random variables using the standard notation X 11 Y'|Z [13] which is read “X is independent of Y’
given Z.”

Most speech recognition systems utilize hidden Markov models (HMMs) with mixture density functions for their
observation distributions. Specifically, an HMM is a probability distribution over 27" variables — there are T state
variables Q1.7 that are often hidden, and 7" other variables that are almost always observed X;.7. The joint distribution
over these 27" variables factorizes as follows:

and in general we denote

p(zrr, qur) = Hp(xt|Qt)P(Qt|Qt71)~

Here, p(q:|q:—1) gives the probability of moving from state ;1 at time ¢ — 1 to state g; at time ¢. In this work, we will
be discussing the observation distribution, p(x¢|q;) as that is where the acoustic information is typically produced as
input into the HMM at time ¢. For example, with z; observed, it is often the case that z; consists of an M/ -dimensional
MFCC feature vector for time ¢, although many other types feature vectors can be used as well.

In this chapter, z; will be an continuous valued M -dimensional vector with density p(z|q;). This density will be
a mixture model, where components of the mixture consist of Gaussian densities of some form. For example:

p($t|qt) = Z Qg N(fEt, Hegy s E@qt)a
4

where N(z; p, X)) indicates that = has an M -dimensional Gaussian density, and where ay,, is the mixture component
weight. An M -dimensional Gaussian density has the form

p(@) = N(w; p, B) = 275|712 3 lomm 5 e,

where p is an M-dimensional mean vector, and ¥ is an M x M covariance matrix. We will use K = X! to refer to
the inverse covariance (or the concentration) matrix of the density.

It is possible to view a Gaussian density as either a Bayesian network [47] or as a Markov random field — the
property of Gaussians being represented by various forms of graphical model were described in [5], and are very
briefly summarized here. First, zeros in the covariance matrix correspond to marginal independence assumptions.
For example, given the constraint ¥;; = 0 for a particular 4, j of the concentration matrix, then in the marginal
we have p(z;,z;) = p(z;)p(z;) or that X, 1l X,;. This property of Gaussians is quite well known. Second, zeros
in the concentration matrix correspond to conditional independence assumptions. In particular, if K;; = 0 then
Xi L X;| X ¢1:013\{i,53- In other words, zeros in the concentration matrix correspond to the pairwise Markov property
of undirected graphical models [39]. Since the Gaussian is always positive, the Hammersley-Clifford theorem [39]
applies and so also do all the standard Markov properties on undirected graphical models, and we can view a Gaussian
as an undirected graph on a set of nodes where there are edges between two nodes ¢ and j if and only if /;; # 0.

A Gaussian may also be described by a Bayesian network. Assuming a particular ordering of the elements in the
variable X, if we Cholesky factorize [27, 29] the concentration matrix K = U’DU where U is an upper triangular
matrix with unity on the diagonal, and D is a diagonal matrix, then form U = (I — B), we see that B is an upper
triangular matrix with zeros on the diagonal, and the upper off-diagonal elements correspond to the edges in a Bayesian
network that describes the Gaussian. For example, if B;; = 0 with j > ¢, then in the Bayesian network form, there
is no edge from node j to node i. With this form of Gaussian (one that we will use extensively in this chapter), the
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Gaussian distribution becomes [5]:

p(z) = (27r)7M/2 |D|1/267%(aszzfﬂ)TD($wa7ﬁ)'

We may be interested for example in training a Gaussian model where K is constrained to have a certain pattern
of zeros. In fact, Sparse Gaussians [8] are produced by learning a Gaussian distribution that factors with respect
to a particular graph. The ubiquitously utilized and easy to train diagonal covariance matrix, for example, simply
corresponds to using a completely disconnected graph. Other forms of constrained Gaussians can be formed simply
by utilizing a different graph (i.e., various constraints on either the covariance, concentration, or Cholesky factorized
concentration matrices). But as we will see in subsequent sections, regardless of the pattern of zeros in the Cholesky
factorized form, the Gaussian will be easy to estimate in a maximum likelihood sense as long as all variables are
observed.

A conditional (or autoregressive) Gaussian process is essentially a type of conditional probability density. Suppose
that the vector x has been bi-partitioned into two sets U, V such that U,V C 1 : M and U NV = (). Then p(zy|zy ) is
a conditional Gaussian where the mean vector xs is a linear function of the parent variable vector zy/, but otherwise
Xy is a Gaussian. In other words z¢; has a different Gaussian distribution for each value xy . This is expressed as

play|zy) = |27TZU‘V|—1/26*%(IU*(BU\VCEV+#U‘V))TEE‘1V(ajuf(BU\VCEV‘FIlU\V))’
where X7y is the conditional covariance matrix, which does not change with varying zy . The conditional mean,
however, does change with xy as the affine transformation By |y zy + py|v is the conditional mean of zy given xy .
This general form can arise in a number of ways. For example, after factoring a Gaussian using the chain rule of
probability

p($.71:M) = Hp(l’.,m|$.,1:m71),
m

then p(z_,,|x. 1:m—1) corresponds to a conditional Gaussian (in this case U = {m} and V = {1,2,...,m — 1}),
and in fact the parameters associated with each factor combine together to produce the Cholesky factorization of the
concentration matrix K [3].

Using conditional Gaussians, either normal Gaussian distributions or mixtures thereof can be formed over a
speech observation at time ¢, to form p(z;). Moreover, trajectory type models can be formed over time, where
the conditional variables at time ¢ can come from the past, future, present, or all of the above relative to ¢. The
conditional variables might even come from an entirely separate feature stream. For example, linear mixture buried
Markov models (BMMs) [7, 3] can be formed by employing a mixture of conditional Gaussian distributions, where
in this case we equate xy with x4, so xy becomes the feature vector at the current time, and we also equate
xy with z;, which is an L-dimensional vector of feature elements from previous times, future times, or as men-
tioned above even different feature streams (that may come from any time). We can denote this using sets, as
2t C{Ttoryyy Ytmrir e oo s Tte1s Yt—1s Yty Tt Y1y - - - s Ttproy s Yt ; Where y; might be a different feature stream
altogether, and where 7;; are arbitrary fixed integer constants that indicate how much of either the x or y stream are
part of z;. Much has been written on how conditional Gaussians and their mixtures can be used as trajectory models
(examples include [50, 5]). In the most general case, z; may also contain a constant element of unity (1) so that both
the regression coefficients and the fixed Gaussian mean can all be represented by the single M x (L + 1) matrix B —
in other words, if we have that z; = [2]1]7 indicating that the very last element of z; is unity, then Bz; = B'z, + p
where 1 is the last column of B, and B’ is an M x L matrix consisting of all but the last column of B. This produces
a generalized conditional Gaussian of the form:

— _Lp_B)T z—Bz
p(z|2) = (27) d/2|D|1/26 ba—B2)" D(a-B).

where we assume that everything that might possibly be conditioned on is included in the large length L vector z.
We note that the diagonal matrix D corresponds to the inverse conditional variance parameters of the Gaussian (in
this chapter, we sometimes refer to D as just the conditional rather than the inverse conditional variances when the
meaning is clear).

In general, regardless of how we form a Gaussian (either as a conditional Gaussian p(x|z) or as part of a standard
Gaussian that has been factored using the chain rule), we will define a set of parameters of a Gaussian as the following
triple: 1) the mean p; 2) the (conditional) variance D; and 3) the coefficients of B. The matrix B could come from
the Cholesky factorized concentration matrix K = (I — B)T D(I — B), or could also be the regression coefficients
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on some conditional vector z, or it could come from both; we will not make a distinction between the two since they
can be treated identically in the learning equations. Note, however, that in many cases B will be quite sparse — a
particular sparsity pattern, then, can be viewed as a form of constrained optimization or itself a form of regulariza-
tion, where fewer parameters are available in the model to adjust thus reducing parameter estimation variance. This
decomposition of the Gaussian’s parameters into these three portions (the mean, inverse conditional variance, and
regression coefficients) will be the basis for our Gaussian parameter regularization and tying strategies described in
Section 4. This treatment of the Gaussian parameters will moreover allow us to represent various training procedures
for Gaussians and Gaussian mixtures in a unified way, regardless if the model consists of regular Gaussian compo-
nents, various sparse Gaussians, or the conditional Gaussians used for temporal trajectory modeling (say in an HMM)
or in a multi-stream model.

2.1 Maximum Likelihood Training

Given a set of training data, there are many ways to optimally adjust the parameters to be in best accordance with
this data, including maximum likelihood, maximum a-posteriori (MAP), and discriminative parameter training pro-
cedures [1, 17, 16, 38, 37, 31, 57, 52]. While discriminative parameter training is most appropriate for classification
tasks, maximum likelihood (ML) training is still commonly used and can sometimes perform as well or better than
discriminative methods, often due to the mathematical or computational simplicity of such techniques, or to statistical
estimation issues [45]. Moreover, it is often extremely easy to train a generative model in the ML-framework due
to the fact that the ML objective function decomposes exactly as does the generative model (e.g., an HMM). In fact,
when all variables in question X and @ are observed, then unconstrained ML training becomes quite easy, namely
p(z,q) = p(z|q)p(q) can often be learned simply by counting and averaging.

In the models that we consider, namely p(z, q) we will assume that X is observed and @) hidden when training.
The most common form of training in this situation is to use the EM algorithm [15, 6, 43]. We very briefly outline
this procedure in its basic form. Assuming that all of the parameters of the model are described by the variable )\, we
start with an initial estimate of the parameters, say A\P. The goal is to optimize the next set of parameters )\ using an
augmented function,

FO) = QA N) = Epqix anllog p(X, QIN)] = plala, \P) log p(X, Q|N).

q

This is to be compared to the “incomplete” likelihood function, consisting only of the observed variables, namely
g(A) = logp(z|A). It can be shown that Of (A)/OA|a=ar = Og(N)/OA|x=xr so the gradients of both the incomplete
and the augmented likelihood functions are the same at the location of the current parameters. Moreover, it can be
shown that f()\) is a concave lower bound on the true likelihood function at the current point, and that optimizing
f(A) is often much easier than optimizing g(\), and therefore is typically preferred. The process is often as simple as
finding the unique peak of f(\) by taking a first derivative, setting it to zero, and then solving for A (possibly with some
Lagrangian constraints to ensure we stay within the parameters’ probability simplex). This process is repeated. There
are also guaranteed convergence properties — once converged, we are guaranteed to have found a local maximum of
the likelihood function g(\), which follows from the above since the derivatives are identical.

Details of the derivation of the EM update equations for Gaussian mixtures, and HMMs using Gaussian mixtures
are described in [15, 43], and notation most similar to what we use in this chapter is described in [6]. In an HMM
system, in order to train a Gaussian mixture HMM, one needs the quantities p(Q: = i, My = j|x1.7, AP), the posterior
probability that the Markov chain state at time ¢ is ¢ and the mixture component of state ¢ at time ¢ is 7. For a plain
Gaussian mixture system, the posterior needed is p(M; = j|zy, AP), which is the posterior of the component for
data instance x;. There is a strong commonality between Gaussian mixtures and Gaussian mixture HMMs, and in
fact the only difference in the EM update equations is the form of this posterior. In fact, a Gaussian mixture HMM
may be seen as a high dimensional multi-variate Gaussian, specifically p(x1.7|m1.1, q1.7) is just an M T-dimensional
Gaussian with a block-diagonal covariance matrix. Therefore, in accordance with our unified treatment of Gaussian
models as described in the previous section, we will assume what we call a “generic Gaussian mixture”, where we use
a simple notation p,,; to designate the posterior probability under the previous parameters of the current component
m for time or sample ¢, and we will do this using the same notation. As we will see, this will greatly simplify our
equations. The general scenario is shown in Figure 1. Lastly, we will let Q be the general auxiliary function to be
optimized in EM. For the purposes of this manuscript, it is also sufficient to provide a Q only for a generic Gaussian
mixture.
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X, X Xo X Xoi1 Yi Y: Yiia
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p(qe|zt) p(qt|x1.7) p(milge, z1.7) p(melqe, 1.7, y1.7)

Figure 1: A variety of Gaussian-like models utilize the same form of posterior probability of the hidden variables
(q1.7 and m.7) given the evidence (x1.7 or y;.7). For each model, the posteriors are needed when training using
regularized EM, and the equations for training the different models are identical up to the form of this posterior. In
part A (on the left of the figure), we have a simple mixture model, with posterior form p(g:|x;). In part B, we have
the basic Gaussian HMM, and its posterior. If we use a Gaussian mixture HMM (part C), we need the posterior of
the component m, given the current hidden state ¢; and the evidence. And last, in part D, we have a multi-stream
Gaussian mixture auto-regressive (or trajectory) model. The main stream is X7.p with auxiliary stream Y7.7, but the
form of posterior needed is again still the same. In all cases, a forward-backward procedure [2] can be defined that can
compute these posteriors. For our analysis, we will simply use p,,; to indicate the posterior of Gaussian component
m at data sample (or time) ¢. Lastly, the part D of figure also shows that Z; is a vector consisting of elements from
X1, Xy, Yy, and Yy 1. Our equations will use the generic notation z; to indicate this vector, and to produce the other
models it is sufficient to realize that z; may be empty.

3 Training Regularized Gaussian Decompositions

In this section, the decomposition of a Gaussian component’s parameters, as mentioned in the previous section, into
the three groups, i, D, and B, is applied during EM training of a generic Gaussian mixture. Unlike Section 4, in this
section we do not yet assume there is any sub-Gaussian parameter sharing.

A desirable property of any EM update equation is that each parameter group at each EM update can be esti-
mated independently without needing any of the other new parameters. In other words, given a collection of previous
parameters {u2, , DP. B 1, then ideally the update equations of each of the new parameters { iy, Diny B} 18
expressed entirely in terms of only the data and the previous parameters. Otherwise, either multiple passes through the
data might be required thereby making training much more computationally expensive, or even worse there might be
cyclic dependencies in the parameter updates (which we ultimately will need to deal with in this chapter as well). A
simple example may be demonstrated using the estimation of the mean y = Y, z+ and variance 02 = > (v — p)?,
where we see that the variance depends on the mean. It is well known that the variance estimate can be reformulated
using additional accumulators o2 = Dot x? — O, xt)Q, requiring only one pass through the data for both mean and
variance, in this latter case accumulating both the sum and sum of squares of x;. For certain patterns of sharing and
regularization of a Gaussian’s parameters, however, this will not always be possible. In any case, the general property
as it will apply to our EM updates is depicted in Figure 2.

When there is no parameter sharing, the EM auxiliary function needing to be maximized becomes

1 1 \
m t —

where ||A||r = tr(AAT) is the Frobenius norm of matrix A, the last term acts as an /5 regularizer on the regression
coefficients, and A is an accuracy-regularization trade-off coefficient. This form of regularization is similar to ridge-
regression [31] and to weight-decay [9] in the neural-networks literature. In our case, however, we assume that there is
only one such global accuracy-regularization A coefficient for all the Gaussians in the current model, and for all scalar
elements within each component. An alternative approach would employ one coefficient for each separate Gaussian
component, or even one coefficient for each individual regression coefficient. In general, however, the value of such
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Figure 2: EM Gaussian decomposition parameter update dependencies: On the left (A), we see that each of the new
parameters (i,,, B,, and D,, depend only on previous parameters u2 , BE and DP?, and also on the training data set
(not shown in the figure). In this case, it is possible to simultaneously update all new parameters, with only one pass
through the training data. In the middle (B), the new parameters might depend on the other new parameters as well as
old parameters, leading potentially to cyclic dependencies. On the right (C), we break the cycles by only updating one
parameter group for each EM iteration, where each EM iteration requires a single pass through the data. This means
that to update all the parameters in the model, three passes through the data are required. Still another strategy (middle
figure, or B) updates all parameters simultaneously with one training data pass, but in place of each new parameter
that is needed, we use the parameter from the previous EM iteration — this last step is not guaranteed to increase the
likelihood of the data, although it does have the same fixed points as the left case, and may work well in practice.

Means

coefficients can only be found using cross-validation [31] on a development or held-out data set and doing this when
there are multiple accuracy-regularization coefficients would turn the problem of finding these trade-off coefficients
themselves into an intractable search problem.

Equation 1 does not include any constant terms which vanish once derivatives are taken. Also note, for now we
have assumed that the mean parameters are contained within the B matrix — we do this by assuming that one of the
elements of z; is always equal unity. This means also that we are regularizing in the above equation both the regression
coefficients (e.g., cross-observation dependences as in a BMM) but also the means. We might not wish to regularize
the means, however, so in an expansion where the means and regression coefficients are separate (see below), we might
not have a regularizer on the means (we utilize separate mean and regression regularization coefficients in Section 4).
Also, since there is no sharing, there is a one-to-one correspondence between every value of m and each of the D and
B matrices.

Maximizing the regularizer alone —3 > || By, ||% will force the coefficients to converge towards zero. Therefore,
it is important to assume that the training data is centered, i.e., zero-mean normalized. Also, the coefficients will
depend on the scaling of the data as well. Therefore, in practice, it will be important to perform both mean subtraction
and variance normalization [41, 10] on the observation vectors prior to any training.

Taking derivatives og L];unation 1 with respect to the B, matrices (again, which includes the mean in the right most

column of B,,), gives B, = 0 or that

> Dp(x: = Bmzt) 2! pmt — ABp = 0.
t

From this, we must attempt to solve for B,,,, and there are several ways to proceed. One simple way next yields

> (@ = Bnz)z pmt — ADy, By, = 0, 2)

t

implying that
Z :vtthpmt — B, Z ztzfpmt - )\D;le =0.
t t

We see that we have a matrix equation of the form A — BC — DB = 0 where A = Y, z2] ppt, B = B,
C = 3,22 Pmt» D = AD,', and the goal is to solve for B. This equation is known as the Sylvester matrix
equation [25] (which is a generalization of the more well known Lyapunov equation [21] commonly used in control
theory). The Sylvester equation has a unique solution if and only if there is no eigenvalue of C' that is the negative of
any eigenvalue of D. Therefore, since both C' and D are positive definite in our case, this condition will certainly hold.
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A general (but not efficient) form of solution is given by b = G~ 'a, where b (respectively @) is a vector consisting of
the columns of B (resp. —A) stacked on top of each other, and where G = I ® D 4+ CT ® I where ® is the Kronecker
matrix product. Much more efficient solutions are given in [25]. Also, since D is diagonal, significant additional
computational efficiencies can be obtained (see Section 3.2 below).

If A = 0, however, we have a particularly simple form, that yields:

1
Bm = ththpmt <Z thtTpmt> . (3)
t t

So if A = 0 (no regularization), the above shows that B,,, can be estimated quite easily by summing posterior weighted
outer products, and that B,,, does not depend on any other current parameter. This assumes of course that 7" is large
enough so that the matrix above is invertible, but that is typical for most data sets.

With regularization A > 0, however, the new B,,, has a much more intricate relationship with the new D,,, matrix,
as illustrated in the middle of Figure 2.

Next, taking derivatives of Equation 1 with respect to the diagonal matrix D,,, and setting % = 0 gives

> bt (D} — (21 — Bzi) (@ — Bz) ") =0,
t

or that .
-1 _ Zt pmt(xt - Bmzt)('rt - Bmzt)

m Zt Pmt

In this update, we again have a cross-dependency, namely D,,, is dependent on the current estimation of B,,. In
this case, therefore, it appears that even if A = 0, we have a dependence between the parameters, thus again implying
multiple passes through the data on each EM iteration, first to compute B,,, and next to compute D,,. The following
formula, however, shows that if A = 0, we can compute the covariance matrix using the quantities that we have and
without running through the data multiple times per iteration.

D

DIl Z{pmt (zi2{ — 22 BY, — Bnzx] + BmztthB;;Z)}
t

= metxtx? - (ZPmthtZtT> BZ; - By, metztxtT + B, (Z PthtZtT> BZ;,
t t t t
but when A = 0, we have
Bm (met%&%?) BTZ;L - (Z thtTpmt> Brj;La
t t

and therefore we get
D, o metmtx? — B, metztx?. 4)
t t

The equations above show that B,,, and D,, can indeed be learnt simultaneously when A\ = 0 without needing to
make multiple passes over the data. Specifically, with only a single pass over the data, we can accumulate the three
quantities >, 2128 pines >, 2628 P> and 3, pmizizl, which when done are sufficient for both the B,, and D,,
updates in Equations 3 and 4.

Even though A = 0 in this case, it still might appear that we have a problem in that the above equations require
outer products of the form 2,z and 2,2 for every m. Considering that there may be many hundreds or thousands of
Gaussian components in a modern ASR system (corresponding to the different HMM states and mixture components
therein), and that z; could easily have many elements, these accumulators could be quite large. For example, in a
BMM update equation [3], z; consists of the collection of all context elements grouped together for all individual
Gaussian elements, a vector that could be thousands of elements long. When A > 0, solving the Sylvester equation
would be prohibitive. A solution to this problem is given in Section 3.2, but we first discuss the relationship these
models have with ridge regression.
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3.1 Ridge Regression

Our procedure may in fact be seen as a multi-variate, multi-class, “soft”, and learned-covariance generalization of,
ridge regression [31]. It is multivariate since we are essentially learning multiple sets of regression coefficients simul-
taneously. It is multi-class since the regression coefficients may correspond to entirely different Gaussians. It is “soft”,
since the coefficients are being learned as part of a larger EM procedure, so all data is being essentially weighted by
posterior probabilities from previous model parameters. And lastly, unlike conventional ridge regression, we must
learn covariance parameters as well. Since the relation with ridge regression is important to understand, we review
ridge regression in some detail, and then expand on its generalization.

Ridge regression can be explained from either a frequentist perspective (a Gaussian model with a penalized log-
likelihood) or a Bayesian perspective (the maximum a posteriori (MAP) of 3 under a Gaussian model and a Gaussian
prior). In either case, the goal is to learn the parameters of a linear model for predicting the scalar variable x based on a
vector variable z and a vector of parameters (3 of the same length. We are given training samples D" = {2(9) 2(?) W
from which to learn 3. In the Bayesian case, we find the 3 that maximizes the posterior p(3|D") or equivalently
that maximizes p(D*"|3)p(3). The likelihood p(D*"|3) is composed of the model p(z|z, 3) = N(z;572,02), a
conditional Gaussian with mean 37 z and variance o2. As before, we assume that the last entry of z is always unity, so
that we can absorb any mean parameter into the regression parameters 3. We also assume a zero-mean and 7?-variance

Gaussian Bayesian prior on (3, meaning that 8 ~ N(0, %) where p,,(3) = N(0,7?) = \/#7 exp (—3878/n?). The

joint data and [ distribution consisting of log-likelihood and prior can be written as

L(B) = Z log p(z |z, B) + log p, (B3) (5)

_ N 2y 1 0 _ ()a2s2 1 2 1 2
= — log(27o7) QZ(I 2"6)" /0" — 5 log(2mn) 2772”5"7 (6)

%

where ||3|] is the £o-norm. Finding the maximum a-posteriori (MAP) value of 3 reduces to:
argmin 3" L _ 02 4 L6112 = argmin 3 L _ s0p)2 4 iIIﬁIIZ-
Jé] Z 202 2772 8 - 2 27)2
If we set A = 02 /n?, we get the typical form of ridge regression:
argmin 3 2 () — 2052 + 212 @
g 2 2

This latest form is in fact the standard frequentist starting point for ridge regression, where we have an error term (or
a likelihood) along with a complexity penalty that are related by an accuracy-regularization trade-off coefficient \.

To increase the degree of regularization, we increase A, and as A — oo, 7]2 — 0, which also takes 3 towards zero
for any finite-length data set. \ thus gives us a single normalized parameter to determine the amount of regularization.
We note that the variance of the Bayesian prior changes as a function of the data variance since 7> = o2 /\. If we
wanted to use a fixed Bayesian prior regardless of the data variance, ridge regression would take the form:

: Low ymz  AG% o
arg;mn 25(37 —z"B) +7\|ﬁ||, ®)

where in this case, we have an interpretation of our regularization coefficient as A\ = 1/n?, the inverse variance of
the Bayesian prior. Of course, the interpretation of A in Equation 7 or Equation 8 does not matter here since the
regularization coefficient is usually determined using cross-validation for any given data set [31]. Note, however, that
the range of values attempted for cross-validation would matter, as in the former case \ is a ratio of variances, while
in the latter case A is an inverse variance.

Suppose now that we wish to solve multiple ridge-regressions simultaneously. We can think of this as multiple
separate data sets, or alternatively, we can view this as a single multivariate generalization of ridge regression, where
z is now a M -dimensional vector, B is an M x L matrix of regression coefficients, where each row of B is used
to predict the corresponding element of . In either case, when we wish to use a single A regression coefficient to
control such multiple regressions simultaneously, then the interpretation of A might start to matter. If we want one

10
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global Bayesian prior variance to apply to all regressions simultaneously, then the form of regularization should be as
we have defined it in Equation 2 (for a specific value of m) where each of the variance terms are multiplied by lambda
asin AD;,!. In this case, we interpret \ as the inverse of this globally shared Bayesian prior variance. If, on the other
hand, we wish the Bayesian prior for each row of B,, to scale with the variance of the corresponding element in z,
then Equation 2 should take the form:

> (@t = Buzi)2! Pt — M By, = 0, ©)
t
where [ is an appropriately sized identity matrix, in which case B,, has once again a particularly simple update
equation, namely equation 3 becomes:
-1

B =Y 22 pme (Z 202 Pt + /\I) : (10)
t t

We see that as A gets larger, the matrix that must be inverted becomes better conditioned, and it moves B towards the
Zero matrix.

For the remainder of this chapter, we will assume the globally shared Bayesian prior case, but we must keep in
mind that some of the equations will change if we take the interpretation shown in Equation 10.

3.2 Exploiting that D is diagonal

Significant computational simplifications can be achieved by noting that since D, is a diagonal matrix, only the
diagonal portion of the update equations need to be computed. This requires no loss of generality because of the
UDU’ factorization mentioned above, whereby the B matrices may contain the factored form of a full covariance
matrix, or a generalized regression on z;, or both.

We let D,,(r) be the r*" diagonal scalar element of the diagonal matrix D,,. Also, let B,,(r) be a row-vector
consisting of the non-zero (i.e., existing) elements from the rt* row of the matrix B,,,, and let z; (r) be a column vector
consisting of the elements of the vector z; that correspond to the non-zero entries in the rt* row of B,,. In other words,
the scalar quantity B,,(r)z:(r) equals the r*" element of the vector B,,z; but the computation of B, (r)z;(r) does
not include the terms that are just zero. This is a slight abuse of notation as the elements contained in z;(r) depend
on the B,, matrix that it is currently being multiplied with, but the meaning should be clear nevertheless. The reason
this works at all is the way we formed z; as being a subset of all possible elements that ; might condition on lumped
together as one large vector — it has been the sparsity pattern of the B,,, matrices which has not only included the
appropriate regression coefficients, but has also acted as a selector for appropriate elements within z;. Note also that
for r # 1', z4(r) and z;(r") might contain some of the same elements from z;, i.e., treating z;(r) as a set rather than a
vector, it is possible to have z;(r) N z;(r") # () Finally, we let z;(r) be the r*"* scalar element of the vector ;. Using
these definitions, we may re-write Equation 1 as:

0 ZZZ( o (Drn(r)) — 5 (#4(r) — B (r)2(r) Dl >)pmt 2 L L lBnOIP A

It follows immediately that the update equations for the diagonal entries of the covariance matrices are:

1 Zhew (@) = Bua) ST pfar)? ~ Bal) T pre(r)z0tr)
Dm(r) 23:1 Pmi 23;1 Pmt

where the second equality follows only when A = 0, similar to Equation 4. Note that this is a scalar update equation
for each of the diagonal elements of the matrix D,,,. Depending on the sparse patterns of the matrices, the cost of the
dot products By, (r)z:(r) will be significantly smaller than before.

The update equations for the B,,, matrices can also be significantly simplified. Since D,, is diagonal, the derivative
of Equation 1 with respect to the " row of B,, is uncoupled with the other rows. Also, only the non-zero portions of
the row are computed (recall that B,,, can be quite sparse so this can be a significant savings). Taking the derivative of
Equation 11 with respect to B, (r) thus yields:

) 12)

Z D'rn('r) (xt(r) - B77L(T)Zt(r))zt(T)Tp7rnt - )\Bm(r) =0.
t=1
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This leads to the independent update equations for the non-zero portion of each row of the B matrix as follows:
-1

T T A
Bp(r) = (metxt(T)Zt(r)T> (metzt(T)zt(T)T+ Dm(r)l> ’

where I is an appropriately sized identity matrix. In this case, only the outer products z; (1) (r)T and the SAXPY [27]
operations x4 (r)z; (1) are required, yielding a significant reduction in both computational complexity and memory
requirements. Also, unlike in the general case above, we see that we get a solution without needing to resort to
algorithms that solve the Sylvester equation, regardless of the interpretation or value of \. We see also again that
adding the positive definite diagonal matrix A\/D,,(r)I in the above ensures that the matrix is well conditioned (so
inversion is possible). And as mentioned earlier, unlike typical ridge regression, we take here the interpretation of one
global Bayesian prior variance in order to use a global A parameter, which means we must appropriately scale by the
variance D, (1).

All is not perfect, however, as when A > 0, it appears that we once again obtain cycles in the parameter update
dependencies, as in the center of Figure 2. Specifically, the equations show that both B,,(r) depends on D,,(r) and
D, (r) depends on B,,(r). Once again, we can break the cycle by using the previous parameters in place of current
parameters, and make multiple passes through the data, for each pass updating only one parameter group at a time,
as shown on the right in Figure 2. Thus, in each step we are still guaranteed to improve the likelihood, although
convergence may not be as fast. Moreover, we clearly have the same fixed points, as when at a particular fixed point,
we have that D? (r) = D,,(r). We can also (Figure 2 middle) attempt to update all parameters simultaneously, but

m
such a procedure does not guarantee in all cases an improvement in likelihood on each EM iteration.

4 Training Shared Regularized Gaussian Decompositions

Normally, and as described in the previous section, each individual Gaussian component has its own unique set of
parameters not shared with any other component in the model. In this section, we describe a model where some
set of the Gaussian components are constrained to share a portion of their parameters with other components in the
model. We wish moreover to analyze the EM update equations under such constraints. This procedure is often called
parameter tying, but here the granularity of tying is somewhat finer than what is typically done in a speech recognition
system. Specifically, an entire Gaussian component is commonly shared between two mixtures of Gaussians, or
alternatively an entire mixture for an HMM state might be shared between two multi-state phone models in an HMM-
based system [60]. Here, by contrast, each component Gaussian might share any of its p, D, and B parameters
with other components in the system. Moreover, a given component might share different groups with different other
components. For example, a component’s ;. parameter might be shared differently than the component’s D parameter.
This leads to an enormous variety of parameter sharing patterns. There have been a number of other models that use
partially shared Gaussian parameters, including [28, 23, 46], but this is not done in the same way described herein.
In particular, we will see that Cholesky factorized covariance matrices allows us to easily combine sharing and other
forms of regularization.

It is crucial to realize that sharing is a form of constrained optimization — we still seek a maximum likelihood
solution, but now we are constraining the parameters to live in a space where sub-portions of Gaussian parameters are
forced to be identical. It is well known that constrained optimization can be more difficult (either computationally or
mathematically) than unconstrained optimization [18], and we will see that our case is no exception. We will find,
however, that the update rules are still fairly simple if we use the idea we saw in the previous section of breaking
cycles over EM iterations, as it then is possible to find a solution without major modifications to the previously derived
equations.

In the most general case of parameter sharing, we have three functions that map from the index m of a general
class to the index k of a specific extant mean, diagonal covariance, and regression coefficient used by that index.
Those mappings are, respectively, 7),(m), Tp(m), and Tg(m). In other words, we have that T),(m) : {1,..., M} —
{1,..., K,} where M is the total number of components in the system, and &, is the total number of unique means in
the system. An analogous definition holds for the D and B matrices, where we assume there are a total of K p unique
D matrices, and K total unique B matrices in the model. We also define the inverse mappings: T, " (k), 5 (k),

and Ty 1 (k), which refer to the set of all indices m that lead to a particular index k, that is

T (k) 2 {m < T, (m) = k},

o
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and where the analogous definitions hold for T (k) and T3 * (k).
Using this representation of tying via the index mapping, the auxiliary function becomes:

Q= Z Z { log(| D7y, (my]) — ( Tt — Brym) 2t — 11, (m)) " D (m) (@ — B (m) 2t — MTH(m))} Dt

A Kp n K,
=5 2 IBkllE =5 D el (13)
k=1 k=1

There are several differences between this equation and Equation 1. First, we have separated out the mean vectors from
the B matrices since in this general case, there could be an entirely different tying pattern for the means and regression
coefficients within B. Second, we now have two regularization coefficients, one for the regression coefficients A, and a
separate one for the shared mean pool  — note again that this form of regression only makes sense when the data have
been centered or zero-mean normalized, as mentioned earlier. Other than that, we still may have a unique posterior
probability p,,; for each m since various combinations of mean, diagonal covariance, and regression coefficient could
still produce a distinct value of p,,; for different m and fixed ¢ — the constrained optimization procedure requires that
the posterior be filtered down into the appropriate shared component of each Gaussian.

4.1 Covariance updates

Taking derivatives and setting % = ( implies that

Yo > e (Dt = (@ = Brgmyz — i1, 0m) (@ = Brgmyz — b1, m)") = 0,
t meTy (k)

or that .
_ 2 2mery () (Bt — Bro 2 — 1,m)) (2t — Bry m) % — 11, m))” Pt
Zt ZmeTgl(k) Pmt ’

In this form, it is not possible to compute the numerator without using multiple passes through the data, so we
next expand the numerator in order to see what must be computed. Noting that D,;l is diagonal, and that any additive
contributions to Dk_1 in the form of A + A” can be added as 24, we get:

D_

(Z Sﬂtpmt) ,u‘%b(m) + (me,tl'tth> B%B(m) — NJTM(m) (Z Z;Tpm,t> B%B(m)‘|
t t t
+Bry (m (Z 22 pmt> BTy (m) F BT, (m) T, () <Z pmt> } (14)

t

From the above, it is particularly easy to see that each major term in the sum does not require any of the
other parameters until the very end of the accumulation. For example, computing quantities such as ), T2 Dt
Zt Pmit a;tz;jr , and Zt ZtPm+ can be done in one pass through the data, and at the end combined with the resulting final
B matrix or mean vector for the corresponding m in producing the final numerator for the k** covariance matrix.

If there are no B matrices (i.e., all the B entries are zero, which happens when we use purely diagonal covariance
matrices), then we have a particularly simple form:

Dyt > { (Z :vtxtTpmt> -2 <Z xtpmt) BTy (m) T BT (m) T, (m) <Z pmt> } . (15
(k) t t t

mETE1

Dk_l X Z { <Z xﬂ?]%m) -2
(k) ¢

mGTB1
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Figure 3: Sharing example. There are three Gaussian components, G1, Ga, and G5, with components G5 and G
sharing the same mean 2, components G; and G's sharing the same regression matrix Bs, and G; and G2 both sharing
Dy. As shown in Equation 16, the EM update equation for By depends on the other new parameters p1, o, D1, D2,
but B1’s update depends only on p5 and Do.

4.2 B-matrix updates

Next, we find the update equations for the B matrices. Setting % = 0 yields

Z Dryy () Z(xt — Bizi — i1y, (m)) % Pmt — ABy = 0,
meTy LK)

or that

Z DTD(m) { <Z thtTpmt> — By, (Z ZtZtTpmt> — KT, (m) (Z Z?pmt) } —AB, =0.
t t t

mETgl(k)

Again, we have a similar problem in that we are trying to solve for a matrix B in an equation of the form A —
> DiBC; — E — AB = 0, which is a generalized form of the Sylvester equation. Note that even if we decide
not to regularize so that A = 0, then Sylvester-like equations still apply since B is still in relation with the other
parameters via A — E = )", D; BC;. In this case, other than the lack of a direct analytical solution for By, we see
that it depends on other parameters from the current EM iteration, giving us the situation depicted in the center of
Figure 2. In particular, By depends on all the other mean (1) and variance (D) parameters that are involved in any of
the components m € Ty !(k), as described in Figure 3. This means that the dependencies between current parameters
as described in the center of Figure 2 will depend entirely on the tying patterns as given by the T functions, each
individual parameter having a different set of dependences — in a sense, each parameter is independent of all other
parameters given what might be called its variational or parameter Markov blanket.

When A > 0 or in order not to solve the general Sylvester equation, we must once again use explicitly the fact that
Dy, for all k is diagonal — we may write Equation 13 in a way that is analogous to the way Equation 1 was written as
Equation 11. Using again By, (r) to denote the rt" row of By, and the analogous definitions as used in Section 3.2, we
immediately get:

Bk (’I") = Z DTD (m) { <Z xt Zt pmt) /JT“ (m) <Z Zt pmt> }
meTy " (k)
-1

Z DTD<m>()<Z ()th(r)pmt>+M . (16)

mGTB (k)

where I is an appropriately sized identity matrix. We once again see that an effect of the A > 0 parameter ensures the
invertibility of the matrix in which it is involved.
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4.3 Mean updates

Since the mean parameter can have a separate tying pattern, we must treat it separately from the B matrix. We set

6u = 0 to get
Z DTD (m) (xt - BTB(m) 2t — ;U'k)pmt — Nk = 0,

meT; * (k) t

leading to
Z Dy, (m) { (Z xtht) = Brym) <Z thmt) } = Z Dty (m) Z WiPme + Nk,
meT, * (k) t t meT, (k)
or that
-1
HE = Z Dy (m) (Z pmt> +nl Z Drym) l(Z JUtpmt> Bry(m <Z Ztht)]
mETM (k) meT,, (k)

When there is no mean sharing (i.e., the mean is used in only one component), we get that 7 (k) has only one
entry, and if also n = 0, the inverse covariance matrix cancels out, and we end up with a greatly simplified form for
the means:

Zt ZiPmt — Bry (m) Zt thmt

Hie =
Zt Pmt

4.4 When only the variances are tied

In certain cases, it may be that only a particular pattern of tying occurs. For example, when only the covariances are
tied, a number of simplifications are possible. The auxiliary Q function becomes:

1
Q= ZZ { log(| Dy, (m)l) — ( zy — Bz — .Um)TDTD(m) (2t — Bzt — Um)}pmt — f(B,p),

where f(B, u) indicates only the regularization terms corresponding to {By, : 1 < k < Kp}and {p : 1 <k < K,}.
Because By, and p in this case are not tied, we can, as in Section 3, join them together in a single B matrix with the
assumption that the final z has a constant of 1, and if we assume that they utilize the same regularization coefficient,
we get:

Q= Z Z { IOg |DTD(77L)|) ( Ty — Bmzt)TDTD(m) (xt - Bmzt }pmt Z HBmHF
As in Section 3, we set 88,% = 0 to get that:
Z DTD(m) (xt - Bmzt)ZtTpmt - )\Bm = 07
t

or once again that:
Z(xt - Bmzt)ZtTpmt - )\D;El,(m)Bm =0,
t

leading to the same update equations for B,,.
To find the update equations for the tied Dy, matrix, we set ;TQ

- = 0toget:
2 ZmeTgl(k) (%t = Bmzt)(xt — Bimzt) P

Dy, = a7
Zt ZmGT (k) Pmt
_ ZmeTgl(k (X pmetia] — B 3, pmeze]) (18)
ZmETB (k) Zt Pmt ’
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where again the second equality holds only when A = 0. This equation, therefore, as in Section 3 is relatively easy
to compute. Also, note that when A = 0, this is an EM rather than a GEM procedure (see Section 5), since in each
case we are maximizing rather than just increasing the auxiliary function (since there is no parameter dependence). In
general, we see that the form of parameter tying and regularization can interact in complicated ways to determine how
we can optimize the parameters, and this is discussed further in Section 5.

4.5 Regularized MLLR

Speaker adaptation [40, 26, 24, 44, 56] is one of the most successful parameter adjustment methods in speech recog-
nition. In the adaptation paradigm, the training and test set distributions are not identical [58]. Moreover, there is a
large training set so that the training set distribution may be well estimated, but only a small amount of adaptation data
from the test distribution is available — this small test distribution data set is used to slightly adjust the parameters
of a model to better represent the test set distribution. Of course, if too little restriction is placed on the amount of
adjustment made to the model based on the adaptation data, then over-training can occur, and therefore adaptation
must be based on a highly constrained model. In the widely used maximum-likelihood linear regression (MLLR)
[40, 56], a particular form of constraint is used, namely the mean vectors in a Gaussian mixture model are subject to a
transformation that consists of no more than a scale, rotation, and shift (an affine transformation).

Given our derivation of shared conditional Gaussians above, we can extend MLLR so that not only the Gaussian
means are adapted, so is covariance matrix, all using non-zero mean Gaussian Bayesian priors. This is largely thanks
to the Cholesky factorized covariance matrix.

In this framework, we moreover may easily adapt the regression coefficients, even if they correspond to a cross-
stream conditional Gaussian. For example, the component parameters p and B can be adapted while leaving the condi-
tional variance parameters D fixed. This form of adaptation is seen essentially as another application of operations sim-
ilar to the B matrix. In particular, suppose that for each m there is a mapping Ta(m) : {1,..., M} — {1,..., K4}
that maps from each component, say m, to a “regression class” [40], which gives an index that identifies the parameters
that are to effect that component. The k! adaptation parameters then are to adapt all components {m : m € Tgl (k)}
using a similar notation as in Section 4. For each k, there is a general upper triangular (so not symmetric) adaptation
coefficient matrix Ay, a shift vector by, and a variance scale diagonal matrix C. These parameters influence the model
as expressed in the following adjusted auxiliary function:

Q=>"3"%" (; 10(Cry (m) (1) Do (7)) — %(xt(r) — Aty (m) (1) B (1) 2e(r) — bTA(m)(T))QCTA(m>(T)2Dm(7“)> Prmt

A n v
+ 3 (=5 ldn =112 = Dl - Fllci - 1)
k

where A (r) (resp. by(r), Ci(r) ) is the 7" row (resp. entry, diagonal element) of matrix A (resp. vector by, Cy).
Again, any original mean parameters are contained within B, (r)z;(r). A must be upper triangular so that the form
Ay B is still upper diagonal with zeros along the diagonal, and this means that the Gaussian normalization constant (a
function of D,,) is still valid. Also, since C} only occurs in squared form, Cj, other than being a diagonal matrix is
unconstrained. As can be seen, we adapt parameters of the m'" component Gaussian by applying an affine transfor-
mation to the conditional parameters as in A, () (7) Brn (1) 2¢(r) + b7, (m) (r) which becomes the new conditional
mean. Also, the " variance is scaled by Ci(r). Of course, to avoid over-training on the data, we assume that K 4
is relatively small, and if K4 = 1 we have one global A, C' matrix pair and b vector that influences the model by
performing one joint shift and then scale and rotate of the parameters. This generalizes MLLR as well since we are
not only allowing the adaptation to occur but we penalize the set of adaptation coefficients depending on its distance
from the identity matrix using the Frobenius norm terms || Ay — I|| and ||C}, — I||. This last regression term provides
another way other than the number of regression classes that accuracy-regularization within MLLR may be controlled.
This may be appropriate in cases with extremely small amounts of data, where even one (possibly sparse) A matrix
would require too many parameters. Note, the approach outlined above may be seen as applying a Bayesian prior [31]
on the adaptation coefficients in MLLR, but this is not the same form as MAP adaptation [26], where a Bayesian prior
(in particular, a Dirichlet and Wishart prior) is applied to all of the Gaussian mixture parameters (including the mixture
coefficients).

To perform adaptation, then, we can derive an EM update step very similar to the derivation in the shared parameter
case in Sections 4.2 and 4.3. First, let z{"(r) = B, (r)z¢(r) and z}" (1) = x4(r) — b, (m)(7). Let I(r) be a row-vector

16

DRAFT DRAFT



of zeros but with a one in the r* position (i.e., I(r) is the r*" row of the M x M identity matrix). We find ﬁ%r) and

#%,) yielding:

99 2 A o |12
Ta0 | 2 @0 = Arye () Do) = 3 1140 = 10|

m,t,r k' r!
=D D Du)(@(r) = Ap(r)z) ()" = MAk(r) = I(r)).
tomeT (k)

Solving for A (r) gives

Yo D DaamE )T =AY Y Dm(r) D=5 = AMk(r) + M (r),

t ’I'TLET;:l(k)

yielding
-1

Ay = D0 Y Dz DT+ AL | [ Do Y (Da(r) D)) + A

tomeT, (k) t omeT, (k)

We can thus see that as A — oo, we have that Ay(r) — I(r), so that Ay, — I, thus increasing A decreases the
amount of adaptation for each regression class. Updates for C; are also relatively straightforward, where for each
C(r) we get a quadratic form. Each EM update step can be performed one or more times and, like MLLR [40], sets
of EM updates can be iteratively interleaved with decodings to potentially further improve results in the unsupervised
adaptation case.

It is easy to see that the above corresponds to placing nonzero-mean Gaussian priors on each of the three compo-
nents of a Gaussian as we have used throughout this chapter, a property enabled by the use of Cholesky factorization.
The use of Cholesky factorization has been used before [24, 22]. Moreover, Bayesian priors have also been used for
adaptation. For example, a prior may be placed on all parameters in the system [26]. Also, in maximum a-posterior
linear regression (MAPLR), a matrix Gaussian prior is placed on coefficients governing the affine transformation of
the model means [11, 53], or on an inner-factor diagonal of the covariance matrix [12]. A kernel ridge regression form
of adaptation was also recently developed [51]. The technique presented above is different in that it does not use zero
mean Gaussian priors.

S A generalized EM procedure

A generalized EM (GEM) is a procedure where rather than maximizing the auxiliary function by adjusting the pa-
rameters at each EM iteration, we instead only increase the auxiliary function. The above procedures that have been
outlined show that, depending on the regularization coefficients, and depending on the parameter tying pattern, we may
not be able to form a closed form update of each of the parameters as a function only of the previous EM iterations
parameters, something as shown on the left of Figure 2. This circularity in the parameter updates cannot be broken
even using multiple passes through the data, as none of the new parameters can be formed without access to the other
new parameters.

There have been two strategies for parameter update, however, that break the cycles. The first strategy has sug-
gested that we can still update all parameters simultaneously if we use the previous parameters. In other words, when
one parameter type is needing another from the current iteration, we substitute its value with the corresponding pa-
rameter at the previous EM iteration. This procedure, again, is guaranteed to have the same fixed points as a standard
EM iteration, but we have not provided any guarantees regarding whether it increases the likelihood function, nor if it
ever reaches such a fixed point.

An alternate strategy is the one suggested on the right of Figure 2. In this case, we only update one parameter set
at a time. For example, we might find the optimal values only for {Dy, : 1 < k < Kp}, use these new parameters
in Equation (13). Next, we might optimize {By, : 1 < k < Kp}, use these new parameters, and then last optimize
{p : 1 <k < K,}. This entire procedure can then be repeated. This alternating optimization can be done without
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needing to worry about cyclic parameter dependencies since none of the parameters of a given type depend on any of
the other parameters of that same type in the same EM iteration (e.g., uy for any fixed & does not depend on any piy
for any k' in the EM current iteration).

We can easily see that this procedure is a generalized EM since each update is guaranteed not to decrease the
original likelihood function — in particular, the auxiliary function, Equation (13) is concave in each of uy, By, and
Dy, separately, and in each case we obtain the same standard EM bounds [15, 43]. For example, computing the Hessian
matrix of Equation (13) with respect to By(r), we get:

t

0*Q
OBy () TOB(r) Y Dryem() <Z zt(r)zt(T)Tpmt> = M,
meTy!

5 (k)
a matrix that is clearly everywhere negative definite for all A > 0 implying that Q is concave everywhere. Hessians
with respect to the other parameters are also everywhere negative definite.

6 Conclusions

We have described the EM/GEM update equations for generic Gaussian mixture systems, which include standard
Gaussian mixtures, hidden Markov models, auto-regressive HMMs, multi-stream buried Markov models, and regular-
ized MLLR. More specifically, we have described these equations where the Gaussians are either regularized, partially
parameter shared, or both.

We have seen that depending on the regularization parameters or the parameter tying pattern, the standard EM
update equations might possess circular dependences, which requires modifications to the normal EM updates to
break data dependency cycles. Several schemes were proposed for parameter update in this case, including when
only one of each set of parameters is updated at a time. We have seen how this yields a GEM procedure that is still
guaranteed to produce a local-maximum of the likelihood function. It would be interesting to relate the parameter
tying mechanisms described here with Gaussian generalizations of Probabilistic Relational Models (PRMs) [20], as
parameter sharing is a common feature in such models. In their case, however, parameters are typically discrete so the
parameter dependency circularities do not arise. If one were to generalize PRMs to include partial Gaussian sharing as
we have done above, the same procedures could potentially be adopted. Moreover, all of the above procedures would
benefit from the application of ¢;-norm regularization [31], which would encourage sparse structure while retaining
convexity in the EM update equations.

The above system of equations for tied and regularized Gaussians has been implemented as part of the graphical
models toolkit (GMTK) and has been used in a wide variety of contexts. This material is based upon work supported
by the National Science Foundation under Grant No. IIS-0093430, and by the Office of Naval Research under Grant
No. N000140510388.
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