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SUMMARY
Since their inception almost fifty years ago, hidden Markov models

(HMMs) have have become the predominant methodology for automatic
speech recognition (ASR) systems — today, most state-of-the-art speech
systems are HMM-based. There have been a number of ways to explain
HMMs and to list their capabilities, each of these ways having both advan-
tages and disadvantages. In an effort to better understand what HMMs can
do, this tutorial article analyzes HMMs by exploring a definition of HMMs
in terms of random variables and conditional independence assumptions.
We prefer this definition as it allows us to reason more throughly about the
capabilities of HMMs. In particular, it is possible to deduce that there are,
in theory at least, no limitations to the class of probability distributions rep-
resentable by HMMs. This paper concludes that, in search of amodel to
supersede the HMM (say for ASR), rather than trying to correct for HMM
limitations in the general case, new models should be found based on their
potential for better parsimony, computational requirements, and noise in-
sensitivity.
key words: Automatic Speech Recognition, Hidden Markov Models,
HMMs, time-series processes, hand-writing recognition, graphical mod-
els, dynamic Bayesian networks, dynamic graphical models,stochastic
processes, time-series densities, bio-informatics

1. Introduction

More than any other statistical technique, the Hidden
Markov model (HMM) has been most successfully applied
to the automatic speech recognition (ASR) problem. Recent
results have shown that HMMs are remarkably good even
for difficult conversational speech-to-text [1] — the latest
Switchboard word error rates are at around 13%. There have
been many HMM tutorials [2]–[6]. In the widely read and
now classic paper [6], an HMM is introduced as a collec-
tion of urns each containing a different proportion of colored
balls. Sampling (generating data) from an HMM occurs by
choosing a new urn based on only the previously chosen urn,
and then choosing with replacement a ball from this new
urn. The sequence of urn choices are not made public (and
are said to be “hidden”) but the ball choices are known (and
are said to be “observed”). Along this line of reasoning, an
HMM can be defined in such a generative way, where one
first generates a sequence of hidden (urn) choices, and then
generates a sequence of observed (ball) choices.

For statistical speech recognition, one is not only con-
cerned about how HMMs generate data, but also, and more
importantly, about an HMM’s distributions over observa-
tions, and how those distributions for different utterances
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compare with each other. An alternative “non-generative”
view of HMMs, therefore, can provide additional insight
into what the capabilities of HMMs are, both in how they
generate data and in how they might recognize and distin-
guish (or discriminate) between patterns.

To pursue this goal, this paper first provides a precise
HMM definition, where an HMM is defined as a variable-
size collection of random variables with an appropriate set
of conditional independence properties. In an effort to bet-
ter understand what HMMs can do, this paper also consid-
ers a list of properties, and discusses how they each might
or might not apply to an HMM. In particular, it will be ar-
gued that, at least within the paradigm offered by statistical
pattern classification [7]–[10], there is no general theoreti-
cal limit to HMMs given enough hidden states, rich enough
observation distributions, sufficient training data, adequate
computation, and appropriate training algorithms. Instead,
only a particular instance of an HMM used, say, in a speech
recognition system might be inadequate. This perhaps pro-
vides a reason for the continual speech-recognition accuracy
improvements we have seen with HMM-based systems, and
for the difficulty there has been in producing a model to su-
persede HMMs.

This paper does not argue, however, that HMMs should
be the final technology for speech recognition. On the con-
trary, a main hope of this paper is to offer a better under-
standing of what HMMs can do, and consequently, a better
understanding of their limitations so they may ultimately be
improved upon in favor of a superior model. Indeed, HMMs
are extremely flexible and might remain the preferred ASR
method for quite some time. For speech recognition re-
search, however, a main thrust should be searching for in-
herently more parsimonious models, ones that incorporate
only the distinct properties of speech utterances relativeto
competing speech utterances. The rest of this paper is thus
devoted to what HMMs can do.

Section 2 reviews random variables, conditional inde-
pendence, and graphical models (Section 2.1), stochastic
processes (Section 2.2), and discrete-time Markov chains
(Section 2.3). Section 3 provides a definition of an HMM,
that has both a generative and an “acceptive” point of view.
Section 4 compiles a list of properties, and discusses how
they might or might not apply to HMMs. Section 5 derives
conditions for HMM accuracy in a Kullback-Leibler dis-
tance sense, proving a lower bound on the necessary number
of hidden states. The section derives sufficient conditionsas
well. Section 6 reviews several alternatives to HMMs, and
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concludes by presenting an intuitive criterion one might use
when considering alternatives.

1.1 Notation

Measure theoretic principles are avoided in this paper, and
discrete and continuous random variables are distinguished
only where necessary. Capital letters (e.g.,X , Q) will refer
to random variables, lower case letters (e.g.,x, q) will refer
to values of those random variables, and script letters (e.q.,
X, Q) will refer to possible values so thatx ∈ X, q ∈ Q. If X
is distributed according top, it will be written X ∼ p(X).
Probabilities are denotedpX(X = x), p(X = x), or p(x)
which are considered equivalent. For notational simplicity,
p(x) will at different times symbolize a continuous proba-
bility density or a discrete probability mass function. The
distinction will be unambiguous when needed.

It will be necessary to refer to sets of integer indexed

random variables. LetA
∆
= {a1, a2, . . . , aT } be a set

of T integers. ThenXA
∆
= {Xa1

, Xa2
, . . . , XaT

}. If
B ⊂ A thenXB ⊂ XA. It will also be useful to define
sets of integers using matlab-like ranges. As such,Xi:j

with i < j will refer to the variablesXi, Xi+1, . . . , Xj.

X<i
∆
= {X1, X2, . . . , Xi−1}, andX¬t

∆
= X1:T \ Xt =

{X1, X2, . . . , Xt−1, Xt+1, Xt+2, . . . , XT } whereT will be
clear from the context, and\ is the set difference operator.
When referring to sets ofT random variable, it will also be

useful to defineX
∆
= X1:T andx

∆
= x1:T . Additional nota-

tion will be defined when needed.

2. Preliminaries

Because within an HMM lies a hidden Markov chain which
in turn contains a sequence of random variables, it is use-
ful to review a few prerequisite topics before beginning our
analysis. Readers familiar with this material should skip di-
rectly to Section 3. Information theory, while necessary for
a later section of this paper, is not reviewed and the reader
is referred to the texts [11], [12].

2.1 Random Variables, Conditional Independence, and
Graphical Models

A random variable takes on values (or in the continuous
case, a range of values) with certain probabilities.† Dif-
ferent random variables might or might not have the abil-
ity to influence each other, a notion quantified by statisti-
cal independence. Two random variablesX andY are said
to be (marginally) statistically independent if and only if
p(X = x, Y = y) = p(X = x)p(Y = y) for every value
of x andy. This is writtenX⊥⊥Y . Independence implies

†In this paper, explanations often use discrete random variables
to avoid measure theoretic notation needed in the continuous case.
See [13]–[15] for a precise treatment of continuous random vari-
ables. Note also that random variables may be either scalar or vec-
tor valued.

that regardless of the outcome of one random variable, the
probabilities of the outcomes of the other random variable
stay the same.

Two random variables might or might not be indepen-
dent of each other depending on knowledge of a third ran-
dom variable, a concept captured by conditional indepen-
dence. A random variableX is conditionally independent of
a different random variableY given a third random variable
Z under a given probability distributionp(·), if the follow-
ing relation holds:

p(X = x, Y = y|Z = z)

= p(X = x|Z = z)p(Y = y|Z = z)

for all x, y, andz. This is writtenX⊥⊥Y |Z and it is said that
“X is independent ofY givenZ underp(·)”. An equivalent
definition isp(X = x|Y = y, Z = z) = p(X = x|Z = z).
The conditional independence ofX andY givenZ has the
following intuitive interpretation: if one has knowledge of
Z, then knowledge ofY does not change one’s knowledge
of X and vice versa. Conditional independence is different
from unconditional (or marginal) independence. Therefore,
it might be true thatX⊥⊥Y but not true thatX⊥⊥Y |Z. One
valuable property of conditional independence follows: if
XA⊥⊥YB|ZC , and subsetsA′ ⊂ A andB′ ⊂ B are formed,
then it follows thatXA′⊥⊥YB′ |ZC . Conditional indepen-
dence is a powerful concept — when assumptions are made,
a statistical model can undergo enormous simplifications.
This is due to the fact that (conditional) independence im-
plies that some factorization of the joint distribution exists.
And given a factorization, it is possible to distribute sums
inside of products, something that can yield huge compu-
tational savings [16]. Additional properties of conditional
independence and factorization are presented in [17], [18].

Graphical models [17]–[21] are quite useful to describe
conditional independence and its consequences. Graphical
models are an abstraction that encompasses an extremely
large set of statistical ideas. Specifically, a graphical model
is a graphG = (V, E) whereV is a set of vertices and the set
of edgesE is a subset of the setV ×V . A particular graphi-
cal model is associated with a collection of random variables
and a family of probability distributions over that collection.
The vertex setV is in one-to-one correspondence with the
set of random variables. The edge setE of the model in one
way or another specifies a set of conditional independence
(or factorization) properties of the random variables thatare
true for every the member of the associated family. There
are different types of graphical models. The set of condi-
tional independence assumptions specified by a graphical
model, and therefore the family of probability distributions
it constitutes, depends on its type.

One particularly famous type of directed graphical
model (DGM) (where edges are directed) is called a
Bayesian network (BN) [18], [21], [22], although one should
not ascribe any Bayesian statistical interpretation to these
models. In a DGM, if an edge is directed from nodeA to-
wards nodeB, thenA is a parent ofB andB is a child
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Fig. 1 Like any graphical model, the edges in a BN determine the conditional independence properties
over the corresponding variables. For a BN, however, the arrow directions make an important difference.
The figure shows three networks with different arrow directions over the same random variables,A, B,
andC. On the left side, the variables form a three-variable first-order Markov chainA → B → C

(see Section 2.3). In the middle graph, the same conditionalindependence property is realized although
one of the arrows is pointing in the opposite direction. Boththese networks correspond the property
A⊥⊥C|B. These two networks do not, however, insist thatA andB are not independent. The right
network corresponds to the propertyA⊥⊥C but it does not imply thatA⊥⊥C|B.

of A. One may also discuss ancestors, descendants, etc. of
a node. A Dynamic Bayesian Network (DBN) [23]–[26]
is one type of DGM containing edges pointing in the direc-
tion of time. There are several equivalent schemata that may
serve to formally define the conditional independence rela-
tionships implied by a BN[17]. This includes d-separation
[18], [21], the directed local Markov property [17] (which
states that a variable is conditionally independent of its non-
descendants given its parents), and the Bayes-ball procedure
[27]. An undirected graphical model (or a Markov random
field [28]) is one where conditional independence among the
nodes corresponds simply to graph separation, and therefore
has a easier semantics than Bayesian networks. The fam-
ily of distributions associated with BNs is different from
the family associated with undirected models, but the in-
tersection of the two families is known as the decomposable
models [17]. Other types of graphical models include causal
models [29], chain graphs [17], factor graphs [30], and de-
pendency networks [31].

Nodes in a graphical model can be eitherhidden(they
have unknown value and signify a true random variable),
or they can beobserved, which means that the values are
known. In fact, HMMs are so named because they pos-
sess a Markov chain that is hidden. A node may at dif-
ferent times be either hidden or observed, and for different
reasons. For example, if one asks “what is the probability
p(C = c|A = a)?” for the left graph in Figure 1, thenB is
hidden andA is observed. If instead one asks “what is the
probabilityp(C = c|B = b) or p(A = a|B = b)?” then
B is observed. A node may be hidden because of missing
values of certain random variables in samples from a data-
base. Moreover, when the query “isA⊥⊥B|C?” is asked of
a graphical model, it is implicitly assumed thatA andB are
hidden andC is observed. In general, if the value is known
(i.e., if “evidence” has been supplied) for a node, then it is
considered observed — otherwise, it is considered hidden.

A key problem with graphical models is that of com-
puting the probability of one subset of nodes given values
of some other subset, a procedure called probabilistic in-
ference. Inference using a network containing hidden vari-
ables must “marginalize” them away. For example, given
p(A, B, C), the computation ofp(a|c) may be performed
as:

p(a|c) =
p(a, c)

p(c)
=

∑

b p(a, b, c)
∑

a,b p(a, b, c)

in whichb has been marginalized (or integrated) away in the
numerator. Inference is essential both to make predictions
and to learn the network parameters with, say, the EM algo-
rithm [32] or other iterative schemes [33].

In this paper, graphical models will help explicate
the HMM conditional independence properties. An addi-
tional important property of graphical models, however, is
that they supply more efficient inference procedures [21]
than just, ignoring conditional independence, marginalizing
away all unneeded and hidden variables. Inference can be
either exact, as in the popular junction tree algorithm [21]
(of which the Forward-Backward or Baum-Welch algorithm
[4], [34] is an example [35]), or can be approximate [36]–
[40] since in the general case inference is NP-Hard [41].

2.2 Stochastic Processes, Discrete-time Markov Chains,
and Correlation

A discrete-time stochastic process is a collection{Xt} for
t ∈ 1:T of random variables ordered by the discrete time
indext. In general, the distribution for each of the variables
Xt can be arbitrary and different for eacht. There may also
be arbitrary conditional independence relationships between
different subsets of variables of the process — this corre-
sponds to a graphical model with edges between all or most
nodes.

Certain types of stochastic processes are common be-
cause of their analytical and computational simplicity. One
example follows:

Definition 2.1. Independent and Identically Distributed
(i.i.d.) The stochastic process is said to be i.i.d.[11], [42],
[43] if the following condition holds:

p(Xt = xt, Xt+1 = xt+1, . . . , Xt+h = xt+h)

=
h
∏

i=0

p(X = xt+i)

for all t, for all h ≥ 0, for all xt:t+h, and for some distribu-
tion p(·) that is independent of the indext.
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An i.i.d. process therefore comprises an ordered col-
lection of independent random variables each one having
exactly the same distribution. A graphical model of an ı.i.d
process contains no edges at all.

If the statistical properties of variables within a time-
window of a stochastic process do not evolve over time, the
process is said to be stationary.

Definition 2.2. Stationary Stochastic ProcessThe sto-
chastic process{Xt : t ≥ 1} is said to be (strongly) sta-
tionary [13] if the two collections of random variables

{Xt1, Xt2 , . . . , Xtn
}

and
{Xt1+h, Xt2+h, . . . , Xtn+h}

have the same joint probability distributions for alln andh.

In the continuous case, stationarity means that
FXt1:n

(a) = FXt1:n+h
(a) for all a whereF (·) is the cu-

mulative distribution anda is a valid vector-valued constant
of lengthn. In the discrete case, stationarity is equivalent to
the condition

P (Xt1 = x1, Xt2 = x2, . . . , Xtn
= xn)

= P (Xt1+h = x1, Xt2+h = x2, . . . , Xtn+h = xn)

for all t1, t2, . . . , tn, for all n > 0, for all h > 0, and for all
xi. Every i.i.d. processes is stationary.

The covariance between two random vectorsX andY
is defined as:

cov(X, Y )

= E[(X − EX)(Y − EY )′] = E(XY ′) − E(X)E(Y )′

It is said thatX and Y are uncorrelated if cov(X, Y ) =
~0 (equivalently, if E(XY ′) = E(X)E(Y )′) where~0 is
the zero matrix. IfX and Y are independent, then they
are uncorrelated, but not vice versa unless they are jointly
Gaussian [13].

2.3 Markov Chains

A collection of discrete-valued random variables{Qt : t ≥
1} forms annth-order Markov chain [13] if

P (Qt = qt|Qt−1 = qt−1, Qt−2 = qt−2, . . . , Q1 = q1) =

P (Qt = qt|Qt−1 = qt−1, Qt−2 = qt−2, . . . , Qt−n = qt−n)

for all t ≥ 1, and allq1, q2, . . . , qt. In other words, given the
previousn random variables, the current variable is condi-
tionally independent of every variable earlier than the previ-
ousn. A three-variable first order Markov chain is depicted
in the left network in Figure 1.

One often views the event{Qt = i} as if the chain is
“in statei at timet” and the event{Qt = i, Qt+1 = j} as
a transition from statei to statej starting at timet. This
notion arises by viewing a Markov chain as a finite-state

automata (FSA) [44] with probabilistic state transitions.In
this case, the number of states corresponds to the cardinality
of each random variable. In general, a Markov chain may
have infinitely many states, but chain variables in this paper
are assumed to have only finite cardinality.

An nth-order Markov chain may always be converted
into an equivalent first-order Markov chain [45] using the
following procedure:

Q′
t

∆
= {Qt, Qt−1, . . . , Qt−n}

whereQt is annth-order Markov chain. ThenQ′
t is a first-

order Markov chain because

P (Q′
t = q′t|Q

′
t−1 = q′t−1, Q

′
t−2 = q′t−2, . . . , Q

′
1 = q′1)

= P (Qt−n:t = qt−n:t|Q1:t−1 = q1:t−1)

= P (Qt−n:t = qt−n:t|Qt−n−1:t−1 = qt−n−1:t−1)

= P (Q′
t = q′t|Q

′
t−1 = q′t−1)

This transformation implies that, given a large enough state
space, a first-order Markov chain may represent anynth-
order Markov chain.

The statistical evolution of a Markov chain is deter-
mined by the state transition probabilitiesaij(t)

∆
= P (Qt =

j|Qt−1 = i). In general, the transition probabilities can be
a function both of the states at successive time steps and of
the current timet. In many cases, it is assumed that there
is no such dependence ont. Such a time-independent chain
is called time-homogeneous (or just homogeneous) because
aij(t) = aij for all t.

The transition probabilities in a homogeneous Markov

chain are determined by a transition matrixA whereaij
∆
=

(A)ij . The rows ofA form potentially different probability
mass functions over the states of the chain. For this reason,
A is also called a stochastic transition matrix (or just a tran-
sition matrix).

A state of a Markov chain may be categorized into one
of three distinct categories [13]. A statei is said to betran-
sient if, after visiting the state, it is possible for it never to
be visited again, i.e.,:

p(Qn = i for somen > t|Qt = i) < 1.

A state i is said to benull-recurrent if it is not transient
but the expected return time is infinite (i.e.,E[min{n >
t : Qn = i}|Qt = i] = ∞). Finally, a state ispositive-
recurrent if it is not transient and the expected return time
to that state is finite. For a Markov chain with a finite num-
ber of states, a state can only be either transient or positive-
recurrent.

Like any stochastic process, an individual Markov
chain might or might not be a stationary process. The sta-
tionarity condition of a Markov chain, however, depends on
1) if the Markov chain transition matrix has (or “admits”) a
stationary distribution or not, and 2) if the current distribu-
tion over states is one of those stationary distributions.

If Qt is a time-homogeneous stationary first-order
Markov chain then:
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P (Qt1 = q1, Qt2 = q2, . . . , Qtn
= qn)

= P (Qt1+h = q1, Qt2+h = q2, . . . , Qtn+h = qn)

for all ti, h, n, andqi. Using the first order Markov property,
the above can be written as:

P (Qtn
= qn|Qtn−1

= qn−1)

P (Qtn−1
= qn−1|Qtn−2

= qn−2)

. . . P (Qt2 = q2|Qt1 = q1)P (Qt1 = q1)

= P (Qtn+h = qn|Qtn−1+h = qn−1)

P (Qtn−1+h = qn−1|Qtn−2+h = qn−2)

. . . P (Qt2+h = q2|Qt1+h = q1)P (Qt1+h = q1)

Therefore, a time-homogeneous Markov chain is stationary
only whenP (Qt1 = q) = P (Qt1+h = q) = P (Qt = q) for
all q ∈ Q (clearly, this is an if and only if condition). This is
called a stationary distribution of the Markov chain and will
be designated byξ with ξi = P (Qt = i).†

According to the definition of the transition matrix, a
stationary distribution has the property thatξA = ξ imply-
ing thatξ must be a left eigenvector of the transition matrix
A. For example, letp1 = [.5, .5] be the current distribution
over a 2-state Markov chain (using matlab notation). Let
A1 = [.3, .7; .7, .3] be the transition matrix. The Markov
chain is stationary sincep1A1 = p1. If the current distribu-
tion is p2 = [.4, .6], however, thenp2A1 6= p2, so the chain
is no longer stationary.

In general, there can be more than one stationary distri-
bution for a given Markov chain (as there can be more than
one eigenvector of a matrix). The condition of stationarity
for the chain, however, depends on if the chain “admits” a
stationary distribution, and if it does, whether the current
marginal distribution over the states is one of the stationary
distributions. If a chain does admit a stationary distribution
ξ, thenξj = 0 for all j that are transient and null-recurrent
[13]; i.e., a stationary distribution has positive probability
only for positive-recurrent states (states that are assuredly
re-visited).

The time-homogeneous property of a Markov chain is
distinct from the stationarity property. Stationarity, how-
ever, does implies time-homogeneity. To see this, note that
if the process is stationary thenP (Qt = i, Qt−1 = j) =
P (Qt−1 = i, Qt−2 = j) andP (Qt = i) = P (Qt−1 = i).
Therefore,aij(t) = P (Qt = i, Qt−1 = j)/P (Qt−1 =
j) = P (Qt−1 = i, Qt−2 = j)/P (Qt−2 = j) = aij(t − 1),
so by inductionaij(t) = aij(t + τ) for all τ , and the
chain is time-homogeneous. On the other hand, a time-
homogeneous Markov chain might not admit a stationary
distribution and therefore never correspond to a stationary
random process.

Note that an inhomogeneous Markov chain might seem
like it has a stationary distribution, and in fact the mar-
ginal distribution of states at timet (or p(Qt = q)) might

†Note that in the speech recognition literature, the symbolπ

is often used to indicate the initial (timet = 1) state distribution
which might or might not be stationary.

not change over time for inhomogeneous Markov chains.
For example, letAt = [.3, .7; .7, .3] when t is even and
At = [.4, .6; .6, .4] whent is odd. Then the Markov chain
is inhomogeneous but if the current state distribution is
p = [.5, .5], thenpAt = p for t both even and odd. Note
that this is not a stationary distribution. Whent is even, we
have thatp(Qt = 0, Qt+1 = 1) = 0.5 × 0.3 but whent is
odd,p(Qt = 0, Qt+1 = 1) = 0.5 × 0.4, so the chain does
not exhibit a stationary distribution according to the defini-
tion.

The idea of “probability flow” may help to determine if
a first-order Markov chain admits a stationary distribution.
Stationary, orξA = ξ, implies that for alli

ξi =
∑

j

ξjaji

or equivalently,

ξi(1 − aii) =
∑

j 6=i

ξjaji

which is the same as
∑

j 6=i

ξiaij =
∑

j 6=i

ξjaji

The left side of this equation can be interpreted as the proba-
bility flow out of statei and the right side can be interpreted
as the flow into statei. A stationary distribution requires
that the inflow and outflow cancel each other out for every
state.

3. Hidden Markov Models

Perhaps the earliest discussion of what is now called a hid-
den Markov model is given in by Shannon in [46]. This was
followed by papers such as [46]–[49] where they were called
“functions of finite Markov chains” (where the observation
distributions were deterministic), and where learning the
transition matrixA was termed the “identifiability problem.”
In [50], [51], the more general fully-stochastic HMMs were
defined and termed “stochastic functions of finite Markov
chains.” A thorough account of the history of HMMs is
given in [5]. There are also a number of accounts of HMMs
and their use in speech recognition and beyond [2], [3],
[5], [6], [52]–[58]. Inference in hidden Markov models was
shown to be a special case of Bayesian network inference in
[35].

Our definition of an HMM, presented next, is inspired
by their generalizations to Bayesian networks:

Definition 3.1. Hidden Markov Model A hidden Markov
model (HMM) is collection of random variables consisting
of a set ofT discrete scalar variablesQ1:T and a set ofT
other variablesX1:T which may be either discrete or contin-
uous (and either scalar- or vector-valued). These variables,
collectively, possess the following conditional independence
properties:
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{Qt:T , Xt:T }⊥⊥{Q1:t−2, X1:t−1}|Qt−1 (1)

and
Xt⊥⊥{Q¬t, X¬t}|Qt (2)

for eacht ∈ 1 : T . No other conditional independence
properties are true in general, unless they follow from Equa-
tions 1 and 2. The lengthT of these sequences is itself an
integer-valued random variable having a complex distribu-
tion (see Section 4.7).

Let us suppose that eachQt may take values in a finite
set, soQt ∈ Q whereQ is called the state space which has
cardinality|Q|.

Equations (1) and (2) imply a large assortment of con-
ditional independence statements. Equation 1 states that
the future is conditionally independent of the past given the
present. One implication† is thatQt⊥⊥Q1:t−2|Qt−1 which
means the variablesQ1:T form a discrete-time, discrete-
valued, first-order Markov chain. Another implication of
Equation 1 isQt⊥⊥{Q1:t−2, X1:t−1}|Qt−1 which means
thatXτ is unable, givenQt−1, to affectQt for τ < t. This
does not imply, givenQt−1, thatQt is unaffected by future
variables. In fact, the distribution ofQt could dramatically
change, even givenQt−1, when the variablesXτ or Qτ+1

change, forτ > t.
The other variablesX1:T form a general discrete time

stochastic process with, as we will see, great flexibility.
Equation 2 states that given an assignment toQt, the dis-
tribution of Xt is independent of every other variable (both
in the futureand in the past) in the HMM. One impli-
cation is thatXt⊥⊥Xt+1|{Qt, Qt+1} which follows since
Xt⊥⊥{Xt+1, Qt+1}|Qt andXt⊥⊥Xt+1|Qt+1.

Definition 3.1 does not limit the number of states|Q|
in the Markov chain, does not require the observationsX1:T

to be either discrete, continuous, scalar-, or vector- valued,
does not designate the implementation of the dependencies
(e.g., general regression, probability table, neural network,
etc.), does not determine the model families for each of
the variables (e.g., Gaussian, Laplace, etc.), does not force
the underlying Markov chain to be time-homogeneous, and
does not fix the parameters or any tying mechanism. Note
that the HMM makesno marginal independence assump-
tions, meaning nothing in an HMM is independent of any-
thing else. That is, no statements are made of the form
A⊥⊥B, whereA andB are sets of variables — only assump-
tions of conditional independence exist in an HMM, which
are of the formA⊥⊥B|C.

Any joint probability distribution over an appropriately
typed set of random variables that obeys the above set of
conditional independence rules is then an HMM. The two
above conditional independence properties imply that, fora
givenT , the joint distribution over all the variables may be
expanded as shown in Figure 2:

To parameterize an HMM, one therefore needs the fol-
lowing quantities: 1) the distribution over the initial chain

†Recall Section 2.1.

variablep(q1), 2) the conditional “transition” distributions
for the first-order Markov chainp(qt|qt−1), and 3) the con-
ditional distribution for the other variablesp(xt|qt). It can
be seen that these quantities correspond to the classic HMM
definition [34]. Specifically, the initial (not necessarilysta-
tionary) distribution is labeledπ which is a vector of length
|Q|. Then,p(Q1 = i) = πi. whereπi is the ith element
of π. The observation probability distributions are notated
bj(x) = p(Xt = x|Qt = j) and the associated parameters
depend onbj(x)’s family of distributions. Also, the Markov
chain is typically assumed to be time-homogeneous, with
stochastic matrixA where(A)ij = p(Qt = j|Qt−1 = i) for
all t. HMM parameters are often symbolized collectively

asλ
∆
= (π, A, B) whereB represents the parameters corre-

sponding to all the observation distributions.
For speech recognition, the Markov chainQ1:T is typ-

ically hidden, which naturally results in the namehidden
Markov model. The variablesX1:T are typically observed.
These are the conventional variable designations but need
not always hold. For example,Xτ could be missing or hid-
den, for some or allτ . In some tasks,Q1:T might be known
andX1:T might be hidden. The name “HMM” applies in
any case, even ifQ1:T are not hidden andX1:T are not ob-
served. Regardless,Q1:T will henceforth refer to the hidden
variables andX1:T the observations.

With the above definition, an HMM can be simultane-
ously viewed as a generator and a stochastic acceptor. Like
any random variable, sayY , one may obtain a sample from
that random variable (e.g., flip a coin), or given a sample, say
y, one may compute the probability of that samplep(Y = y)
(e.g., the probability of heads). One way to sample from an
HMM is to first obtain a complete sample from the hidden
Markov chain (i.e., sample from all the random variables
Q1:T by first samplingQ1, thenQ2 givenQ1, and so on.),
and then at each time pointt produce a sample ofXt using
p(Xt|qt), the observation distribution according to the hid-
den variable value at timet. This is the same as choosing
first a sequence of urns and then a sequence of balls from
each urn as described in [34]. To sample just fromX1:T ,
one follows the same procedure but then throws away the
Markov chainQ1:T .

It is important to realize that each sample ofX1:T

requires a new and different sample ofQ1:T . In other
words, two different HMM observation samples typically
originate from two different state assignments to the hid-
den Markov chain. Put yet another way, an HMM obser-
vation sample is obtained using the marginal distribution
p(X1:T ) =

∑

q1:T
p(X1:T , q1:T ) and not from the condi-

tional distributionp(X1:T |q1:T ) for some fixed hidden vari-
able assignmentq1:T . As will be seen, this marginal distrib-
utionp(X1:T ) can be quite general.

Correspondingly, when one observes only the collec-
tion of valuesx1:T , they have presumably been produced
according to some specific but unknown assignment to the
hidden variables. A givenx1:T , however, could have been
produced from one of many different assignments to the hid-
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p(x1:T , q1:T ) = p(xT , qT |x1:T−1, q1:T−1)p(x1:T−1, q1:T−1) Chain Rule of probability.

= p(xT |qT , x1:T−1, q1:T−1)p(qT |x1:T−1, q1:T−1)p(x1:T−1, q1:T−1) Again, chain rule.

= p(xT |qT )p(qT |qT−1)p(x1:T−1, q1:T−1) Since XT ⊥⊥{X1:T−1, Q1:T−1}|QT and
QT⊥⊥{X1:T−1, Q1:T−2}|QT−1 which fol-
low from Definition 3.1

.

= . . .

= p(q1)
TY

t=2

p(qt|qt−1)
TY

t=1

p(xt|qt)

Fig. 2 HMM Joint distribution expansion derivation.

den variables. To compute the probabilityp(x1:T ), one must
therefore marginalize away all possible assignments toQ1:T

as follows:

p(x1:T ) =
∑

q1:T

p(x1:T , q1:T )

=
∑

q1:T

p(q1)

T
∏

t=2

p(qt|qt−1)

T
∏

t=1

p(xt|qt)

Fig. 3 Stochastic finite-state automaton (SFSA) view of an HMM. In
this case, only the possible (i.e., non-zero probability) hidden Markov
chain state transitions are shown. Note that this diagram corresponds to
a “Moore”-style SFSA, where the output distribution is a function only of
the current Markov chain state. There are also “Mealy”-style SFSA de-
scriptions of HMMs, where the output is a function of the state transition
from one state to another [45]. Note that they are mathematically equiva-
lent to each other, and there is no reason other than pedagogyto prefer one
to the other other.

An HMM may be graphically depicted in three ways.
The first view portrays only a directed state-transition graph
as in Figure 3. It is important to realize that this view neither
depicts the HMM’s output distributions nor the conditional
independence properties. The graph depicts only the allow-
able transitions in the HMM’s underlying Markov chain.
Each node corresponds to one of the states inQ, where an
edge going from nodei to nodej indicates thataij > 0,
and the lack of such an edge indicates thataij = 0. The
transition matrix associated with Figure 3 is as follows:

A =

0BBBBBBBBB� a11 a12 a13 0 0 0 0 0
0 a22 0 a24 a25 0 0 0
0 0 a33 a34 0 0 a37 0
0 0 0 a44 a45 a46 0 0
0 0 0 0 0 0 a57 0
0 0 0 0 0 0 0 a68

0 a72 0 0 0 0 0 a78

a81 0 0 0 0 0 0 a88

1CCCCCCCCCA
where it is assumed that the explicitly mentionedaij are

non-zero. In this view, an HMM is seen as an stochastic
FSA [59]. One can envisage being in a particular statej
at a certain time, producing an observation sample from the
observation distribution corresponding to that statebj(x),
and then advancing to the next state according to the non-
zero transitions.

A second view of HMMs (Figure 4) shows the col-
lection of states and the set of possible transitions between
states at each successive time step. This view also depicts
only the transition structure of the underlying Markov chain.
In this portrayal, the transitions may change at different
times and therefore a non-homogeneous Markov chain can
be pictured unlike in Figure 3. This view is often useful to
display the HMM search space [45], [60] in a recognition or
decoding task.

t1 t2 t3

q
1

q
2

q
3

q
4

Fig. 4 Time-slice or lattice view of a Hidden Markov Model’s state tran-
sitions. This figure shows a 4-state HMM, and its possible state transitions
over 3 time steps.

A third HMM view, displayed in Figure 5, shows how
HMMs are one instance of a BN. In this case, the hidden
Markov-chain topology is unspecified — only the HMM
conditional independence properties are shown, correspond-
ing precisely to our HMM definition. That is, using any of
the equivalent schemata such as the directed local Markov
property (Section 2.1), the conditional independence prop-
erties implied by Figure 5 are identical to those expressed
in Definition 3.1. For example, the variableXt does not de-
pend on any ofXt’s non-descendants ({Q¬t, X¬t}) given
Xt’s parentQt. An undirected graphical model can also
be used to describe the conditional independence statements
made by an HMM. In such a case, the figure would be the
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same as Figure 5, but where all edges are undirected.
Considering the three representations of an HMM, the

BN (or some graphical model variant) view is preferable
when discussing the HMM statistical dependencies (or lack
thereof). The stochastic FSA view in Figure 3 is useful
primarily to analyze the underlying hidden Markov chain
topology. It should be very clear that Figure 3 and Figure 5
display entirely different HMM properties.

Q
t
 Q
t
 1
+
Q
t
 1
–
 Q
t
 2
+


X t
 X t
 1
+
X t
 1
–
 X t
 2
+


Fig. 5 A graphical-model view of an HMM. Here the nodes of the graph
represent random variables (not states or state-transitions), and the edges
encode all of the conditional independence properties of anHMM.

There are many possible state-conditioned observation
distributions [34], [58]. When the observations are discrete,
the distributionsbj(x) are mass functions and when the
observations are continuous, the distributions are typically
specified using a parametric model family. A common fam-
ily is the Gaussian mixture where

bj(x) =

Nj
∑

k=1

cjkN(x|µjk , Σjk)

and whereN(x|µjk , Σjk) is a Gaussian distribution [17],
[61] with mean vectorµjk and covariance matrixΣjk. The
valuescjk are mixing coefficients for hidden statej with
cjk ≥ 0 and

∑

k cjk = 1. Often referred to as a Gaussian
Mixture HMM (GMHMM), this HMM has a BN depicted
in Figure 6. Other observation distribution choices include
discrete probability tables [34], neural networks (i.e., hy-
brid systems) [62], [63], auto-regressive distributions [56],
[64] or mixtures thereof [65], and the standard set of named
distributions [58].

Qt Qt 1+Qt 1–
 Qt 2+

X t X t 1+X t 1–
 X t 2+

Fig. 6 A Mixture-Observation Hidden Markov Model. Again, each node
in the graph represents a distinct random variable rather than a state-
transition diagram as shown in Figure 3.

One is often interested in computingp(x1:T ) for

a given set of observations. Blindly computing
∑

q1:T
p(x1:T , q1:T ) is hopelessly intractable, requiring

O(|Q|T ) operations. Fortunately, the conditional indepen-
dence properties allow for efficient computation of this
quantity. First the joint distribution can be expressed as
p(x1:t) =

∑

qt,qt−1
p(x1:t, qt, qt−1), the summand of which

can be expanded as follows:

p(x1:t, qt, qt−1)

= p(x1:t−1, qt−1, xt, qt)

(A)
= p(xt, qt|x1:t−1, qt−1)p(x1:t−1, qt−1)

= p(xt|qt, x1:t−1, qt−1)p(qt|x1:t−1, qt−1)p(x1:t−1, qt−1)

(B)
= p(xt|qt)p(qt|qt−1)p(x1:t−1, qt−1)

where (A) follows from the chain rule of probabil-
ity, and (B) follows sinceXt⊥⊥{X1:t−1, Q1:t−1}|Qt and
Qt⊥⊥{X1:t−1, Q1:t−2}|Qt−1 using Definition 3.1. This
yields,

p(x1:t, qt) =
∑

qt−1

p(x1:t, qt, qt−1) (3)

=
∑

qt−1

p(xt|qt)p(qt|qt−1)p(x1:t−1, qt−1) (4)

If the following quantity is definedαq(t)
∆
= p(x1:t, Qt = q),

then the preceding equations imply thatαq(t) = p(xt|Qt =
q)
∑

r p(Qt = q|Qt−1 = r)αr(t−1). This is just the alpha,
or forward, recursion [34]. Thenp(x1:T ) =

∑

q αq(T ), and
the entire computation requires onlyO(|Q|2T ) operations.
To derive this recursion, it was necessary to use only the fact
thatXt was independent of its past givenQt — Xt is also
independent of the future givenQt, but this was not needed.
This later assumption, however, is obligatory for the beta or
backward recursion.

p(xt+1,T |qt)

=
∑

qt+1

p(qt+1, xt+1, xt+2:T |qt)

(A)
=
∑

qt+1

p(xt+2:T |qt+1, xt+1, qt)p(xt+1|qt+1, qt)p(qt+1|qt)

(B)
=
∑

qt+1

p(xt+2:T |qt+1)p(xt+1|qt+1)p(qt+1|qt)

where (A) follows from the chain rule probability,
and (B) follows sinceXt+2:T⊥⊥{Xt+1, Qt}|Qt+1 and

Xt+1⊥⊥Qt|Qt+1. Using the definitionβq(t)
∆
= p(xt+1:T |Qt =

q), the above equations imply the beta-recursionβq(t) =
∑

r βr(t + 1)p(xt+1|Qt+1 = r)p(Qt+1 = r|Qt = q),
and another expression for the full probabilityp(x1:T ) =
∑

q βq(1)p(q)p(x1|q). Furthermore, this complete proba-
bility may be computed using a combination of the alpha
and beta values at anyt since
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p(x1:T ) =
∑

qt

p(qt, x1:t, xt+1:T )

=
∑

qt

p(xt+1:T |qt, x1:t)p(qt, x1:t)

(A)
=
∑

qt

p(xt+1:T |qt)p(qt, x1:t)

=
∑

qt

βqt
(t)αqt

(t)

where (A) follows SinceXt+1:T⊥⊥X1:t|Qt. Together, the
alpha- and beta- recursions are the key to learning the HMM
parameters using the Baum-Welch procedure (which is re-
ally the EM algorithm for HMMs [35], [57]) as described in
[34], [57].

It may seem natural at this point to provide EM para-
meter update equations for HMM training. Rather than re-
peat what has already been provided in a variety of sources
[34], [35], [57], we are at this point equipped with the ma-
chinery sufficient to move on and describe what HMMs can
do.

4. What HMMs Can Do

The HMM conditional independence properties (Equa-
tions 1 and 2), can be used to better understand the gen-
eral capabilities of HMMs. In particular, it is possible to
consider a particular quality in the context of conditionalin-
dependence, in an effort to understand how and where that
quality might apply, and its implications for using HMMs
in a speech recognition system. This section therefore com-
piles and then analyzes in detail a list of such qualities as
follows:

• 4.1 observation variables are i.i.d.
• 4.2 observation variables are i.i.d. conditioned on the

state sequence or are “locally” i.i.d.
• 4.3 observation variables are i.i.d. under the most likely

hidden variable assignment (i.e., the Viterbi path)
• 4.4 observation variables are uncorrelated over time

and do not capture acoustic context
• 4.5 HMMs correspond to segmented or piece-wise sta-

tionary distributions (the “beads-on-a-string” phenom-
ena)

• 4.6 when using an HMM, speech is represented as a
sequence of feature vectors, or “frames”, within which
the speech signal is assumed to be stationary

• 4.7 when sampling from an HMM, the active duration
of an observation distribution is a geometric distribu-
tion

• 4.8 a first-order Markov chain is less powerful than an
nth order chain

• 4.9 an HMM representsp(X |M) (a synthesis model)
but to minimize Bayes error, a model should represent
p(M |X) (a production model)

4.1 Observations i.i.d.

Given definition 2.1, it can be seen that an HMM is not i.i.d.
Consider the following joint probability under an HMM:

p(Xt:t+h = xt:t+h)

=
∑

qt:t+h

t+h
∏

j=t

p(Xj = xj |Qj = qj)aqj−1qj
.

Unless only one state in the hidden Markov chain has
non-zero probability for all times in the segmentt :t + h,
this quantity can not in general be factored into the form
∏t+h

j=t p(xj) for some time-independent distributionp(·) as
would be required for an i.i.d. process.

4.2 Conditionally i.i.d. observations

HMMs are i.i.d. conditioned on certain state sequences.
This is because

p(Xt:t+h = xt:t+h|Qt:t+h = qt:t+h)

=
t+h
∏

τ=t

p(Xτ = xτ |Qτ = qτ ).

and if for t ≤ τ ≤ t + h, qτ = j for some fixedj then

p(Xt:t+h = xt:t+h|Qt:t+h = qt:t+h) =

t+h
∏

τ=t

bj(xτ )

which is i.i.d. for this specific state assignment over this time
segmentt :t + h.

While this is true, recall that each HMM sample
requires a potentially different assignment to the hidden
Markov chain. Unless one and only one state assignment
during the segmentt :t + h has non-zero probability, the
hidden state sequence will change for each HMM sample
and there will be no i.i.d. property. The fact that an HMM
is i.i.d. conditioned on a state sequence does not necessar-
ily have repercussions when HMMs are actually used. An
HMM represents the joint distribution of feature vectors
p(X1:T ) which is obtained by marginalizing away (sum-
ming over) the hidden variables. HMM probability “scores”
(say, for a classification task) are obtained from that joint
distribution, and are not obtained from the distribution of
feature vectorsp(X1:T |Q1:T ) conditioned on one and only
one state sequence.

4.3 Viterbi i.i.d.

The Viterbi (maximum likelihood) path [4], [34] of an
HMM is defined as follows:

q∗1:T = argmax
q1:T

p(X1:T = x1:T , q1:T )

wherep(X1:T = x1:T , q1:T ) is the joint probability of an
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observation sequencex1:T and hidden state assignmentq1:T

for an HMM.
When using an HMM, it is often the case that the joint

probability distribution of features is taken according tothe
Viterbi path:

pvit(X1:T = x1:T ) (5)

= c p(X1:T = x1:T , Q1:T = q∗1:T )

= c max
q1:T

p(X1:T = x1:T , Q1:T = q1:T )

= c max
q1:T

T
∏

t=1

p(Xt = xt|Qt = qt)p(Qt = qt|Qt−1 = qt−1)

wherec is some normalizing constant. This can be different
than the complete probability distribution:

p(X1:T = x1:T ) =
∑

q1:T

p(X1:T = x1:T , Q1:T = q1:T ).

Even under a Viterbi approximation, however, the resulting
distribution is not necessarily i.i.d. unless the Viterbi paths
for all observation assignments are identical. The Viterbi
path is different for each observation sequence, and the max
operator does not in general commute with the product op-
erator in Equation 5, the product form required for an i.i.d.
process is unattainable in general.

4.4 Uncorrelated observations

Two observations at different times might be dependent, but
are they correlated? IfXt andXt+h are uncorrelated, then
E[XtX

′
t+h] = E[Xt]E[Xt+h]′. For simplicity, consider an

HMM that has single component Gaussian observation dis-
tributions, i.e.,bj(x) ∼ N(x|µj , Σj) for all statesj. Also
assume that the hidden Markov chain of the HMM is cur-
rently a stationary process with some stationary distribution
π. For such an HMM, the covariance can be computed ex-
plicitly. In this case, the mean value of each observation isa
weighted sum of the Gaussian means:

E[Xt] =

∫

xp(Xt = x)dx

=

∫

x
∑

i

p(Xt = x|Qt = i)πidx

=
∑

i

E[Xt|Qt = i]πi

=
∑

i

µiπi

Similarly,

E[XtX
′
t+h]

=

∫

xy′p(Xt = x, Xt+h = y)dxdy

=

∫

xy′
∑

ij

p(Xt = x, Xt+h = y|Qt = i, Qt+h = j)

p(Qt+h = j|Qt = i)πidxdy

=
∑

ij

E[XtX
′
t+h|Qt = i, Qt+h = j](Ah)ijπi

The above equations follow fromp(Qt+h = j|Qt =
i) = (Ah)ij (i.e., the Chapman-Kolmogorov equations
[13]) where(Ah)ij is the i, jth element of the matrixA
raised to theh power. Because of the conditional indepen-
dence properties, it follows that:

E[XtX
′
t+h|Qt = i, Qt+h = j]

= E[Xt|Qt = i]E[X ′
t+h|Qt+h = j] = µiµ

′
j

yielding

E[XtX
′
t+h] =

∑

ij

µiµ
′
j(A

h)ijπi

The covariance between feature vectors may therefore be
expressed as:

cov(Xt, Xt+h)

=
∑

ij

µiµ
′
j(A

h)ijπi −

(

∑

i

µiπi

)(

∑

i

µiπi

)′

It can be seen that this quantity is not in general the zero
matrix and therefore HMMs, even with a simple Gaussian
observation distribution and a stationary Markov chain, can
capture correlation between feature vectors. Results for
other observation distributions have been derived in [58].

To empirically demonstrate such correlation, the mu-
tual information [11], [66] in bits was computed between
feature vectors from speech data that was sampled using 4-
state per phone word HMMs trained from an isolated word
task using MFCCs and their deltas [67]. As shown on the
left of Figure 7, the HMM samples do exhibit inter-frame
dependence, especially between the same feature elements
at different time positions. The right of Figure 7 compares
the average pair-wise mutual information over time of this
HMM with i.i.d. samples from a Gaussian mixture.

HMMs indeed represent dependency information be-
tween temporally disparate observation variables. The hid-
den variables indirectly encode this information, and as the
number of hidden states increases, so does the amount of
information that can be encoded. This point is explored fur-
ther in Section 5.

4.5 Piece-wise or segment-wise stationary

A HMM’s stationarity condition may be discovered by find-
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Fig. 7 Left: The mutual information between features that were sampled from a collection of about
1500 word HMMs using 4 states each per context independent phone model. Right: A comparison of
the average pair-wise mutual information over time betweenall observation vector elements of such
an HMM with that of i.i.d. samples from a Gaussian mixture. The HMM shows significantly more
correlation than the noise-floor of the i.i.d. process. The high values in the center reflect correlation
between scalar elements within the vector-valued Gaussianmixture.

ing the conditions that must hold for an HMM to be a sta-
tionary process. In the following analysis, it is assumed that
the Markov chain is time-homogeneous – if non-stationarity
can be shown in this case, it certainly can be shown for the
more general time-inhomogeneous case.

According to Definition 2.2, an HMM is stationary
when†:

p(Xt1+h:n+h
= x1:n) = p(Xt1:n = x1:n)

for all n, h, t1:n, andx1:n. The quantityP (Xt1:n+h = x1:n)
can be expanded as follows:

p(Xt1:n+h = x1:n)

=
∑

q1:n

p(Xt1:n+h = x1:n, Qt1:n+h = q1:n)

=
∑

q1:n

p(Qt1+h = q1)p(Xt1+h = x1|Qt1+h = q1)

n
∏

i=2

p(Xti+h = xi|Qti+h = qi)p(Qti+h = qi|Qti−1+h = qi−1)

=
∑

q1

p(Qt1+h = q1)p(Xt1+h = x1|Qt1+h = q1)
∑

q2:T

n
∏

i=2

p(Xti+h = xi|Qti+h = qi)p(Qti+h = qi|Qti−1+h = qi−1)

=
∑

q1

p(Qt1+h = q1)p(Xt1+h = x1|Qt1+h = q1)
∑

q2:T

n
∏

i=2

p(Xti
= xi|Qti

= qi)p(Qti
= qi|Qti−1

= qi−1)

=
∑

q1

p(Qt1+h = q1)p(Xt1 = x1|Qt1 = q1)f(x2:n, q1)

wheref(x2:n, q1) is a function that is independent of the

†Note that Xt1+h:n+h
= x1:n is shorthand notation for

{Xt1+h
= x1, Xt2+h

= x2, . . . , Xtn+h
= xn}

variableh. For HMM stationarity to hold, it is required that
p(Qt1+h = q1) = p(Qt1 = q1) for all h.

Therefore, the HMM is stationary only when the under-
lying hidden Markov chain is stationary. An HMM therefore
does not necessarily correspond to a stationary stochastic
process.

For speech recognition, HMMs commonly have left-
to-right state-transition topologies where transition matrices
are upper triangular (aij = 0 ∀j > i). The transition
graph is thus a directed acyclic graph (DAG) that also allows
self loops. In such graphs, all states with successors (i.e.,
non-zero exit transition probabilities) have decreasing occu-
pancy probability over time. This can be seen inductively.
First consider the start states, those without any predeces-
sors. Such states have decreasing occupancy probability
over time because input transitions are unavailable to create
inflow. Consequently, these states have decreasing outflow
over time. Next, consider any state having only predecessors
with decreasing outflow. Such a state has decreasing inflow,
a decreasing occupancy probability, and decreasing outflow
as well. Only the final states, those with only predecessors
and no successors, may retain their occupancy probability
over time. Since under a stationary distribution, every state
must have zero net probability flow, a stationary distribution
for a DAG topology must have zero occupancy probability
for any states with successors. All states with children in a
DAG topology have less than unity return probability, and so
are transient. This proves that a stationary distribution must
bestow zero probability to every transient state. Therefore,
any left-to-right HMM (e.g., the HMMs typically found in
speech recognition systems) is not stationary unless all non-
final states have zero probability.

Note that HMMs are also unlikely to be “piece-wise”
stationary, in which an HMM is in a particular state for a
time and where observations in that time are i.i.d. and there-
fore stationary. Recall, each HMM sample uses a sepa-
rate sample from the hidden Markov chain. As a result, a
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segment (a sequence of identical state assignments to suc-
cessive hidden variables) in the hidden chain of one HMM
sample will not necessarily be a segment in the chain of a
different sample. Therefore, HMMs are not stationary un-
less either 1) every HMM sample always result in the same
hidden assignment for some fixed-time region, or 2) the hid-
den chain is always stationary over that region. In the gen-
eral case, however, an HMM does not produce samples from
such piece-wise stationary segments.

The notions of stationarity and i.i.d. are properties of a
random processes, or equivalently, of the complete ensem-
ble of process samples. The concepts of stationarity and
i.i.d. do not apply to a single HMM sample. A more appro-
priate characteristic that might apply to a single sequence
(possibly an HMM sample) is that of “steady state,” where
the short-time spectrum of a signal is constant over a signif-
icant duration of time. Clearly, human speech is not steady
state.

It has been known for some time that the information in
a speech signal necessary to convey an intelligent message
to the listener is contained in the spectral sub-band modu-
lation envelopes [68]–[72] and that the spectral energy in
this domain is temporally band-limited. A liberal estimate
of the high-frequency cutoff 50Hz. By band-pass filtering
the sub-band modulation envelopes, this trait is deliberately
used by speech coding algorithms which achieve signifi-
cant compression ratios with little or no intelligibility loss.
Similarly, any stochastic process representing the message-
containing information in a speech signal need only possess
dynamic properties at rates no higher than this rate. The
Nyquist sampling theorem states that any band-limited sig-
nal may be precisely represented with a discrete-time signal
sampled at a sufficiently high rate (at least twice the highest
frequency in the signal). The statistical properties of speech
may therefore be accurately represented with a discrete time
signal sampled at a suitably high rate.

Might samples of HMMs generate poor speech because
in a given sample the statistics can be piece-wise steady-
state and natural speech does not contain steady-state seg-
ments? An HMM’s Markov chain establishes the temporal
evolution of the process’s statistical properties, and theob-
servation distributions model any variation while in a par-
ticular state. Therefore, any band-limited non-stationary or
non-steady-state signal can be represented by an HMM with
a Markov chain having a fast enough average state change
and having enough states to capture all the inherent signal
variability. As argued below, only a finite number of states
are needed for real-world signals.

The arguments above also apply to time inhomoge-
neous processes since they are a generalization of the ho-
mogeneous case.

4.6 Within-frame stationary

Speech is a continuous time signal. A feature extraction
process generates speech frames at regular time intervals
(such as 10ms) each with some window width (usually

25ms). An HMM then characterizes the distribution over
this discrete-time set of frame vectors. Might HMMs have
trouble representing speech because information encoded
by within-frame variation is lost via the framing of speech?
This also is unlikely to produce problems. Because the prop-
erties of speech that convey any message are band-limited in
the modulation domain, if the rate of hidden state change
is high enough, and if the frame-window width is small
enough, a framing of speech would not result in informa-
tion loss about the actual message.

4.7 Geometric state distributions

In a Markov chain, the time durationD that a specific state
i is active is a random variable distributed according to a
geometric distribution with parameteraii. That is,D has
distributionP (D = d) = pd−1(1 − p) whered ≥ 1 is an
integer andp = aii. It seems possible that HMMs might be
deficient because their state duration distributions are inher-
ently geometric, and geometric distributions can not accu-
rately represent typical speech unit (e.g., phoneme or sylla-
ble) durations†

HMMs, however, do not necessarily have such prob-
lems, and this occurs because of “state-tying”, where mul-
tiple different states can share the same observation distri-
bution. If a sequence ofn states using the same observa-
tion distribution are strung together in series, and each of
the states has self transition probabilityα, then the resulting
distribution is equivalent to that of a random variable con-
sisting of the sum ofn independent geometrically distrib-
uted random variables. The distribution of such a sum has
a negative binomial distribution (which is a discrete version
of the gamma distribution) [73]. Unlike a geometric distri-
bution, a negative binomial distribution has a mode located
away from zero.

In general, a collection of HMM states sharing the
same observation distribution may be combined in a vari-
ety of serial and parallel fashions. When combined in se-
ries, the resulting distribution is a convolution of the indi-
vidual distributions (resulting in a negative binomial from
a series of geometric random variables). When combined
in parallel, the resulting distribution is a weighted mixture
of the individual distributions. This process can of course
be repeated at higher levels as well. In fact, one needs a
recursive definition to define the resulting set of possible
distributions. SupposingD is such a random variable, one
might say thatD has a distribution equal to that of a sum of
random variables, each one having a distribution equal to a
mixture model, with each mixture component coming from
the set of possible distributions forD. The base case is that
D has a geometric distribution. In fact, the random variable
T in Definition 3.1 has such a distribution. This is illus-
trated for a geometric, a sum of geometric, and a mixture of
sums of geometric distributions in Figure 8. As can be seen,

†It has been suggested that a gamma distribution is a more ap-
propriate speech-unit durational distribution[53].
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Fig. 8 Three possible active observation duration distributionswith an HMM, and their respective
Markov chain topologies. In each case, the states shown havetied observation distributions to achieve
these duration distributions.

by simply increasing the hidden state space cardinality, this
procedure can produce an broad class of distributions that
can represent the time during which a specific observation
distribution is active.

4.8 First-order hidden Markov assumption

As was demonstrated in Section 2.3 and as described in [45],
anynth-order Markov chain may be transformed into a first-
order chain. Therefore, assuming a first-order Markov chain
possess a sufficient states, there is no inherent fidelity loss
when using a first-order as opposed to annth-order HMM.†

4.9 Synthesis vs. Recognition

HMMs represent only the distribution of feature vectors for
a given model, i.e., the likelihoodp(X |M). This can viewed
as a synthesis or a generative model because sampling from
this distribution should produce (or synthesize) an instance
of the objectM (e.g., a synthesized speech utterance). To
achieve Bayes error, however, one should use the posterior
p(M |X). This can be viewed as a recognition or a discrim-
inative model since, given an instance ofX , a sample from
p(M |X) produces a class identifier (e.g., a string of words),
the goal of a recognition system. Even though HMMs inher-
ently representp(X |M), there are several reasons why this
property might be less severe than expected.

First, by Bayes rule,p(M |X) = p(X |M)p(M)/p(X)
so if an HMM accurately representsp(X |M) and given
accurate priorsP (M), an accurate posterior will ensue.
Maximum-likelihood training adjusts model parameters so
that the resulting distribution best matches the empiricaldis-
tribution specified by training-data. Maximum-likelihood
training is asymptotically optimal, so given enough train-
ing data and a rich enough model, an accurate estimate of

†In speech recognition systems, hidden state “meanings” might
change when moving to a higher-order Markov chain.

the posterior will be found just by producing an accurate
likelihoodp(X |M) and priorp(M).

On the other hand, approximating a distribution such
as p(X |M) might require more effort (parameters, train-
ing data, and compute time) than necessary to achieve good
classification accuracy. In a classification task, one of a
set of different modelsMi is chosen as the target class
for a givenX . In this case, only the decision boundaries,
that is the subset{x : p(Mi|x)p(Mi) = p(Mj |x)p(Mj)}
for all i 6= j, affect classification performance [7]. Rep-
resenting the entire set of class conditional distributions
p(x|M), which includes regions between decision bound-
aries, is more difficult than necessary to achieve good per-
formance [74].

The use of generative conditional distributions, as sup-
plied by an HMM, is not necessarily a limitation, since for
classificationp(X |M) need not be found. Instead, one of
the many functions that achieve Bayes error can be approxi-
mated. Of course, one member of the class is the likelihood
itself, but there are many others. Such a class can be de-
scribed as follows:

F = {f(x, m) : argmax
m

p(X = x|M = m)p(M = m)

= argmax
m

f(x, m)p(M = m) ∀x, m}.

The members ofF can be arbitrary functions, can be valid
conditional distributions, but need not be approximationsof
p(x|m). A sample from these distributions will not neces-
sarily result in an accurate object instance (or synthesized
speech utterance in the case of speech HMMs). Instead,
members ofF might be accurate only at decision bound-
aries. In other words, statistical consistency of a decision
function does not require consistency of any internal likeli-
hood functions.

There are two ways that other members of such a class
can be approximated. First, the degree to which boundary
information is represented by an HMM (or any likelihood
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model) depends on the parameter training method. Discrim-
inative training methods have been developed which adjust
the parameters of each model to increase not the individ-
ual likelihood but rather approximate the posterior proba-
bility or Bayes decision rule. Methods such as maximum
mutual information (MMI) [52], [75], minimum discrimina-
tion information (MDI) [76], [77], minimum classification
error (MCE) [78], [79], and more generally risk minimiza-
tion [7], [74] essentially attempt to optimizep(M |X) by ad-
justing whatever model parameters are available, be they the
likelihoodsp(X |M), posteriors, or something else.

Second, the degree to which boundary information is
represented depends on each model’s intrinsic ability to pro-
duce a probability distribution at decision boundaries vs.its
ability to produce a distribution between boundaries. Thisis
the inherent discriminability of the structure of the modelfor
each class, independent of its parameters. Models with this
property have been called structurally discriminative [80].

Objects of class A Objects of class B

Fig. 9 Two types of objects that share a common attribute, a horizontal
bar on the right of each object. This attribute need not be represented in the
classification task.

This idea can be motivated using a simple example.
Consider two classes of objects as shown in Figure 9. Ob-
jects of class A consist of an annulus with an extruding hor-
izontal bar on the right. Objects of class B consist of a diag-
onal bar also with an extruding horizontal bar on the right.
Consider a probability distribution family in this space that
is accurate only at representing horizontal bars — the av-
erage length, width, smoothness, etc. could be parameters
that determine a particular distribution. When members of
this family are used, the resulting class specific models will
be blind to any differences between objects of class A and
class B, regardless of the quality and type (discriminative
or not) of training method. These models are structurally
indiscriminate.

Consider instead two families of probability distribu-
tions in this 2D space. The first family accurately represents
only annuli of various radii and distortions, and the second
family accurately represents only diagonal bars. When each
family represents objects of their respective class, the re-
sulting models can easily differentiate between objects of
the two classes. These models are inherently blind to the
commonalities between the two classes regardless of the
training method. The resulting models are capable of rep-
resenting only the distinctive features of each class. In other

words, even if each model is trained using a maximum like-
lihood procedure using positive-example samples from only
its own class, the models will not represent the commonal-
ities between the classes because they are incapable of do-
ing so. The model families are structurally discriminative.
Sampling from a model of one class produces an object con-
taining attributes only that distinguish it from samples ofthe
other class’s model. The sample will not necessarily resem-
ble the class of objects its model represents. This, however,
is of no consequence to classification accuracy. This idea,
of course, can be generalized to multiple classes each with
their own distinctive attributes.

An HMM could be seen as deficient because it does not
synthesize a valid (or even recognizable) spoken utterance.
But synthesis is not the goal of classification. A valid syn-
thesized speech utterance should correspond to something
that could be uttered by an identifiable speaker. When used
for speech recognition, HMMs attempt to describe probabil-
ity distributions of speech in general, a distribution which
corresponds to the average over many different speakers
(or at the very least, many different instances of an utter-
ance spoken by the same speaker). Ideally, any idiosyn-
cratic speaker-specific information, which might result ina
more accurate synthesis, but not more accurate discrimina-
tion, should not be represented by a probabilistic model —
representing such additional information can only requirea
parameter increase without providing a classification accu-
racy increase. As mentioned above, an HMM should repre-
sent distinctive properties of a specific speech utterance rel-
ative to other rival speech utterances. Such a model would
not necessarily produce high quality synthesized speech.

The question then becomes, how structurally discrim-
inative are HMMs when attempting to model the distinc-
tive attributes of speech utterances? With HMMs, differ-
ent Markov chains represent each speech utterance. A rea-
sonable assumption is that HMMs are not structurally indis-
criminate because, even when trained using a simple maxi-
mum likelihood procedure, HMM-based speech recognition
systems perform reasonably well. Sampling from such an
HMM might produce an unrealistic speech utterance, but the
underlying distribution might be accurate at decision bound-
aries. Such an approach was taken in [80], where HMM de-
pendencies were augmented to increase structural discrim-
inability.

Earlier sections of this paper suggested that HMM dis-
tributions are not destitute in their flexibility, but this sec-
tion claimed that for the recognition task an HMM need not
accurately represent the true likelihoodp(X |M) to achieve
high classification accuracy. While HMMs are powerful,
a fortunate consequence of the above discussion is that
HMMs need not capture many nuances in a speech signal
and may be simpler as a result. In any event, just because a
particular HMM does not represent speech utterances does
not mean it is poor at the recognition task.
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5. Conditions for HMM Accuracy

Suppose thatp(X1:T ) is the true distribution of the obser-
vation variablesX1:T . In this section, it is shown that if
an HMM represents this distribution accurately, necessary
conditions on the number of hidden states and the necessary
complexity of the observation distributions may be found.
Let ph(X1:T ) be the joint distribution over the observation
variables under an HMM. HMM accuracy is defined as KL-
distance between the two distributions being zero, i.e.:

D(p(X1:T )||ph(X1:T )) = 0

If this condition is true, the mutual information between any
subset of variables under each distribution will be equal.
That is,

I(XS1
; XS2

) = Ih(XS1
; XS2

)

whereI(·; ·) is the mutual information between two random
vectors under the true distribution,Ih(·; ·) is the mutual in-
formation under the HMM, andSi is any subset of1:T .

Consider the two sets of variablesXt, the observation
at timet, andX¬t, the collection of observations at all times
other thant. Xt may be viewed as the output of a noisy
channel that has inputX¬t as shown in Figure 10. The in-
formation transmission rate betweenX¬t andXt is there-
fore equal to the mutual informationI(X¬t; Xt) between
the two.

X
 XtChannelt
¬

Fig. 10 A noisy channel view ofXt’s dependence onX¬t.

Implied by the KL-distance equality condition, for an
HMM to mirror the true distributionp(Xt|X¬t) its corre-
sponding noisy channel representation must have the same
transmission rate. Because of the conditional independence
properties, an HMM’s hidden variableQt separatesXt from
its contextX¬t and the conditional distribution becomes

ph(Xt|X¬t) =
∑

q

ph(Xt|Qt = q)ph(Qt = q|X¬t)

An HMM, therefore, attempts to compress the information
aboutXt contained inX¬t into a single discrete variable
Qt. A noisy channel HMM view is depicted in Figure 11.

For an accurate HMM representation, the composite
channel in Figure 11 must have at least the same infor-
mation transmission rate as that of Figure 10. Note that
Ih(X¬t; Qt) is the transmission rate betweenX¬t andQt,
and Ih(Qt; Xt) is the transmission rate betweenQt and
Xt. The maximum transmission rate through the HMM
composite channel is no greater than to the minimum of
Ih(X¬t; Qt) and Ih(Qt; Xt). Intuitively, HMM accuracy

X Xt

QtChannel Channel
A Bt¬


Fig. 11 A noisy channel view of one of the HMM conditional indepen-
dence property.

requiresIh(X¬t; Qt) ≥ I(Xt; X¬t) and Ih(Qt; Xt) ≥
I(Xt; X¬t) since if one of these inequalities does not hold,
then channel A and/or channel B in Figure 11 will be-
come a bottle-neck. This would restrict the composite chan-
nel’s transmission rate to be less than the true rate of Fig-
ure 10. An additional requirement is that the variableQt

have enough storage capacity (i.e., states) to encode the in-
formation flowing between the two channels. This last con-
dition must be a lower bound on the number of hidden states.
This is formalized by the following theorem.

Theorem 5.1. Necessary conditions for HMM accuracy.
An HMM as defined above (Definition 3.1) with joint obser-
vation distributionph(X1:T ) will accurately model the true
distribution p(X1:T ) only if the following three conditions
hold for all t:

• Ih(X¬t; Qt) ≥ I(Xt; X¬t),
• Ih(Qt; Xt) ≥ I(Xt; X¬t), and
• |Q| ≥ 2I(Xt;X¬t)

whereIh(X¬t; Qt) (resp. Ih(Qt; Xt)) is the information
transmission rate betweenX¬t andQt (resp. Qt andXt)
under an HMM, andI(Xt; X¬t) is the true information
transmission rate betweenI(Xt; X¬t).

Proof. If an HMM is accurate (i.e., has zero KL-
distance from the true distribution), thenI(X¬t; Xt) =
Ih(X¬t; Xt). As with the data-processing inequality [11],
the quantityIh(X¬t; Qt, Xt) can be expanded in two ways
using the chain rule of mutual information:

Ih(X¬t; Qt, Xt) (6)

= Ih(X¬t; Qt) + Ih(X¬t; Xt|Qt) (7)

= Ih(X¬t; Xt) + Ih(X¬t; Qt|Xt) (8)

= I(X¬t; Xt) + Ih(X¬t; Qt|Xt) (9)

The HMM conditional independence properties say that
Ih(X¬t; Xt|Qt) = 0, implying

Ih(X¬t; Qt) = I(X¬t; Xt) + Ih(X¬t; Qt|Xt)

or that
Ih(X¬t; Qt) ≥ I(X¬t; Xt)

sinceIh(X¬t; Qt|Xt) ≥ 0. This is the first condition. Simi-
larly, the quantityIh(Xt; Qt, X¬t) may be expanded as fol-
lows:

Ih(Xt; Qt, X¬t) (10)

= Ih(Xt; Qt) + Ih(Xt; X¬t|Qt) (11)

= I(Xt; X¬t) + Ih(Xt; Qt|X¬t) (12)
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Reasoning as above, this leads to

Ih(Xt; Qt) ≥ I(Xt; X¬t),

the second condition. A sequence of inequalities establishes
the third condition:

log |Q| ≥ H(Qt) ≥ H(Qt) − H(Qt|Xt)

= Ih(Qt; Xt) ≥ I(Xt; X¬t)

so |Q| ≥ 2I(Xt;X¬t).

A similar procedure leads to the requirement that
Ih(X1:t; Qt) ≥ I(X1:t; Xt+1:T ), Ih(Qt; Xt+1:T ) ≥
I(X1:t; Xt+1:T ), and|Q| ≥ 2I(X1:t;Xt+1:T ) for all t.

There are two implications of this theorem. First, an
insufficient number of hidden states can lead to an inac-
curate model. This has been known for some time in the
speech recognition community, but a lower bound on the
required number of states has not been established. With
an HMM, the information aboutXt contained inX<t is
squeezed through the hidden state variableQt. Depend-
ing on the number of hidden states, this can overburden
Qt and result in an inaccurate probabilistic model. But if
there are enough states, and if the information in the sur-
rounding acoustic context is appropriately encoded in the
hidden states, the required information may be compressed
and represented byQt. An appropriate encoding of the con-
textual information is essential since just adding states does
not guarantee accuracy will increase.

To achieve high accuracy, it is likely that a finite num-
ber of states is required for any real task since signals repre-
senting natural objects will have bounded mutual informa-
tion. Recall that the first order Markov assumption in the
hidden Markov chain is not necessarily a problem since a
first-order chain may represent annth order chain (see Sec-
tion 2.3 and [45]).

The second implication of this theorem is that each of
the two channels in Figure 11 must be sufficiently powerful.
HMM inaccuracy can result from using a poor observation
distribution family which corresponds to using a channel
with too small a capacity. The capacity of an observation
distribution is, for example, determined by the number of
Gaussian components or covariance type in a Gaussian mix-
ture HMM [67], or the number of hidden units in an HMM
with MLP [81] observation distributions [62], [63].

In any event, just increasing the number of components
in a Gaussian mixture system or increasing the number of
hidden units in an MLP system does not necessarily improve
HMM accuracy because the bottle-neck ultimately becomes
the fixed number of hidden states (i.e., value of|Q|). Al-
ternatively, simply increasing the number of HMM hidden
states might not increase accuracy if the observation model
is too weak. Of course, any increase in the number of model
parameters must accompany a training data increase to yield
reliable low-variance parameter estimates.

Can sufficient conditions for HMM accuracy be found?

Assume for the moment thatXt is a discrete random vari-

able with finite cardinality. Recall thatX<t
∆
= X1:t−1. Sup-

pose thatHh(Qt|X<t) = 0 for all t (a worst case HMM
condition to achieve this property is when every observa-
tion sequence has its own unique Markov chain state as-
signment). This implies thatQt is a deterministic function
of X<t (i.e., Qt = f(X<t) for somef(·)). Consider the
HMM approximation:

ph(xt|x<t) =
∑

qt

ph(xt|qt)ph(qt|x<t) (13)

but becauseH(Qt|X<t) = 0, the approximation becomes

ph(xt|x<t) = ph(xt|qx<t
)

whereqx<t
= f(x<t) since every other term in the sum in

Equation 13 is zero. The variableXt is discrete, so for each
value ofxt and for each hidden state assignmentqx<t

, the
distributionph(Xt = xt|qx<t

) can be set as follows:

ph(Xt = xt|qx<t
) = p(Xt = xt|X<t = x<t)

This last condition might require a number of hidden states
equal to the cardinality of the discrete observation space,
i.e., |X1:T | which can be very large. In any event, it follows
that for allt:

D(p(Xt|X<t)||ph(Xt|X<t))

=
∑

x1:t

p(x1:t) log
p(xt|x<t)

ph(xt|x<t)

=
∑

x1:t

p(x1:t) log
p(xt|x<t)

∑

qt
ph(xt|qt)ph(qt|x<t)

=
∑

x1:t

p(x1:t) log
p(xt|x<t)

ph(xt|qx<t
)

=
∑

x1:t

p(x1:t) log
p(xt|x<t)

p(xt|x<t)

= 0

It then follows, using the above equation, that:

0 =
∑

t

D(p(Xt|X<t)||ph(Xt|X<t))

=
∑

t

∑

x1:t

p(x1:t) log
p(xt|x<t)

ph(xt|x<t)

=
∑

t

∑

x1:T

p(x1:T ) log
p(xt|x<t)

ph(xt|x<t)

=
∑

x1:T

p(x1:T ) log

∏

t p(xt|x<t)
∏

t ph(xt|x<t)

=
∑

x1:T

p(x1:T ) log
p(x1:T )

ph(x1:T )

= D(p(X1:T )||ph(X1:T ))

In other words, the HMM is a perfect representation of the
true distribution, proving the following theorem.

Theorem 5.2. Sufficient conditions for HMM accuracy.
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An HMM as defined above (Definition 3.1) with a joint
discrete distributionph(X1:T ) will accurately represent a
true discrete distributionp(X1:T ) if the following conditions
hold for all t:

• H(Qt|X<t) = 0
• ph(Xt = xt|qx<t

) = p(Xt = xt|X<t = x<t).

It remains to be seen if simultaneously necessary and
sufficient conditions can be derived to achieve HMM ac-
curacy, if it is possible to derive sufficient conditions for
continuous observation vector HMMs under some reason-
able conditions (e.g., finite power, etc.), and what condi-
tions might exist for an HMM that is allowed to have a fixed
upper-bound KL-distance error.

6. What HMMs “Can’t” Do

From the previous sections, there appears to be little an
HMM can’t do. If under the true probability distribution,
two random variables possess extremely large mutual infor-
mation, an HMM approximation might fail because of the
required number of states required. This is unlikely, how-
ever, for distributions representing objects contained inthe
natural world.

One problem with HMMs is how they are used; the
conditional independence properties are inaccurate when
there are too few hidden states, or when the observation
distributions are inadequate. Moreover, a demonstration
of HMM generality acquaints us not with other inherently
more parsimonious models which could be superior. This is
explored in the next section.

6.1 How to Improve an HMM

The conceptually easiest way to increase an HMM’s accu-
racy is by increasing the number of hidden states and the
capacity of the observation distributions. Indeed, this ap-
proach is very effective. In speech recognition systems, itis
common to use multiple states per phoneme and to use col-
lections of states corresponding to tri-phones, quad-phones,
or even penta-phones. State-of-the-art speech recognition
systems have achieved their performance on difficult speech
corpora partially by increasing the number of hidden states.
For example, in the 1999 DARPA Broadcast News Work-
shop [82], the best performing systems used penta-phones
(a phoneme in the context of two preceding and two suc-
ceeding phonemes) and multiple hidden states for each
penta-phone. At the time of this writing, some advanced
systems condition on both the preceding and succeeding
five phonemes leading to what could be called “unodeca-
phones.” Given limits of training data size, such systems
must use methods to reduce what otherwise would be an
enormous number of parameters — this is done by automat-
ically tying parameters of different states together [67].On
the other hand, recent systems have had sufficient training
data available to make possible systems with mixtures of
full-covariance Gaussians [1].

How many hidden states are needed? From the pre-
vious section, HMM accuracy might require a very large
number. The computations associated with HMMs grow
quadraticallyO(TN2) with N the number of states, so
while increasing the number of states is simple, there is an
appreciable associated computational cost (not to mention
the need for more training data).

In general, given enough hidden states and a suffi-
ciently rich class of observation distributions, an HMM can
accurately model any real-world probability distribution.
HMMs therefore constitute a very powerful class of prob-
abilistic model families. In theory, at least, there is no limit
to their ability to model a distribution over signals represent-
ing natural scenes.

Any attempt to advance beyond HMMs, rather than
striving to correct intrinsic HMM deficiencies, should in-
stead start with the following question: is there a class of
models that inherently leads to more parsimonious represen-
tations (i.e., fewer parameters, lower complexity, or both) of
the relevant aspects of speech, and that also provides the
same or better speech recognition (or more generally, clas-
sification) performance, better generalizability, or better ro-
bustness to noise? Many alternatives have been proposed,
some of which are discussed in subsequent paragraphs.

One HMM alternative, similar to adding more hidden
states, factors the hidden representation into multiple in-
dependent Markov chains. This type of representation is
shown as a graphical model in Figure 12. Factored hid-
den state representations have been called HMM decom-
position [83], [84], and factorial HMMs [85], [86]. A re-
lated method that estimates the parameters of a composite
HMM given a collection of separate, independent, and al-
ready trained HMMs is called parallel model combination
[87]. A factorial HMM can represent the combination of
multiple signals produced independently, the characteristics
of each described by a distinct Markov chain. For example,
one chain might represent speech and another could repre-
sent some dynamic noise source [88] or background speech
[84]. Alternatively, the two chains might each represent two
underlying concurrent sub-processes governing the realiza-
tion of the observation vectors [89] such as separate articu-
latory configurations [90], [91]. A modified factorial HMMs
couples each Markov chain using a cross-chain dependency
at each time step [25], [86], [92], [93]. In this case, the first
chain represents the typical phonetic constituents of speech
and the second chain is encouraged to represent articulatory
attributes of the speaker (e.g., the voicing condition).

The factorial HMMs described above are all special
cases of HMMs. That is, they are HMMs with tied parame-
ters and state transition restrictions made according to the
factorization. Starting with a factorial HMM consisting of
two hidden chainsQt andRt, an equivalent HMM may be
constructed using|Q||R| states and by restricting the set of
state transitions and parameter assignments to be those only
allowed by the factorial model. A factorial HMM using
M hidden Markov chains each withK states that all span
over T time steps has complexityO(TMKM+1) [85]. If
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Rt Rt 1+Rt 1–
 Rt 2+

Qt Qt 1+Qt 1–
 Qt 2+

X t X t 1+X t 1–
 X t 2+

Fig. 12 A factorial HMM with two underlying Markov chainsQt and
Rt governing the temporal evolution of the statistics of the observation
vectorsXt.

one translates the factorial HMM into an HMM havingKM

states, the complexity becomesO(TK2M ). The underlying
complexity of an factorial HMM therefore is significantly
smaller than that of an equivalent HMM. An unrestricted
HMM with KM states, however, has more expressive power
than a factorial HMM withM chains each withK states be-
cause in the HMM there can be fewer transition restrictions
via the dependence represented between the separate chains.

More generally, dynamic Bayesian networks (DBNs)
are Bayesian networks consisting of a sequence of DGMs
strung together with arrows pointing in the direction of time
(or space). Factorial HMMs are an example of DBNs. Cer-
tain types of DBNs have been investigated for speech recog-
nition [25], [80], [94]–[97].

Qt Qt 1+Qt 1–
 Qt 2+

X t X t 1+X t 1–
 X t 2+

Fig. 13 An HMM augmented with dependencies between neighboring
observations.

Some HMMs use neural networks as discriminatively
trained phonetic posterior probability estimators [62], [63].
By normalizing with prior probabilitiesp(q), posterior
probabilities p(q|x) are converted to scaled likelihoods
p(x|q)/p(x). The scaled likelihoods are then substituted for
HMM observation distribution evaluations. Multi-layered
perceptrons (MLP) or recurrent neural networks [81] are the
usual posterior estimator. The size of the MLP hidden-layer
determines the capacity of the observation distributions.The
input layer of the network typically spans, both into the past
and the future, a number of temporal frames. Extensions to
this approach have also been developed [98], [99].

A remark that can be made about a specific HMM is
that additional information might exist about an observation

Xt in an adjacent frame (sayXt−1) that is not supplied by
the hidden variableQt. This is equivalent to the statement
that the conditional independence propertyXt⊥⊥Xt−1|Qt

is inaccurate. As a consequence, one may define correla-
tion [100] or conditionally Gaussian [101] HMMs, where
an additional dependence is added between adjacent obser-
vation vectors. In general, the variableXt might have as a
parent not only the variableQt but also the variablesXt−l

for l = 1, 2, . . . , K for someK. The case whereK = 1 is
shown in Figure 13.

A Kth-order Gaussian vector auto-regressive (AR)
process [13] may be exemplified using control-theoretic
state space equations such as:

xt =

K
∑

k=1

Akxt−k + ǫ

whereAk is a matrix that controls the dependence ofxt on
the kth previous observation, andǫ is a Gaussian random
variable with some mean and variance. As described in Sec-
tion 3, a Gaussian mixture HMM may also be described us-
ing similar notation. Using this scheme, a generalKth order
conditionally mixture-Gaussian HMM may be described as
follows:

qt = i with probabilityp(Qt = i|qt−1)

xt ∼

K
∑

k=1

Aqtn
k xt−k + N(µqtn, Σqtn)

with prob.cqtn for n = {1, 2, . . . , N}

whereK is the auto-regression order,Ain
k is the regression

matrix andcin is the mixture coefficient for statei and mix-
ture n (with

∑

n cin = 1 for all i), andN is the number
of mixture components per state. In this case, the mean of
the variableXt is determined using previous observations
and the mean of the randomly chosen Gaussian component
µqtn.

Although these models are sometimes called vector-
valued auto-regressive HMMs, they are not to be con-
fused with auto-regressive, linear predictive, or hidden filter
HMMs [34], [56], [64], [65] which are HMMs that, inspired
from linear-predictive coefficients for speech [34], use the
observation distribution that arises from coloring a random
source with a hidden-state conditioned AR filter.

Gaussian vector auto-regressive processes have been
attempted for speech recognition withK = 1 and N =
1. This was presented in [100] along with EM update
equations for maximum-likelihood parameter estimation.
Speech recognition results were missing from that work,
although an implementation apparently was tested [102],
[103] and found not to improve on the case without the ad-
ditional dependencies. Both [75] and [104] tested imple-
mentations of such models with mixed success. Namely,
improvements were found only when “delta features” (to
be described shortly) were excluded. Similar results were
found by [105] but for segment models (also described be-
low). In [106], the dependency structure in Figure 13 used
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discrete rather than Gaussian observation densities. And in
[107], a parallel algorithm was presented that can efficiently
perform inference with such models.

The use of dynamic or delta features [108]–[111] has
become standard in state-of-the-art speech recognition sys-
tems. While incorporating delta features does not corre-
spond to a new model per se, they can also be viewed as
an HMM model augmentation. Similar to conditionally
Gaussian HMMs, dynamic features also represent depen-
dencies in the feature streams. Such information is gathered
by computing an estimate of the time derivative of each fea-
ture d

dtXt = Ẋt and then augmenting the feature stream
with those estimates, i.e.,X ′

t = {Xt,
d
dtXt}. Accelera-

tion, or delta-delta, features are defined similarly and are
sometimes found to be additionally beneficial [112], [113].
The way in which delta features discriminatively improve
a HMM is described in [114] where it is argued that even
though the way an HMM system typically uses delta fea-
tures is “wrong” from a generative perspective, from a dis-
criminative perspective not including generative edges ac-
tually improves modeling power by increasing local mutual
information between features and classes. Other comple-
mentary explanations for why delta features perform well
are given in [115], [116].

In general, one can consider the model

qt = i with prob.p(Qt = i|qt−1)

xt = Ft(xt−1, xt−2, . . . , xt−k)

whereFt is an arbitrary random function of the previousk
observations. In [117], [118], the model becomes

xt =

K
∑

k=1

φqt,t,kxt−k + gqt,t + ǫqt

whereφi,t,k is a dependency matrix for statei and time lag
k and is a polynomial function oft, gi,t is a fixed mean
for statei and timet, andǫi is a state dependent Gaussian.
Improvements using this model were also found with feature
streams that included delta features.

Another general class of models that extend HMMs
are called segment or trajectory models [101]. In a seg-
ment model, the underlying hidden Markov chain governs
the statistical evolution not of the individual observation
vectors. Instead, it governs the evolution of sequences (or
segments) of observation vectors where each sequence may
be described using an arbitrary distribution. More specifi-
cally, a segment model uses the joint distribution of a vari-
able length segment of observations conditioned on the hid-
den state for that segment. In a segment model, the joint
distribution of features can be described as follows:

p(X1:T = x1:T ) (14)

=
∑

τ

∑

q1:τ

∑

ℓ1:τ

τ
∏

i=1

p(xt(q1:τ ,ℓ1:τ ,i,1), xt(q1:τ ,ℓ1:τ ,i,2),

. . . , xt(q1:τ ,ℓ1:τ ,i,ℓi), ℓi|qi, τ)p(qi|qi−1, τ)p(τ)

There areT time frames andτ segments where theith

segment has hypothesized lengthℓi. The collection of
lengths are constrained so that

∑τ
i=1 ℓi = T . For a hy-

pothesized segmentation and set of lengths, theith segment
starts at time framet(q1:τ , ℓ1:τ , i, 1) and ends at time frame
t(q1:τ , ℓ1:τ , i, ℓi). In this general case, the time variablet
could be a function of the complete Markov chain assign-
mentq1:τ , the complete set of currently hypothesized seg-
ment lengthsℓ1:τ , the segment numberi, and the frame po-
sition within that segment1 throughℓi. It is assumed that
t(q1:τ , ℓ1:τ , i, ℓi) = t(q1:τ , ℓ1:τ , i + 1, 1) − 1 for all values
of every quantity.

Renumbering the time sequence for a hypothesized
segment starting at one, the joint distribution over the ob-
servations of a segment is given by:

p(x1, x2, . . . , xℓ, ℓ|q) = p(x1, x2, . . . , xℓ|ℓ, q)p(ℓ|q)

wherep(x1, x2, . . . , xℓ|ℓ, q) is the joint segment probability
for lengthℓ and for hidden Markov stateq, and wherep(ℓ|q)
is the explicit duration model for stateq.

An HMM occurs in this framework ifp(ℓ|q) is a geo-
metric distribution inℓ and if

p(x1, x2, . . . , xℓ|ℓ, q) =

ℓ
∏

j=1

p(xj |q)

for a state specific distributionp(x|q). The stochastic seg-
ment model [119] is a generalization which allows observa-
tions in a segment to be additionally dependent on a region
within a segment

p(x1, x2, . . . , xℓ|ℓ, q) =

ℓ
∏

j=1

p(xj |rj , q)

whererj is one of a set of fixed regions within the segment.
A slightly more general model is called a segmental hidden
Markov model [120]

p(x1, x2, . . . , xℓ|ℓ, q) =

∫

p(µ|q)

ℓ
∏

j=1

p(xj |µ, q)dµ

whereµ is the multi-dimensional conditional mean of the
segment and where the resulting distribution is obtained
by integrating over all possible state-conditioned means in
a Bayesian setting. More general still, in trended hidden
Markov models [117], [118], the mean trajectory within a
segment is described by a polynomial function over time.
Equation 14 generalizes many models including the con-
ditional Gaussian methods discussed above. An excellent
summary of segment models, their learning equations, and
a complete bibliography is given in [101].

Markov Processes on Curves [121] is a dynamic model
that may represent speech at various speaking rates. Certain
measures on continuous trajectories are invariant to some
transformations, such as monotonic non-linear time warp-
ings. The arc-length, for example, of a trajectoryx(t) from
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time t1 to timet2 is given by:

ℓ =

∫ t2

t1

[ẋ(t)g(x(t))ẋ(t)]
1/2

dt

whereẋ(t) = d
dtx(t) is the time derivative ofx(t), andg(x)

is an arc-length metric. The entire trajectoryx(t) is seg-
mented into a collection of discrete segments. Associated
with each segment of the trajectory is a particular state of
a hidden Markov chain. The probability of staying in each
Markov state is controlled by the arc-length of the observa-
tion trajectory. The resulting Markov process on curves is
set up by defining a differential equation onpi(t) which is
the probability of being in statei at timet. This equation
takes the form:

dpi

dt
= −λipi [ẋ(t)gi(x(t))ẋ(t)]1/2

+
∑

j 6=i

λjpjaji [ẋ(t)gj(x(t))ẋ(t)]
1/2

whereλi is the rate at which the probability of staying in
statei declines,aji is the transition probability of the under-
lying Markov chain, andgj(x) is the length metric for state
j. From this equation, a maximum likelihood update equa-
tions and segmentation procedures can be obtained [121].

The hidden dynamic model (HDM) [122] is another ap-
proach to speech recognition. In this case, the hidden space
is extended so that it can simultaneously capture both the
discrete events that ultimately are needed for words and sen-
tences, and also continuous variables such as formant fre-
quencies (or something learned in an unsupervised fashion).
This model attempts to explicitly capture coarticulatory phe-
nomena [123], where neighboring speech sounds can influ-
ence each other. In an HDM, the mapping between the hid-
den continuous and the observed continuous acoustic space
is performed using an MLP. This model is therefore similar
to a switching Kalman filter, but with non-linear hidden to
observed mapping between continuous spaces rather than a
Gaussian regressive process.

A Buried Markov model (BMM) [80], [124], [125] is
another approach to speech recognition. A BMM is based
on the idea that one can quantitatively measure where a
specific HMM is failing on a particular corpus, and extend
it accordingly. For a BMM, the accuracy is measured of
the HMM conditional independence properties themselves.
The model is augmented to include only those data-derived,
sparse, and hidden-variable specific dependencies (between
observation vectors) that are most lacking in the original
model. In general, the degree to whichXt−1⊥⊥Xt|Qt is
true can be measured using conditional mutual information
I(Xt−1; Xt|Qt) [11]. If this quantity is zero, the model is
perfect and needs no extension. The quantity indicates a
modeling inaccuracy if it is greater than zero. Augmenta-
tions based on conditional mutual information alone is likely
to improve only synthesis and not recognition, which re-
quires a more discriminative model. Therefore, a quantity
called discriminative conditional mutual information (deriv-

able from the posterior probability) determines new depen-
dencies. Since it attempts to minimally correct only those
measured deficiencies in a particular HMM, and since it
does so discriminatively, this approach has the potential to
produce better performing and more parsimonious models
for speech recognition.

Conditional random fields (CRFs) [126] are another
form of model that are often used to represent sequences
(typically natural language processing applications). A CRF
is a conditional-only model, where we model the condi-
tional distribution of some hidden variablesQ1:T given
some input (observed) random variablesX1:T . It is only the
conditional distributionp(Q1:T |X1:T ) that is represented.
As with an HMM, factorization is used to make the CRF
tractable. In the case of a sequence model, it is assumed
that the conditional model factors into functions that in-
volve no more than two successive hidden variables, so that
p(Q1:T |X1:T ) =

∏

t φ(Qt, Qt+1|X1:T ). In other words,
conditioned onX1:T , the conditional distribution ofQ1:T

factors according to a first order undirected Markov chain.
These models being conditional, they are often trained in
a way that is inherently “discriminative”, whereas an HMM
may be trained either generatively or discriminatively. CRFs
might or might not involve hidden variables during train-
ing: when everything is observed during training, the under-
lying discriminative optimization problem is often convex,
which can be a big advantage. In theory, a discriminatively
trained HMM should be able to perform just as well as a
CRF on a given application, but there may be some practi-
cal advantages of a CRF regarding feature selection. More
recently still, Vapnik’s max-margin approach has been gen-
eralized to undirected graphical models (Markov networks)
with promising results [127].

All the models described above (and many others not
referenced herein) are interesting in different ways. They
each have a natural mode where, for a given number of para-
meters, they succinctly describe a certain class of signals. It
is apparent that Gaussian mixture HMMs are extremely well
suited to speech as embodied by MFCC [67] features. It may
be the case that other features [72], [128]–[130] are more
appropriate under these models. As described in Section 5,
however, since HMMs are so flexible, and since structurally
discriminative but not necessarily descriptive models arere-
quired for speech recognition, it is uncertain how much ad-
ditional capacity these models supply. Nevertheless, they
all provide interesting and auspicious alternatives when at-
tempting to move beyond HMMs.

7. Conclusion

This paper has presented a list of possible HMM properties
and subjected them to an HMM definition inspired by graph-
ical models — and it was found that HMMs are extremely
powerful, given enough hidden states and sufficiently rich
observation distributions. Moreover, even though HMMs
encompass a rich class of variable length probability distri-
butions, for the purposes of classification, they need not pre-
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cisely represent the true conditional distribution — even if
a specific HMM only crudely reflects the nature of a speech
signal, there might not be any detriment to their use in the
recognition task, where a model need only internalize the
distinct attributes of its class. This later concept has been
termed structural discriminability, and refers to how inher-
ently discriminative a model is, irrespective of the parameter
training method. In our quest for a new model for speech
recognition, therefore, we should be concerned less with
what is wrong with HMMs, and rather seek models lead-
ing to inherently more parsimonious representations of only
those most relevant aspects of the speech signal.
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