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What HMMs Can Do

SUMMARY

Since their inception almost fifty years ago, hidden Markaxdeis
(HMMs) have have become the predominant methodology farraatic
speech recognition (ASR) systems — today, most statees&th speech
systems are HMM-based. There have been a number of ways l&irexp
HMMs and to list their capabilities, each of these ways hg\doth advan-
tages and disadvantages. In an effort to better understaatidMMs can
do, this tutorial article analyzes HMMs by exploring a deforn of HMMs
in terms of random variables and conditional independesseraptions.
We prefer this definition as it allows us to reason more thinbugbout the
capabilities of HMMs. In particular, it is possible to deéubat there are,
in theory at least, no limitations to the class of probapiiistributions rep-
resentable by HMMs. This paper concludes that, in searchnobdel to
supersede the HMM (say for ASR), rather than trying to carf@cHMM
limitations in the general case, new models should be fomsed on their
potential for better parsimony, computational requireteeand noise in-
sensitivity.
key words:
HMMs, time-series processes, hand-writing recognitiorapgical mod-
els, dynamic Bayesian networks, dynamic graphical modgtsshastic
processes, time-series densities, bio-informatics
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compare with each other. An alternative “non-generative”
view of HMMs, therefore, can provide additional insight
into what the capabilities of HMMs are, both in how they
generate data and in how they might recognize and distin-
guish (or discriminate) between patterns.

To pursue this goal, this paper first provides a precise
HMM definition, where an HMM is defined as a variable-
size collection of random variables with an appropriate set
of conditional independence properties. In an effort te bet
ter understand what HMMs can do, this paper also consid-
ers a list of properties, and discusses how they each might
or might not apply to an HMM. In particular, it will be ar-
gued that, at least within the paradigm offered by statitic
pattern classification [7]-[10], there is no general théere
cal limit to HMMs given enough hidden states, rich enough
observation distributions, sufficient training data, asbktq
computation, and appropriate training algorithms. Indtea
only a particular instance of an HMM used, say, in a speech
recognition system might be inadequate. This perhaps pro-
vides a reason for the continual speech-recognition acgura

More than any other statistical technique, the Hidden improvementswe have seen with HMM-based systems, and

Markov model (HMM) has been most successfully applied for the difficulty there has been in producing a model to su-
to the automatic speech recognition (ASR) problem. RecentPersede HMMs.
results have shown that HMMs are remarkably good even  This paper does not argue, however, that HMMs should
for difficult conversational speech-to-text [1] — the ldtes be the final technology for speech recognition. On the con-
Switchboard word error rates are at around 13%. There haverary, a main hope of this paper is to offer a better under-
been many HMM tutorials [2]-[6]. In the widely read and standing of what HMMs can do, and consequently, a better
now classic paper [6], an HMM is introduced as a collec- understanding of their limitations so they may ultimatedy b
tion of urns each containing a different proportion of cetdr ~ improved upon in favor of a superior model. Indeed, HMMs
balls. Sampling (generating data) from an HMM occurs by are extremely flexible and might remain the preferred ASR
choosing a new urn based on only the previously chosen urnmethod for quite some time. For speech recognition re-
and then choosing with replacement a ball from this new search, however, a main thrust should be searching for in-
urn. The sequence of urn choices are not made public (and1erently more parsimonious models, ones that incorporate
are said to be “hidden”) but the ball choices are known (and Only the distinct properties of speech utterances relative
are said to be “observed”). Along this line of reasoning, an cOmpeting speech utterances. The rest of this paper is thus
HMM can be defined in such a generative way, where one devoted to what HMMs can do.
first generates a sequence of hidden (urn) choices, and then ~ Section 2 reviews random variables, conditional inde-
generates a sequence of observed (ball) choices. pendence, and graphical models (Section 2.1), stochastic
For statistical speech recognition, one is not only con- Processes (Section 2.2), and discrete-time Markov chains
cerned about how HMMs generate data, but also, and morgSection 2.3). Section 3 provides a definition of an HMM,
importantly, about an HMM's distributions over observa- that has both a generative and an “acceptive” point of view.

tions, and how those distributions for different utterance Section 4 compiles a list of properties, and discusses how
they might or might not apply to HMMs. Section 5 derives

conditions for HMM accuracy in a Kullback-Leibler dis-
tance sense, proving a lower bound on the necessary number
of hidden states. The section derives sufficient conditaans
well. Section 6 reviews several alternatives to HMMs, and
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concludes by presenting an intuitive criterion one miglet us that regardless of the outcome of one random variable, the

when considering alternatives. probabilities of the outcomes of the other random variable
stay the same.
1.1 Notation Two random variables might or might not be indepen-

dent of each other depending on knowledge of a third ran-
Measure theoretic principles are avoided in this paper, anddom variable, a concept captured by conditional indepen-
discrete and continuous random variables are distingdishe dence. A random variabl¥ is conditionally independent of
only where necessary. Capital letters (eXj,,Q) will refer a different random variablg given a third random variable
to random variables, lower case letters (exgq) will refer Z under a given probability distributiop(-), if the follow-
to values of those random variables, and script letters,(e.q ing relation holds:
X, Q) will refer to possible values so thate X,q € Q. If X
is distributed according tp, it will be written X ~ p(X). pX =2Y =y|Z=2)
Probabilities are denoteg (X = z), p(X = z), or p(z) =p(X =x|Z =2)p(Y =y|Z = 2)
which are considered equivalent. For notational simplicit
p(x) will at different times symbolize a continuous proba- for all z, y, andz. This is writtenX 1Y |Z and it is said that
bility density or a discrete probability mass function. The “X isindependento¥ givenZ underp(-)". An equivalent
distinction will be unambiguous when needed. definitionisp(X = z|Y =y, Z = 2) = p(X = z|Z = 2).

It will be necessary to refer to sets of integer indexed The conditional independence &f andY given Z has the
random variables. Lel 2 {a1,az2,...,ar} be a set following intuitive interpretation: if one has knowledgé o
of T integers. ThenX4 2 {Xays Xags ooy Xag }. |f Zf then (';”‘?W'edge oiédodeg_ notlghgnge odnes krjO\év_If(fadge
B AthenXy C X, il o be useul o defie 1 200 ceversa Conditona nepererce s ifren
sets Qf mtgge_rs using matlab—h_ke ranges. As suth, it might be true thatX 1LY but not true thatX 1L Y'|Z. One
with ¢ < j will refer to the variablesX;, X;1,...,Xj. L ) .

A A valuable property of conditional independence follows: if
Xei = {X1, Xp,..., Xia},and Xy = Xop \ Xy = X, 11 Y3|Zc, and subsetd’ ¢ A andB’ C B are formed,

{ X1, Xoy oo, Xoo1, Xig1, Xigo, ..., X} whereT will be then it follows thatX 4/ 1L Y5/ |Zo. Conditional indepen-
clear from the context, andis the set difference operator. denceis a powerful concept — when assumptions are made,
When referring to sets Gf random variable, it will also be 5 statistical model can undergo enormous simplifications.
useful to defineX £ X,.7 andz £ 21,7 Additional nota- This is due to the fact that (conditional) independence im-

tion will be defined when needed. plies that some factorization of the joint distribution stsi
And given a factorization, it is possible to distribute sums
2. Preliminaries inside of products, something that can yield huge compu-

tational savings [16]. Additional properties of conditédn
Because within an HMM lies a hidden Markov chain which independence and factorization are presented in [17],[18]
in turn contains a sequence of random variables, it is use- Graphical models [17]—-[21] are quite useful to describe
ful to review a few prerequisite topics before beginning our conditional independence and its consequences. Graphical
analysis. Readers familiar with this material should skip d models are an abstraction that encompasses an extremely
rectly to Section 3. Information theory, while necessany fo large set of statistical ideas. Specifically, a graphicatleto
a later section of this paper, is not reviewed and the readeris a grapt = (V, E') whereV is a set of vertices and the set
is referred to the texts [11], [12]. of edgesl is a subset of the sét x V. A particular graphi-

cal model is associated with a collection of random variable
2.1 Random Variables, Conditional Independence, andand a family of probability distributions over that collext.

Graphical Models The vertex sel’ is in one-to-one correspondence with the

set of random variables. The edge Betf the model in one
A random variable takes on values (or in the continuous way or another specifies a set of conditional independence
case, a range of values) with certain probabilitie®if- (or factorization) properties of the random variables Hrat
ferent random variables might or might not have the abil- true for every the member of the associated family. There
ity to influence each other, a notion quantified by statisti- are different types of graphical models. The set of condi-
cal independence. Two random variahlésandY are said tional independence assumptions specified by a graphical
to be (marginally) statistically independent if and only if model, and therefore the family of probability distributi®
p(X =2,V =y) = p(X = z)p(Y = y) for every value it constitutes, depends on its type.
of z andy. This is written X LY. Independence implies One particularly famous type of directed graphical
r——— : : i model (DGM) (where edges are directed) is called a
In this paper, explanations often use discrete randomblasa Bayesian network (BN) [18], [21], [22], although one should

to avoid measure theoretic notation needed in the contsuase. . . S . .
See [13]-[15] for a precise treatment of continuous randari v not ascribe any Bayesian statistical interpretation ts¢he

ables. Note also that random variables may be either scalmce ~ Models. In a DGM, if an edge is directed from nadeo-
tor valued. wards nodeB, then A is a parent ofB and B is a child
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Fig.1 Like any graphical model, the edges in a BN determine theitiondl independence properties
over the corresponding variables. For a BN, however, tranedirections make an important difference.
The figure shows three networks with different arrow diatsi over the same random variablgs,B,
andC. On the left side, the variables form a three-variable firster Markov chainrA — B — C
(see Section 2.3). In the middle graph, the same conditiodapendence property is realized although
one of the arrows is pointing in the opposite direction. Bibiase networks correspond the property
AL C|B. These two networks do not, however, insist tHagnd B are not independent. The right
network corresponds to the properlyll C but it does not imply tha#l ILC|B.

of A. One may also discuss ancestors, descendants, etc. of plale) = pla,c)  3,pa;bc)
a node. A Dynamic Bayesian Network (DBN) [23]-[26] p(c) > apPla,b,c)
is one type of DGM containing edges pointing in the direc- . . L . .

tion of time. There are several equivalent schemata that ma))n whichb has been mqrgmahzed (orintegrated) away n _the
serve to formally define the conditional independence rela_numerator. Inference is essential bOth to make predictions
tionships implied by a BN[17]. This includes d-separation 3”0' to learn the ne_tworl_< parameters with, say, the EM algo-
[18],[21], the directed local Markov property [17] (which r|thm| [32f1'0r other |terat|vr(]e_ sclhemzs|[33]._" hel i
states that a variable is conditionally independent ofdts-n the HnM}v"iop:%?t?c:'naglrﬁ%;czng;;s rVC\J” ert?eg e:ﬁ 'ggg?_
descendants given its parents), and the Bayes-ball prozedu tional important propert 0? ra hicalpmc?dels However is
[27]. An undirected graphical model (or a Markov random that the psu [ pmcE)re Zﬁicigntpinference ro,cedures [,21]
field [28]) is one where conditional independence amongtheth X ¥ supply ditional ind q P A
nodes corresponds simply to graph separation, and therefor an just, ignoring conditional independence, margiitagz

has a easier semantics than Bayesian networks. The fam@/ay all unneeded and hidden variables. Inference can be

. N . ; o either exact, as in the popular junction tree algorithm [21]
ily of distributions associated with BNs is different from . .
the family associated with undirected models, but the in- (ofwhich the Forward-Backward or Baum-Welch algorithm

tersection of the two families is known as the decomposable{j]d][iﬁéz iirlr?;ar;r?é?a[lscﬂ)s,eoi; f(; ?gnt:; %pﬁg)_ﬂrgfge[: 4[f]6]_
models [17]. Other types of graphical models include causal 9 '
models [29], chain graphs [17], factor graphs [30], and de- i . . )
pendency networks [31]. 2.2 Stochastic Processes, Discrete-time Markov Chains,

Nodes in a graphical model can be eithiden(they and Correlation
have unknown value and signify a true random variable),
or they can beobservedwhich means that the values are A discrete-time stochastic process is a collect{ofy } for
known. In fact, HMMs are so named because they pos-t € 1:T of random variables ordered by the discrete time
sess a Markov chain that is hidden. A node may at dif- indext. In general, the distribution for each of the variables
ferent times be either hidden or observed, and for different X+ can be arbitrary and different for eathThere may also
reasons. For example, if one asks “what is the probability be arbitrary conditional independence relationships betw
p(C = ¢|A = a)?” for the left graph in Figure 1, theB is different subsets of variables of the process — this corre-
hidden andA is observed. If instead one asks “what is the sponds to a graphical model with edges between all or most
probabilityp(C' = ¢|B = b) or p(A = a|B = b)?” then  nodes.

B is observed. A node may be hidden because of missing ~ Certain types of stochastic processes are common be-
values of certain random variables in samples from a data-cause of their analytical and computational simplicity.eOn
base. Moreover, when the query “sl. B|C?” is asked of ~ example follows:

a graphical model, it is implicitly assumed th&tand B are . . L

hidden and” is observed. In general, if the value is known Definition 2.1. Independent and Identically Distributed

(i.e., if “evidence” has been supplied) for a node, then it is (I--d:) The stochastic process is said to be i.i.d.[11],[42],
considered observed — otherwise, it is considered hidden. [43]if the following condition holds:

A key problem with graphical models is that of com-
puting the probability of one subset of nodes given values
of some other subset, a procedure called probabilistic in- h
ference. Inference using a network containing hidden vari- = HP(X = Titi)
ables must “marginalize” them away. For example, given =0
p(4, B,C), the computation op(a|c) may be performed
as:

P(Xt = T, Xt+1 = Tt41y---s Xt+h = $t+h)

for all ¢, for all h > 0, for all z4.;,, and for some distribu-
tion p(-) that is independent of the index
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An i.i.d. process therefore comprises an ordered col- automata (FSA) [44] with probabilistic state transitiohs.
lection of independent random variables each one havingthis case, the number of states corresponds to the catginali
exactly the same distribution. A graphical model of an 1.i.d of each random variable. In general, a Markov chain may
process contains no edges at all. have infinitely many states, but chain variables in this pape

If the statistical properties of variables within a time- are assumed to have only finite cardinality.
window of a stochastic process do not evolve over time, the An nt"-order Markov chain may always be converted
process is said to be stationary. into an equivalent first-order Markov chain [45] using the

_ ) ) following procedure:
Definition 2.2. Stationary Stochastic Proces§he sto-

chastic proces§ X; : ¢t > 1} is said to be (strongly) sta- ! EN {Q, Qi—1, ..., Qi_n}
tionary [13] if the two collections of random variables
whereQ); is ann*"-order Markov chain. The®!, is a first-

{(Xe, Xty X0} order Markov chain because
and P(Q; = ¢|Qi_1 = 441, Qt_0 = ¢, .-, Q1 = q1)
{Xt1+h’ Xt2+h’ ft Xt"+h} = P(Qtfn:t = qtfn:t|Q1:t71 = Q1:t71)
have the same joint probability distributions for allandh. = P(Qt—n:t = Gt—n:t|Qt—n—1:4-1 = Gt—n—1:t-1)

/ / ! /
In the continuous case, stationarity means that P(@: = a1 = at-1)
Fy, (a) = Fx, ,(a)forall a whereF'() is the cu-  This transformation implies that, given a large enougtestat
mulative distribution and is a valid vector-valued constant space, a first-order Markov chain may represent affy
of lengthn. In the discrete case, stationarity is equivalentto order Markov chain.

the condition The statistical evolution of a Markov chain is deter-
mined by the state transition probabilities (t) £ P(Q: =
P(Xy, =21, Xy, = 22,..., Xy, = n) 7lQ.—1 = ). In general, the transition probabilities can be
= P(Xt,+n =21, Xtg4h = T2, ..., Xt 4h = Tn) a function both of the states at successive time steps and of
the current time. In many cases, it is assumed that there
forallty,ts,...,t,, foralln >0, forallh > 0,andforall  jsno such dependence anSuch a time-independent chain
z;. Every i.i.d. processes is stationary. is called time-homogeneous (or just homogeneous) because
The covariance between two random vect§randY ai;(t) = a; forall ¢.
is defined as: The transition probabilities in a homogeneous Markov
cov(X,Y) chain are determined by a transition matdxwherea;; 2

B n , , (A)i;. The rows ofA form potentially different probability
= B[(X - EX)(Y - EY)] = E(XY") - E(X)E(Y) mass functions over the states of the chain. For this reason,
It is said thatX andY are uncorrelated if cq,Y) = A is also called a stochastic transition matrix (or just a-tran

= . : = sition matrix).
0 (equivalently, if E(XY') = E(X)E(Y)) where0 is : o
the zero matrix. IfX andY are independent, then they A state of a Markov chain may be categorized into one

are uncorrelated, but not vice versa unless they are jointlyo.]c thr_ee d|st|nc_:t_c_ategor|es [13].' A statos_ said to_betran-
Gaussian [13]. sientif, after visiting the state, it is possible for it never to

be visited again, i.e.,:

2.3 Markov Chains p(Q, =i forsomen > t|Q; = i) < 1.
A collection of discrete-valued random variablg3, : ¢ > A statei is said to benull-recurrentif it is not transient
1} forms annt-order Markov chain [13] if but the expected return time is infinite (i.Z[min{n >
t:Qn = i}|Q: = i = o00). Finally, a state igositive-
PQ:=q|Qi—1 = q—1,Q1—2 = qt—2,.-., Q1 =q1) = recurrentif it is not transient and the expected return time

PQi = q|Qi—1 = -1, Qt—2 = Gt—2, - . ., Qt—n = Gt—n) to that state is finite. For a Markov chain with a finite num-
ber of states, a state can only be either transient or pesitiv

forallt > 1,andallgy, ¢, . . ., ¢:. In other words, giventhe  recurrent.

previousn random variables, the current variable is condi- Like any stochastic process, an individual Markov

tionally independent of every variable earlier than thevpre  chain might or might not be a stationary process. The sta-

ousn. A three-variable first order Markov chain is depicted tionarity condition of a Markov chain, however, depends on

in the left network in Figure 1. 1) if the Markov chain transition matrix has (or “admits”) a
One often views the evelty), = i} as if the chainis  stationary distribution or not, and 2) if the current distri

“in state: at timet¢” and the even{Q; = i,Q:+1 = j} as tion over states is one of those stationary distributions.

a transition from staté to statej starting at timet. This If Q; is a time-homogeneous stationary first-order

notion arises by viewing a Markov chain as a finite-state Markov chain then:
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PQiy =q1,Q1, = q2,-..,Qr, = qn) not change over time for inhomogeneous Markov chains.
= P(Qusn =1, Quyin = q2s- -, Quoh = Gn) For example, letd; = [.3,.7;.7,.3] whent is even and

Ay = [4,.6;.6,.4] whent is odd. Then the Markov chain
forall ¢;, h, n, andg;. Using the first order Markov property, is inhomogeneous but if the current state distribution is

the above can be written as: p = [.5,.5], thenpA; = p for ¢ both even and odd. Note
that this is not a stationary distribution. Whers even, we
P(Qt, = nlQt,_, = qn-1) have thatp(Q; = 0,Q;+1 = 1) = 0.5 x 0.3 but whent is
PQt, \ = n-1|Qt, » = qn—2) odd,p(Q: = 0,Q:41 = 1) = 0.5 x 0.4, so the chain does
. P(Qu, = ©|Qi, = ¢)P(Q, = q1) not exhibit a stationary distribution according to the diefin
= P(Qt,+n = n|Qt, 1 +h = Gn-1) tion. ; il ina i
in—- " The idea of “probability flow” may help to determine if
P(Qt,_y+h = @n-1|Qt, _»+h = Gn—2) a first-order Markov chain admits a stationary distribution
o P(Qtyrn = ©2|Qt+n = 1) P(Qey+n = q1) Stationary, o€ A = &, implies that for all;
Therefore, a time-homogeneous Markov chain is stationary & = Z £jaj;
only whenP(Qy, = q) = P(Qs,+1 = ¢) = P(Q, = q) for ;

all ¢ € Q (clearly, this is an if and only if condition). This is )
called a stationary distribution of the Markov chain and wil  Or equivalently,
be designated bywith &, = P(Q; = i).
According to the definition of the transition matrix, a &1 —aii) = Zfﬂ'aﬁ
stationary distribution has the property tifat = £ imply- sl
ing that must be a left eigenvector of the transition matrix \\hich is the same as
A. For example, lep; = [.5, .5] be the current distribution
over a 2-state Markov chain (using matlab notation). Let Zfia” = Zgjaji
Ay = [.3,.7;.7,.3] be the transition matrix. The Markov i i

chain is stationary since, A; = p;. If the current distribu- ) ] ) ]
tion isps = [.4, 6], however, them, A1 # p,, so the chain The left side of this equation can be interpreted as the proba

is no longer stationary. bility flow oujt of statei and the.right sid_e can pe interpr'eted
In general, there can be more than one stationary distri-2S the fI_ow into staté. A stationary distribution requires

bution for a given Markov chain (as there can be more than that the inflow and outflow cancel each other out for every

one eigenvector of a matrix). The condition of stationarity State-

for the chain, however, depends on if the chain “admits” a

stationary distribution, and if it does, whether the cutren

marginal distribution over the states is one of the statipna ) _ i _ )
distributions. If a chain does admit a stationary distiout ~ P€rhaps the earliest discussion of what is now called a hid-

¢, theng; = 0 for all j that are transient and null-recurrent den Markov modelis given in by Shannon in [46]. This was
[13]; i.e., a stationary distribution has positive protiapi  followed by papers such as [46]-[49] where they were called

only for positive-recurrent states (states that are adiure “functions of finite Markov chains” (where the observation
re-visited). distributions were deterministic), and where learning the

The time-homogeneous property of a Markov chain is transition matrix4 was termed the “identifiability problem.”
distinct from the stationarity property. Stationarityvro M [50], [51], the more general fully-stochastic HMMs were

ever, does implies time-homogeneity. To see this, note thatdefined and termed “stochastic functions of finite Markov
if the process is stationary theR(Q; = i, Q_1 = j) = chains.” A thorough account of the history of HMMs is

P(Qi_1 = i,Qu_s = j) andP(Q; = i) = P(Qi_1 = i). given in_[5]. Thgre are also a num_b_erof accounts of HMMs
Therefore,a;;(t) = P(Qy = i,Qi_1 = j)/P(Qi_1 = and their use in speech rgcognmon and beyond [2],[3],
§)=P(Qi-1=1,Qi—2 =)/ P(Q1_2 = j) = a;;(t — 1), [51,[6], [52]-[58]. Inference in hldder) Markov quels was
so by inductiona;;(t) = a;;(t + 7) for all 7, and the shown to be a special case of Bayesian network inference in
chain is time-homogeneous. On the other hand, a time-[35]: . o
homogeneous Markov chain might not admit a stationary Our definition of an HMM, presented next, is inspired
distribution and therefore never correspond to a statjonar PY their generalizations to Bayesian networks:

random process. o Definition 3.1. Hidden Markov Model A hidden Markov

_ Note thatan inhomogeneous Markov chain might seem o qe| (HMM) is collection of random variables consisting

like it has a stationary distribution, and in fact the mar- ¢ 5 <ot off discrete scalar variable€),.7 and a set of’

ginal distribution of states at time(or p(Q; = ¢)) might  owhervariablesy,.- which may be either discrete or contin-
fNote that in the speech recognition literature, the symbol ~ UOUS (and either scalar- or vector-valued). These variaple

is often used to indicate the initial (time= 1) state distribution  collectively, possess the following conditional inde perze
which might or might not be stationary. properties:

3. Hidden Markov Models




{Qur, Xer} L{Quit—2, X1:0—1}Qe—1 1)

and
X L {Q-t, X1 }|Q: (2)

for eacht € 1 : T. No other conditional independence

properties are true in general, unless they follow from Equa
tions 1 and 2. The lengtl' of these sequences is itself an
integer-valued random variable having a complex distribu-
tion (see Section 4.7).

Let us suppose that each may take values in a finite
set, soQ; € Q whereQ is called the state space which has
cardinality|Q|.

Equations (1) and (2) imply a large assortment of con-
Equation 1 states thasponding to all the observation distributions.

ditional independence statements.
the future is conditionally independent of the past given th
present. One implicatidnis that@Q: L Q1.t—2|Q:—1 Which
means the variable®;.r form a discrete-time, discrete-
valued, first-order Markov chain. Another implication of
Equation 1 isQ:1L{Q1.t—2, X1.+-1}|Q:—1 which means
that X, is unable, giverQ;_1, to affectQ; for = < ¢. This
does not imply, giverd);_1, thatQ), is unaffected by future
variables. In fact, the distribution @); could dramatically
change, even give@;_;, when the variable(; or Q.11
change, forr > t.

The other variables(;.7 form a general discrete time
stochastic process with, as we will see, great flexibility.
Equation 2 states that given an assignmen®ipthe dis-
tribution of X is independent of every other variable (both
in the futureand in the past) in the HMM. One impli-
cation is thatX; 1l X;1|{Q:, @:+1} which follows since
Xe Al { X411, Qeq1}Qr @and Xy 1L X 1]Qp41.

Definition 3.1 does not limit the number of statés
in the Markov chain, does not require the observati&ing
to be either discrete, continuous, scalar-, or vector-elu
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variablep(q1 ), 2) the conditional “transition” distributions
for the first-order Markov chaip(g;|q:—1), and 3) the con-
ditional distribution for the other variablegx:|g:). It can

be seen that these quantities correspond to the classic HMM
definition [34]. Specifically, the initial (not necessardta-
tionary) distribution is labeled which is a vector of length
|Q|. Then,p(Q, = i) = m;. wherenr; is thei!” element

of 7. The observation probability distributions are notated
bj(z) = p(X; = z|@Q: = j) and the associated parameters
depend orb; (z)’s family of distributions. Also, the Markov
chain is typically assumed to be time-homogeneous, with
stochastic matrid where(A);; = p(Q: = j|Q¢—1 = 1) for

all t. HMM parameters are often symbolized collectively

as\ 2 (r, A, B) whereB represents the parameters corre-

For speech recognition, the Markov ch&n.r is typ-
ically hidden, which naturally results in the narh&lden
Markov model. The variableX;.r are typically observed.
These are the conventional variable designations but need
not always hold. For exampl& - could be missing or hid-
den, for some or alt. In some tasksy,.7 might be known
and X;.7 might be hidden. The name “HMM” applies in
any case, even if);.r are not hidden an&’,.- are not ob-
served. Regardles®);.r will henceforth refer to the hidden
variables andX;.r the observations.

With the above definition, an HMM can be simultane-
ously viewed as a generator and a stochastic acceptor. Like
any random variable, s&), one may obtain a sample from
that random variable (e.g., flip a coin), or given a samplg, sa
y, one may compute the probability of that sampl¥ = y)

(e.g., the probability of heads). One way to sample from an
HMM is to first obtain a complete sample from the hidden
Markov chain (i.e., sample from all the random variables
Q1.7 by first sampling?;, then@- given@1, and so on.),
and then at each time poitiproduce a sample of; using

does not designate the implementation of the dependenciep(X;|q¢:), the observation distribution according to the hid-

(e.g., general regression, probability table, neural ogtw

den variable value at time This is the same as choosing

etc.), does not determine the model families for each of first a sequence of urns and then a sequence of balls from

the variables (e.g., Gaussian, Laplace, etc.), does noe for

each urn as described in [34]. To sample just fridmy,

the underlying Markov chain to be time-homogeneous, and one follows the same procedure but then throws away the
does not fix the parameters or any tying mechanism. NoteMarkov chain@.r.

that the HMM makesho marginal independence assump-
tions, meaning nothing in an HMM is independent of any-

It is important to realize that each sample &f.r
requires a new and different sample @f.r. In other

thing else. That is, no statements are made of the formwords, two different HMM observation samples typically

A1l B, whereA andB are sets of variables — only assump-
tions of conditional independence exist in an HMM, which
are of the formA 1L B|C.

originate from two different state assignments to the hid-
den Markov chain. Put yet another way, an HMM obser-
vation sample is obtained using the marginal distribution

Any joint probability distribution over an appropriately p(X1.7) = qu p(X1.7,¢1.7) and not from the condi-
typed set of random variables that obeys the above set ottional distributionp(X.7|q1.7) for some fixed hidden vari-
conditional independence rules is then an HMM. The two able assignmeng .. As will be seen, this marginal distrib-

above conditional independence properties imply thatafor
givenT, the joint distribution over all the variables may be
expanded as shown in Figure 2:

To parameterize an HMM, one therefore needs the fol-

lowing quantities: 1) the distribution over the initial ¢ha

tRecall Section 2.1.

utionp(X1.7) can be quite general.

Correspondingly, when one observes only the collec-
tion of valueszy.r, they have presumably been produced
according to some specific but unknown assignment to the
hidden variables. A giver;.7, however, could have been
produced from one of many different assignments to the hid-
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p(r1.7, qu.1) = p(TT, 9TlT1.T7—1, Q1:7—1)P(T1.T7—1, Q1.7 —1)

=p(erler,z1.7—1,91:7—1)P(@T|T1:T7 -1, 91:7—1)P(T1:T—1, G1:T—1)

p(zrler)p(ar|er—1)p(T1:7—1,q1:7—1)

T T
=p(q) [ [ platlas—1) [ p(¢lar)
t=2 t=1

Chain Rule of probability.
Again, chain rule.

Since Xr A {X1.7-1,Q1.7—1}|Qr and

Qrl{X1.7_1,Q1.7—2}|Qr_1 whichfol-
low from Definition 3.1

Fig.2 HMM Joint distribution expansion derivation.

den variables. To compute the probabifity,.7), one must

therefore marginalize away all possible assignmentg;te
as follows:

£C1T E P$1T7Q1T

q1:T7
T
=Y nla) H (gelge—1) [ p(ailar)
q1:T t=2 t=1

Fig.3 Stochastic finite-state automaton (SFSA) view of an HMM. In

this case, only the possible (i.e., non-zero probabilitidan Markov

chain state transitions are shown. Note that this diagramesponds to

a “Moore”-style SFSA, where the output distribution is adtion only of

the current Markov chain state. There are also “Mealy”est$FSA de-

scriptions of HMMs, where the output is a function of the statinsition
from one state to another [45]. Note that they are mathealiBtiequiva-

lent to each other, and there is no reason other than pedagpggfer one

to the other other.

An HMM may be graphically depicted in three ways.
The first view portrays only a directed state-transitiorpgra
asin Figure 3. Itis important to realize that this view neith
depicts the HMM'’s output distributions nor the conditional
independence properties. The graph depicts only the allow-
able transitions in the HMM's underlying Markov chain.
Each node corresponds to one of the state8,iwhere an

edge going from nodé to nodej indicates that;; > 0,
and the lack of such an edge indicates thgt= 0. The
transition matrix associated with Figure 3 is as follows:

a a2 a3 0 0 0 0 0

=

1
0 a22 0 a4 a25 0 0 0
0 0 as3z  as4 0 0 asz 0
A= 0 0 0 a44 Q45 Q46 0 0
0 0 0 0 0 0 as7 0
0 0 0 0 0 0 0 ags
0 a7 0 0 0 0 0 ars
asy 0 0 0 0 0 0 ass

where it is assumed that the explicitly mentioneg are

non-zero. In this view, an HMM is seen as an stochastic
FSA [59]. One can envisage being in a particular spate
at a certain time, producing an observation sample from the
observation distribution corresponding to that stater),

and then advancing to the next state according to the non-
zero transitions.

A second view of HMMs (Figure 4) shows the col-
lection of states and the set of possible transitions betwee
states at each successive time step. This view also depicts
only the transition structure of the underlying Markov ¢hai
In this portrayal, the transitions may change at different
times and therefore a non-homogeneous Markov chain can
be pictured unlike in Figure 3. This view is often useful to
display the HMM search space [45], [60] in a recognition or
decoding task.

‘14@ ()

93
® 0 o
92
9 U O
1] ) 13

Fig.4 Time-slice or lattice view of a Hidden Markov Model’s statart-
sitions. This figure shows a 4-state HMM, and its possiblggtansitions
over 3 time steps.

A third HMM view, displayed in Figure 5, shows how
HMMs are one instance of a BN. In this case, the hidden
Markov-chain topology is unspecified — only the HMM
conditional independence properties are shown, correspon
ing precisely to our HMM definition. That is, using any of
the equivalent schemata such as the directed local Markov
property (Section 2.1), the conditional independence prop
erties implied by Figure 5 are identical to those expressed
in Definition 3.1. For example, the variabhd does not de-
pend on any ofX;’s non-descendant§@-:, X .}) given
Xy's parent@;. An undirected graphical model can also
be used to describe the conditional independence statement
made by an HMM. In such a case, the figure would be the
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same as Figure 5, but where all edges are undirected. a given set of observations. Blindly computing
Considering the three representations of an HMM, the qu p(z1.7,q1.7) 1S hopelessly intractable, requiring
BN (or some graphical model variant) view is preferable ((|Q|T) operations. Fortunately, the conditional indepen-
when discussing the HMM statistical dependencies (or lack dence properties allow for efficient computation of this
thereof). The stochastic FSA view in Figure 3 is useful quantity. First the joint distribution can be expressed as

primarily to analyze the underlying hidden Markov chain p(z1) = p(21:¢, q¢, g:—1), the summand of which
topology. It should be very clear that Figure 3 and Figure 5 can be expaqﬁa’é"& as follows:

display entirely different HMM properties.

Qt_l Qt Qt+1 Qt+2

xt -1 Xt Xt +1 Xt +2
Fig.5 A graphical-model view of an HMM. Here the nodes of the graph
represent random variables (not states or state-tramsjfi@nd the edges

encode all of the conditional independence properties ¢fdivi.

There are many possible state-conditioned observation p(z1.4,q:) = Z p(x1:t, Gty Gr—1)

distributions [34], [58]. When the observations are ditere
the distributionsb;(z) are mass functions and when the
observations are continuous, the distributions are tylgica
specified using a parametric model family. A common fam-
ily is the Gaussian mixture where

N

bi(x) = eipN(@luin, Lix)
k=1

and whereN(z|u;x, Xjx) is a Gaussian distribution [17],
[61] with mean vectoy:;;, and covariance matriX ;. The
valuesc;, are mixing coefficients for hidden stajewith
cjr > 0andy”, c;, = 1. Often referred to as a Gaussian
Mixture HMM (GMHMM), this HMM has a BN depicted
in Figure 6. Other observation distribution choices inelud
discrete probability tables [34], neural networks (i.ey; h
brid systems) [62],[63], auto-regressive distributiof6][

[64] or mixtures thereof [65], and the standard set of named

distributions [58].

Qt_l Qt Qt+1 Qt+2

Xt—l Xt Xt+1

Fig.6 A Mixture-Observation Hidden Markov Model. Again, each rod
in the graph represents a distinct random variable rathan tn state-
transition diagram as shown in Figure 3.

><t+2

One is often interested in computingx,.7) for

p(wl:taQtaQtfl)

= p(®1:4-1, Gt—1, Tt, qt)

(A)

= p(ﬂft, Qt|$1:t—17 Qt—l)p($1:t—1, %—1)

= p($t|Qt, T1:t—1, Qt—l)p(Qt|$1:t—1, Qt—l)p(xl:t—l, Qt—l)
B)

—~

p(elg)p(aelge—1)p(x1:0-1, gr—1)

where (A) follows from the chain rule of probabil-
ity, and (B) follows sinceX; 1 {X1.t—1,Q1.+—1}|Q: and

QL {X1.+—1,Q1.+—2}|Q:t—1 using Definition 3.1. This
yields,
3)
qt—1
= pxilar)p(gelgs—1)p(@ri-1,q-1)  (4)
qt—1

If the following quantity is defined, () 2 p(z1:4, Qr = q),
then the preceding equations imply thgl(t) = p(z:|Q: =

q) >, p(Qr = q|Qi—1 = 1), (t—1). Thisis just the alpha,

or forward, recursion [34]. Thep(z1.7) = >_, oq(T), and

the entire computation requires ordy(|Q|?T") operations.

To derive this recursion, it was necessary to use only the fac
that X; was independent of its past givéh — X is also
independent of the future givepy, but this was not needed.
This later assumption, however, is obligatory for the beta o
backward recursion.

p(Ti41,7lat)

= ZP(Qt+1,$t+1,$t+2:T|Qt)
qgt+1

(4)
= Zp(xt+2:T|Qt+17xt+17(h)p(xt+1|(h+17Qt)p(Qt+1|CIt)

qt+1

(B)
= ZP($t+2:T|Qt+1)P($t+1|Qt+1)P(Qt+1|Qt)

qt+1

where (A) follows from the chain rule probability,
and (B) follows since X;io.71l{X;11,Q+}|Q++1 and

Xi4+11LQ4|Qu41. Using the definitiors, (t) 2 p(zi1.7|Qr =
q), the above equations imply the beta-recursit) =
2 Bt + Dp(@e41|Qev1 = 1)p(Qey1 = 7|Qr = q),
and another expression for the full probabiljiyx;.r)
>, Ba(L)p(g)p(z1]|q). Furthermore, this complete proba-
bility may be computed using a combination of the alpha
and beta values at amysince



A. BILMES: WHAT HMMS CAN DO

p(zrr) = ZP(Qt,th, Ti41.7)
q 4.1 Observationsi.i.d.
= 2 p(@esrrlan 210p(a 710) Given definition 2.1, it can be seen that an HMM is not i.i.d.
Consider the following joint probability under an HMM:

qt

D>

= (e 1.7|qe)p(qr, T1:t) _
q P(Xt:t4h = Tetrh)

= 3 B (B 1 T
= — q:\)Qq, = Z Hp(Xj =7;|Q; = qj')aij—lqj'
t qt:t+h j=t

where (A) follows SinceX;;.r 1l X1.:|Q:. Together, the  Unless only one state in the hidden Markov chain has
alpha- and beta- recursions are the key to learning the HMMnon-zero probability for all times in the segment + h,
parameters using the Baum-Welch procedure (which is re-this quantity can not in general be factored into the form
ally the EM algorithm for HMMs [35], [57]) as described in H;Z?p(a:j) for some time-independent distributipi-) as
[34],[57]. would be required for an i.i.d. process.
It may seem natural at this point to provide EM para-
meter update equations for HMM training. Rather than re- 4.2 Conditionally i.i.d. observations
peat what has already been provided in a variety of sources
[34],[35],[57], we are at this point equipped with the ma- HMMs are i.i.d. conditioned on certain state sequences.
chinery sufficient to move on and describe what HMMs can This is because
do.
p(Xt:t+h = xt:t+h|Qt:t+h = Qt:t+h)
t+h

4. What HMMs Can Do :HP(X =2.|Qr = ¢r)
T=t1

The HMM conditional independence properties (Equa- gndiffort < < ¢+ h, ¢- = j for some fixed;j then
tions 1 and 2), can be used to better understand the gen- T

eral capabilities of HMMs. In particular, it is possible to t+h

consider a particular quality in the context of conditioimal P(Xetrn = Teapn|Quirn = qragn) = | [ bi(zr)
dependence, in an effort to understand how and where that T=t

quality might apply, and its implications for using HMMs  \yhich is i.i.d. for this specific state assignment over tiiget
in a speech recognition system. This section therefore COM-gegment : ¢ + h.

piles and then analyzes in detail a list of such qualities as While this is true, recall that each HMM sample

follows: requires a potentially different assignment to the hidden
Markov chain. Unless one and only one state assignment
e 4.1 observation variables are i.i.d. during the segment:t + h has non-zero probability, the
e 4.2 observation variables are i.i.d. conditioned on the hidden state sequence will Change for each HMM samp|e
state sequence or are “locally” i.i.d. and there will be no i.i.d. property. The fact that an HMM
e 4.3 observation variables are i.i.d. under the mostlikely js i.i.d. conditioned on a state sequence does not necessar-
hidden variable assignment (i.e., the Viterbi path) ily have repercussions when HMMs are actually used. An
e 4.4 observation variables are uncorrelated over time HMM represents the joint distribution of feature vectors
and do not capture acoustic context p(X1.7) which is obtained by marginalizing away (sum-

* 4.5 HMMs correspond to segmented or piece-wise sta- ming over) the hidden variables. HMM probability “scores”
tionary distributions (the “beads-on-a-string” phenom- (say, for a classification task) are obtained from that joint
ena) distribution, and are not obtained from the distribution of

e 4.6 when using an HMM, speech is represented as afeature vector(X,.7|Q1.7) conditioned on one and only
sequence of feature vectors, or “frames”, within which one state sequence.

the speech signal is assumed to be stationary
e 4.7 when sampling from an HMM, the active duration 4.3 Viterbii.i.d.

of an observation distribution is a geometric distribu-

tion The Viterbi (maximum likelihood) path [4],[34] of an
e 4.8 a first-order Markov chain is less powerful than an HMM is defined as follows:

nt" order chain
e 4.9 an HMM represents(X |M) (a synthesis model) qi.r = argmaxp(Xv.r = 1.7, q1.7)

but to minimize Bayes error, a model should represent e

p(M|X) (a production model) wherep(X1.r = 1.7, qu.7) is the joint probability of an
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observation sequenag.r and hidden state assignmeitr
for an HMM.

When using an HMM, it is often the case that the joint
probability distribution of features is taken accordinghe
Viterbi path:

pyit(Xv.1 = z1.7) ©)
=cp(Xir =217, Qur = ¢1.7)

= CIE]ﬂaXp(XlzT =217, Q1T = q1.7)
1:7

T
= cmaXHp(Xt = It|Qt = (Jt)p(Qt = Qt|Qt—1 = Qt—l)
q1:T i
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EIX:X{,p]

= /xy'p(Xt =, Xipp = y)dody
= /333/ > (X =2, Xopn = y|Qr =4, Quin = j)
i

P(Qern = jlQ¢ = i)midxdy
=Y BIXi X[ Q0 = i, Quen = j)(A") 7

ij

The above equations follow fromp(Qi+r, = jlQ: =
1) = (Ah)ij (i.e., the Chapman-Kolmogorov equations
[13]) where (A"),; is the i, j*" element of the matrix4

wherec is some normalizing constant. This can be different raised to the: power. Because of the conditional indepen-

than the complete probability distribution:

p(XlzT = xl:T) = ZP(XLT = T1.T, Ql:T = ql:T)-

q1:T

Even under a Viterbi approximation, however, the resulting

distribution is not necessarily i.i.d. unless the Viterbihs
for all observation assignments are identical.

The Viterbi

dence properties, it follows that:

E[Xi X 4|Qt = i, Quin = j]
= E[X,|Q: = {|E[X[ ,|Qusn = j]

yielding

I
= Hitts

ZMMNU

t+h

path is different for each observation sequence, and the max he covariance between feature vectors may therefore be
operator does not in general commute with the product op-€Xpressed as:

erator in Equation 5, the product form required for an i.i.d.
process is unattainable in general.

4.4 Uncorrelated observations

cov( Xy, Xiyp)

St (Bo) (5]

It can be seen that this quantity is not in general the zero
matrix and therefore HMMs, even with a simple Gaussian

Two observations at different times might be dependent, butobservation distribution and a stationary Markov chaim, ca

are they correlated? IX; and X, are uncorrelated, then
E[X: X[ ] = E[X{|E[X:,4]'. For simplicity, consider an

HMM that has single component Gaussian observation dis-

tributions, i.e.b;(x) ~ N(z|un;,%;) for all statesj. Also

capture correlation between feature vectors. Results for

other observation distributions have been derived in [58].
To empirically demonstrate such correlation, the mu-

tual information [11],[66] in bits was computed between

assume that the hidden Markov chain of the HMM is cur- feature vectors from speech data that was sampled using 4-

rently a stationary process with some stationary distigiout

state per phone word HMMs trained from an isolated word

m. For such an HMM, the covariance can be computed ex-task using MFCCs and their deltas [67]. As shown on the

plicitly. In this case, the mean value of each observati@n is
weighted sum of the Gaussian means:

E[Xy] = /xp(Xt = z)dz

= /pr(Xt =z|Q; = i)mdx
= ZE[XAQt =i]m;

= Zuﬂm

Similarly,

left of Figure 7, the HMM samples do exhibit inter-frame
dependence, especially between the same feature elements
at different time positions. The right of Figure 7 compares
the average pair-wise mutual information over time of this
HMM with i.i.d. samples from a Gaussian mixture.

HMMs indeed represent dependency information be-
tween temporally disparate observation variables. The hid
den variables indirectly encode this information, and &s th
number of hidden states increases, so does the amount of
information that can be encoded. This point is explored fur-
ther in Section 5.

4.5 Piece-wise or segment-wise stationary

A HMM’s stationarity condition may be discovered by find-
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Fig.7 Left: The mutual information between features that weregathfrom a collection of about
1500 word HMMs using 4 states each per context independeantepmodel. Right: A comparison of
the average pair-wise mutual information over time betwakmbservation vector elements of such
an HMM with that of i.i.d. samples from a Gaussian mixture.eTHMM shows significantly more
correlation than the noise-floor of the i.i.d. process. Thyh lvalues in the center reflect correlation
between scalar elements within the vector-valued Gaussisture.

ing the conditions that must hold for an HMM to be a sta- variableh. For HMM stationarity to hold, it is required that

tionary process. In the following analysis, itis assumed th  p(Q¢,+n = ¢1) = p(Q¢, = q1) for all h.

the Markov chain is time-homogeneous — if non-stationarity Therefore, the HMM is stationary only when the under-

can be shown in this case, it certainly can be shown for thelying hidden Markov chain is stationary. An HMM therefore

more general time-inhomogeneous case. does not necessarily correspond to a stationary stochastic

According to Definition 2.2, an HMM is stationary process.

when: For speech recognition, HMMs commonly have left-

to-right state-transition topologies where transitiortmcas
PXtrsnin = T1m) = P(Xey = T1m) are upper triangulara(; = 0 V5 > i). The transition

forall n, h, t1.,, andzy.,. The quantityP (X, +n = T1.n) graphis thus a directed acyclic graph (DAG) that also allows

can be expanded as follows: self loops. In such graphs, all states with successors (i.e.
non-zero exit transition probabilities) have decreasicgue
P(Xtrth = 1) pancy probability over time. This can be seen inductively.
= Zp(therh = T1my Qtyoth = Q1im) First consider the start states, those without any preeeces
Tim sors. Such states have decreasing occupancy probability
over time because input transitions are unavailable taerea
= ZP(QHM = q)p(Xes+n = 21|Qui+n = q1) inflow. Consequently, these states have decreasing outflow

q1:n

overtime. Next, consider any state having only predecessor
with decreasing outflow. Such a state has decreasing inflow,
a decreasing occupancy probability, and decreasing outflow

n

[1p(Xtion = 2ilQun = 6)P(Qrin = ilQu 1 = qi-1)

=2 as well. Only the final states, those with only predecessors
= p(Qun = q)p(Xty4n = 21|Quypn = a1) Y and no successors, may retain their occupancy probability
a azT over time. Since under a stationary distribution, everfesta
n must have zero net probability flow, a stationary distribnti
11 p(Xt4n = 2l @10 = ¢:)P(Quivn = 4:lQu,+h = ¢i-1) for a DAG topology must have zero occupancy probability
=2 for any states with successors. All states with children in a
= Zp(Qtﬁh =q)p(Xpy4n = 11|Qty4n = q1) Z DAG topology have less than unity return probability, and so
o Gt are transient. This proves that a stationary distributistm
n bestow zero probability to every transient state. Theegfor
Hp(Xti =2;|Q+;, = ¢i)p(Qt, = 4| Qti_y = Gi—1) any left-to-right HMM (e.g., the HMMs typically found in
i=2 speech recognition systems) is not stationary unless al no
_ _ _ _ final states have zero probability.
%:p(@tﬁh WP = 21lQn = q)f (@20, 01) Note that HMMs are also unlikely to be “piece-wise”

stationary, in which an HMM is in a particular state for a
where f(z2:.,,¢1) is a function that is independent of the time and where observations in that time are i.i.d. and there
fore stationary. Recall, each HMM sample uses a sepa-
rate sample from the hidden Markov chain. As a result, a

"Note thatX;,,,. ., = zin is shorthand notation for
{Xt1+h = 1,‘17Xt2+h = T2,... ’th+h = xn}
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segment (a sequence of identical state assignments to su@5ms). An HMM then characterizes the distribution over

cessive hidden variables) in the hidden chain of one HMM this discrete-time set of frame vectors. Might HMMs have

sample will not necessarily be a segment in the chain of atrouble representing speech because information encoded

different sample. Therefore, HMMs are not stationary un- by within-frame variation is lost via the framing of speech?

less either 1) every HMM sample always result in the same This also is unlikely to produce problems. Because the prop-

hidden assignment for some fixed-time region, or 2) the hid- erties of speech that convey any message are band-limited in

den chain is always stationary over that region. In the gen-the modulation domain, if the rate of hidden state change

eral case, however, an HMM does not produce samples fromis high enough, and if the frame-window width is small

such piece-wise stationary segments. enough, a framing of speech would not result in informa-
The notions of stationarity and i.i.d. are properties of a tion loss about the actual message.

random processes, or equivalently, of the complete ensem-

ble of process samples. The concepts of stationarity and4.7 Geometric state distributions

i.i.d. do not apply to a single HMM sample. A more appro-

priate_ characteristic that mi_ght apply to a single sequence|, 5 Markov chain, the time duratiob that a specific state
(possibly an HMM sample) is that of “steady state,” where ; is active is a random variable distributed according to a

Fhe short—time speptrum of a signal is constant overa signif geometric distribution with parameter;. That is, D has
icant duration of time. Clearly, human speech is not SteadydistributionP(D = d) = p™ (1 — p) whered > 1is an

state. _ _ . integer ang = a;;. It seems possible that HMMs might be
Ithas been known for some time that the informationin yeficient because their state duration distributions drerin
a speech signal necessary to convey an intelligent messaggny geometric, and geometric distributions can not accu-

to the listener is contained in the spectral sub-band mOd“'rater represent typical speech unit (e.g., phoneme ca-syll
lation envelopes [68]-[72] and that the spectral energy in ble) durations

this domain is temporally band-limited. A liberal estimate HMMs, however, do not necessarily have such prob-
of the high-frequency cutoff 50Hz. By band-pass filtering ems and this occurs because of “state-tying”, where mul-
the sub-band modulation envelopes, this trait is delilgéyat yinje gifferent states can share the same observationi-distr
used by speech coding algorithms which achieve signifi- ) ion  If a sequence of states using the same observa-
cant compression ratios with little or no intelligibilitp$s. tion distribution are strung together in series, and each of
Similarly, any stochastic process representing the messag e states has self transition probabititythen the resulting
containing information in a speech signal need only possessyjstribution is equivalent to that of a random variable con-
dynamic properties at rates no higher than this rate. Thegigiing of the sum of. independent geometrically distrib-
Nyquist sampling theorem states that any band-limited Sig-\;teq random variables. The distribution of such a sum has
nal may be precisely represented with a discrete-time bigna 5 \egative binomial distribution (which is a discrete vensi
sampled at a sufficiently high rate (at least twice the highes ¢ o gamma distribution) [73]. Unlike a geometric distri-

frequency in the signal). The statistical properties ob&Pe 1, ,ion "a negative binomial distribution has a mode located
may therefore be accurately represented with a discrege tim away from zero.

signal sampled at a suitably high rate. In general, a collection of HMM states sharing the

Might samples of HMMSs generate poor speech becauseggme ghservation distribution may be combined in a vari-

in a given sample the statistics can be piece-wise steadyy of serial and parallel fashions. When combined in se-

state a})nd natural speech does not contain steady-state Segeg the resulting distribution is a convolution of theiind
ments? An HMM's Markov chain establishes the temporal \;iq,,4| distributions (resulting in a negative binomial o

evolution of the process’s statistical properties, andoie 5 geries of geometric random variables). When combined
servation distributions model any variation while in a par- ;, parallel, the resulting distribution is a weighted meu

ticular state. Therefore, any band-limited non-statigrar ¢ the individual distributions. This process can of course
non-steady-state signal can be represented by an HMM withye reneated at higher levels as well. In fact, one needs a
a Markov chain having a fast enough average state changgacrsive definition to define the resulting set of possible
and having enough states to capture all the inherent signaljistributions. Supposing is such a random variable, one

variability. As argued belov_v, only a finite number of states might say thaD has a distribution equal to that of a sum of
are needed for real-world signals. o random variables, each one having a distribution equal to a
The argument_s above also apply to t'|me. inhomoge- mixire model, with each mixture component coming from
neous processes since they are a generalization of the oy set of possible distributions f@r. The base case is that
mogeneous case. D has a geometric distribution. In fact, the random variable
T in Definition 3.1 has such a distribution. This is illus-
trated for a geometric, a sum of geometric, and a mixture of

] ) ] ) _sums of geometric distributions in Figure 8. As can be seen,
Speech is a continuous time signal. A feature extraction

process generates speech frames at regular time intervals fit has been suggested that a gamma distribution is a more ap-
(such as 10ms) each with some window width (usually propriate speech-unit durational distribution[53].

4.6 Within-frame stationary
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Fig.8 Three possible active observation duration distributiatith an HMM, and their respective
Markov chain topologies. In each case, the states showntleal/ebservation distributions to achieve
these duration distributions.

by simply increasing the hidden state space cardinality, th the posterior will be found just by producing an accurate
procedure can produce an broad class of distributions thatikelihood p(X|M ) and priorp(M).
can represent the time during which a specific observation On the other hand, approximating a distribution such

distribution is active. as p(X|M) might require more effort (parameters, train-
ing data, and compute time) than necessary to achieve good
4.8 First-order hidden Markov assumption classification accuracy. In a classification task, one of a

set of different models\/; is chosen as the target class

As was demonstrated in Section 2.3 and as described in [45]for @ givenX. In this case, only the decision boundaries,
anyn'"-order Markov chain may be transformed into a first- that is the subsetz : p(M;|z)p(M;) = p(M;|x)p(M;)}

order chain. Therefore, assuming a first-order Markov chainfor all @ # j, affect classification performance [7]. Rep-
possess a sufficient states, there is no inherent fideligy los resenting the entire set of class conditional distribugion

when using a first-order as opposed tadrorder HMM.!  p(z|M), which includes regions between decision bound-
aries, is more difficult than necessary to achieve good per-
4.9 Synthesis vs. Recognition formance [74].

The use of generative conditional distributions, as sup-

HMMs represent only the distribution of feature vectors for Plied by an HMM, is not necessarily a limitation, since for
a given model, i.e., the likelihogel X |M). This can viewed classificationp(X|M) need not be found. Instead, one of

as a synthesis or a generative model because sampling fror® many;‘unctions thatachieve Bfa);]es (Trror .car;] b?I?FI’%rOXi'
this distribution should produce (or synthesize) an instan Matéd. Of course, one member of the class is the likelihood
of the objectM (e.g., a synthesized speech utterance). To |tse_lf, but there are many others. Such a class can be de-
achieve Bayes error, however, one should use the posteriopcrioed as follows:

p(M|X). This can be viewed as a recognition or a discrim- B ) _ B _

inative model since, given an instanceX6f a sample from I={f@m): argmmaXp(X = 2|M =m)p(M =m)
p(M|X) produces a class identifier (e.g., a string of words), = argmaxf (z,m)p(M =m) Vx,m).

the goal of a recognition system. Even though HMMs inher- m ’ ’

ently represenp(X | M), there are several reasons why this . . .
property might be less severe than expected. The members off can be arbitrary functions, can be valid

First, by Bayes rulep(M|X) = p(X|M)p(M)/p(X) conditional distributions, but need not be approximatiohs

so if an HMM accurately representg X |1/) and given p(x_|m). A sample from these distributions will not neces-
accurate priorsP(M), an accurate posterior will ensue. sarily result in an gccurate object instance (or synthdsize
Maximume-likelihood training adjusts model parameters so speech utteranc_e in the case of speech HM.MS)' Instead,
that the resulting distribution best matches the empidesal m_embers ol might be aC_C“Fate onIy_at decision bou_m_j-
tribution specified by training-data. Maximum-likelihood aries. In other words,.stanstlc.al conmstency of a dep|3|o
training is asymptotically optimal, so given enough train- function does not require consistency of any internal iikel

ing data and a rich enough model, an accurate estimate oPOOd functions.
There are two ways that other members of such a class

fIn speech recognition systems, hidden state “meaninggfitnig €an be approximated. First, the degree to which boundary
change when moving to a higher-order Markov chain. information is represented by an HMM (or any likelihood
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model) depends on the parameter training method. Discrim-words, even if each model is trained using a maximum like-
inative training methods have been developed which adjustlihood procedure using positive-example samples from only
the parameters of each model to increase not the individ-its own class, the models will not represent the commonal-
ual likelihood but rather approximate the posterior proba- ities between the classes because they are incapable of do-
bility or Bayes decision rule. Methods such as maximum ing so. The model families are structurally discriminative
mutual information (MMI) [52], [75], minimum discrimina-  Sampling from a model of one class produces an object con-
tion information (MDI) [76],[77], minimum classification taining attributes only that distinguish it from sample $todf

error (MCE) [78],[79], and more generally risk minimiza- other class’s model. The sample will not necessarily resem-
tion [7], [74] essentially attempt to optimizg M | X') by ad- ble the class of objects its model represents. This, however
justing whatever model parameters are available, be tleey th is of no consequence to classification accuracy. This idea,

likelihoodsp(X | M), posteriors, or something else. of course, can be generalized to multiple classes each with
Second, the degree to which boundary information is their own distinctive attributes.
represented depends on each model’s intrinsic abilityde pr An HMM could be seen as deficient because it does not

duce a probability distribution at decision boundariestgs.  synthesize a valid (or even recognizable) spoken utterance
ability to produce a distribution between boundaries. This But synthesis is not the goal of classification. A valid syn-
the inherent discriminability of the structure of the moibe| thesized speech utterance should correspond to something
each class, independent of its parameters. Models with thisthat could be uttered by an identifiable speaker. When used
property have been called structurally discriminative] [80  for speech recognition, HMMs attempt to describe probabil-
ity distributions of speech in general, a distribution whic
corresponds to the average over many different speakers
(or at the very least, many different instances of an utter-

ance spoken by the same speaker). Ideally, any idiosyn-
cratic speaker-specific information, which might resultin

more accurate synthesis, but not more accurate discrimina-
: tion, should not be represented by a probabilistic model —

Objects of class A Objects of class B

representing such additional information can only reqaire
parameter increase without providing a classification accu
racy increase. As mentioned above, an HMM should repre-
sent distinctive properties of a specific speech utteragiee r
Fig.9  Two types of objects that share a common attribute, a haaron  ative to other rival speech utterances. Such a model would
bar o_n_the_ right of each object. This attribute need not beesgmted in the not necessarily produce high quality synthesized speech.
classification task. The question then becomes, how structurally discrim-
inative are HMMs when attempting to model the distinc-
This idea can be motivated using a simple example. tive attributes of speech utterances? With HMMs, differ-
Consider two classes of objects as shown in Figure 9. Ob-ent Markov chains represent each speech utterance. A rea-
jects of class A consist of an annulus with an extruding hor- sonable assumption is that HMMs are not structurally indis-
izontal bar on the right. Objects of class B consist of a diag- criminate because, even when trained using a simple maxi-
onal bar also with an extruding horizontal bar on the right. mum likelihood procedure, HMM-based speech recognition
Consider a probability distribution family in this spacath  systems perform reasonably well. Sampling from such an
is accurate only at representing horizontal bars — the av-HMM might produce an unrealistic speech utterance, but the
erage length, width, smoothness, etc. could be parametersinderlying distribution might be accurate at decision wbun
that determine a particular distribution. When members of aries. Such an approach was taken in [80], where HMM de-
this family are used, the resulting class specific models wil pendencies were augmented to increase structural discrim-
be blind to any differences between objects of class A andinability.
class B, regardless of the quality and type (discriminative Earlier sections of this paper suggested that HMM dis-
or not) of training method. These models are structurally tributions are not destitute in their flexibility, but thiss
indiscriminate. tion claimed that for the recognition task an HMM need not
Consider instead two families of probability distribu- accurately represent the true likelihopdX | /) to achieve
tions in this 2D space. The first family accurately represent high classification accuracy. While HMMs are powerful,
only annuli of various radii and distortions, and the second a fortunate consequence of the above discussion is that
family accurately represents only diagonal bars. When eachHMMs need not capture many nuances in a speech signal
family represents objects of their respective class, the re and may be simpler as a result. In any event, just because a
sulting models can easily differentiate between objects of particular HMM does not represent speech utterances does
the two classes. These models are inherently blind to thenot mean it is poor at the recognition task.
commonalities between the two classes regardless of the
training method. The resulting models are capable of rep-
resenting only the distinctive features of each class. ot
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5. Conditions for HMM Accuracy

Suppose thap(X;.7) is the true distribution of the obser- |

vation variablesX;.7. In this section, it is shown that if ) Tt TTTTT S o

an HMM represents this distribution accurately, necessaryglg. 11 A noisy channel view of one of the HMM conditional indepen-
. . ence property.

conditions on the number of hidden states and the necessary

complexity of the observation distributions may be found.

Let pr(X1.7) be the joint distribution over the observation requiresI;(X—;;Q:) > I(Xy; X)) and I (Qy; Xy) >

variables under an HMM. HMM accuracy is defined as KL- I(X:; X-:) since if one of these inequalities does not hold,

distance between the two distributions being zero, i.e.:

D(p(X1.7)|lpn(X1.7)) =0

If this condition is true, the mutual information betweeryan
subset of variables under each distribution will be equal.
That is,

(X5 Xs,) = In(Xs,; Xs,)

wherel(+; -) is the mutual information between two random
vectors under the true distributiof, (-; -) is the mutual in-
formation under the HMM, and; is any subset of : T.

Consider the two sets of variablég, the observation
attimet, andX_,, the collection of observations at all times
other thant. X; may be viewed as the output of a noisy
channel that has inpuY—; as shown in Figure 10. The in-
formation transmission rate betwegh,, and X, is there-
fore equal to the mutual informatioh( X_;; X;) between
the two.

X

al!

Channel—— Xt

Fig.10 A noisy channel view ofX;’s dependence oX ;.

Implied by the KL-distance equality condition, for an
HMM to mirror the true distributiorp(X;|X—-;) its corre-

sponding noisy channel representation must have the same
transmission rate. Because of the conditional indeperaenc

properties, an HMM'’s hidden variabig, separateX’; from
its contextX_; and the conditional distribution becomes

ph(Xt|Xﬁt) = th(Xt|Qt = Q)ph(Qt = Q|Xﬁt)
q

An HMM, therefore, attempts to compress the information
about X; contained inX_; into a single discrete variable
Q:. A noisy channel HMM view is depicted in Figure 11.

For an accurate HMM representation, the composite
channel in Figure 11 must have at least the same infor-

then channel A and/or channel B in Figure 11 will be-
come a bottle-neck. This would restrict the composite chan-
nel’'s transmission rate to be less than the true rate of Fig-
ure 10. An additional requirement is that the variable
have enough storage capacity (i.e., states) to encode-the in
formation flowing between the two channels. This last con-
dition must be a lower bound on the number of hidden states.
This is formalized by the following theorem.

Theorem 5.1. Necessary conditions for HMM accuracy.
An HMM as defined above (Definition 3.1) with joint obser-
vation distributionp,, (X1.7) will accurately model the true
distribution p(X7.7) only if the following three conditions
hold for all ¢:

L4 Ih(X—‘t;Qt) > I(XﬁXﬂt),
o Ih(Qt7Xt) Z I(Xt;X—\t)l and
o |Q > 2(XiXo)

where I}, (X_.; Q) (resp. I(Q:; X+)) is the information
transmission rate betweeki_; and Q; (resp. @: and X;)
under an HMM, andI(X;; X ) is the true information
transmission rate betwedf X;; X_;).

Proof. If an HMM is accurate (i.e., has zero KL-
distance from the true distribution), thei{X ;; X;) =
In(X-4; X4). As with the data-processing inequality [11],
the quantityl, (X—;; Q:, X¢) can be expanded in two ways
using the chain rule of mutual information:

Ih(XﬂﬁQt,Xt) (6)
= In(X=t; Q) + In(X-p; Xt Q1) (7
= In(Xot; Xo) + In( X Qi Xi) (8)
= I(Xop; Xp) + In(Xop; Qi Xi) 9)

The HMM conditional independence properties say that
In(X-y; X¢|Q:) = 0, implying

In(Xot; Q) = I(X—t; Xt) + In(Xp; Q| Xe)

or that
In(X-t; Q1) > 1( X5 Xt)

sincel, (X-; Q¢ X+) > 0. This is the first condition. Simi-

mation transmission rate as that of Figure 10. Note thatlarly, the quantityl;, (X;; Q:, X~;) may be expanded as fol-

I, (X ¢; Q¢) is the transmission rate betwed&n.; andQ:,
and I (Q+; X¢) is the transmission rate betwe€h and
X;. The maximum transmission rate through the HMM

composite channel is no greater than to the minimum of

I, (X-; Q) and I, (Q4; X¢). Intuitively, HMM accuracy

lows:
Ih(Xt;QtaX—\t) (10)
= In(Xe; Qr) + In(Xp; X—t| Q1) (11)
= I(Xy; Xop) 4 In(Xy; Q| Xt) (12)
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Reasoning as above, this leads to Assume for the moment th&; is a discrete random vari-
able with finite cardinality. Recall that _, 2 Xq.4-1. Sup-
In (X5 Qe) 2 1(Xe5 X)), pose thatH,(Q:|X<:) = 0 for all ¢ (a worst case HMM

condition to achieve this property is when every observa-
tion sequence has its own unigue Markov chain state as-
signment). This implies tha®; is a deterministic function

of X.; (i.e.,,Q: = f(X<;) for somef(-)). Consider the
HMM approximation:

pr(@ile<) =Y pr(zelg)pn(ale<i) (13)
s0|Q| > 21 (XuiX=e), O a
but becausé? (Q:| X ;) = 0, the approximation becomes

A similar procedure leads to the requirement that
Ih(Xlzt;Qt) > I(Xlzt;Xt+1:T), Ih(Qt;Xt+1:T) > ph(xt|x<t) :ph(xt|%<t)
I(X1.4; Xegror), and|Q] > 2/ (XreiXerar) for all ¢, whereq,_, = f(z<;) since every other term in the sum in

There are two implications of this theorem. First, an Equation 13 is zero. The variabl, is discrete, so for each
insufficient number of hidden states can lead to an inac-value ofz; and for each hidden state assignment,, the
curate model. This has been known for some time in the distributionp;, (X; = |¢._,) can be set as follows:
speech recognition community, but a lower bound on the
required number of states has not been established. With Pr(Xe = wilgac,) = p(Xe = 2| X =22
an HMM, the information aboufX; contained inX.; is This last condition might require a number of hidden states
squeezed through the hidden state variaBle Depend- equal to the cardinality of the discrete observation space,
ing on the number of hidden states, this can overburdeni.e.,| X;.7| which can be very large. In any event, it follows
@: and result in an inaccurate probabilistic model. But if that for all¢:
there are enough states, and if the information in the sur-
rounding acous%ic context is appropriately encoded in the D(p(Xe| X<o)llpn(Xi[ X <))
hidden states, the required information may be compressed - Zp (1.4 log p(ee|z<i)

the second condition. A sequence of inequalities estadish
the third condition:

log |Q] > H(Q) > H(Q:) — H(Q:|Xy)
=In(Q; X¢) > I(Xy; X—)

and represented hy,. An appropriate encoding of the con- p—— pr(Tt|r<t)
textual information is essential since just adding statessd
- _ p(ze|r<t)
not guarantee accuracy will increase. = Zp(m ¢)log -
To achieve high accuracy, it is likely that a finite num- i 2, Pr(@tlge)pn(a|7<t)
ber of states is required for any real task since signal&repr p(s]T<t)
senting natural objects will have bounded mutual informa- = Zp(xl t)log —=——— Pr(t|dnz,)
tion. Recall that the first order Markov assumption in the e =
hidden Markov chain is not necessarily a problem since a _ Zp(ﬂh ) log p(@e|r<t)
first-order chain may represent af* order chain (see Sec- p(re|r<t)

tion 2.3 and [45]). _o
The second implication of this theorem is that each of

the two channels in Figure 11 must be sufficiently powerful. It then follows, using the above equation, that:

H_MI\_/I inaccuracy can _result from using a poor observation 0 = ZD (Xo| X <) Ipn (Xe| X <0))

distribution family which corresponds to using a channel

with too small a capacity. The capacity of an observation

distribution is, for example, determined by the number of = ZZP (w1:¢ 1Og Pze]r<t)

Gaussian components or covariance type in a Gaussian mix- @1 pi(@i|r<)

ture HMM [67], or the number of hidden units in an HMM p(relrot)

with MLP [81] observation distributions [62], [63]. = Z Z plarr)log == P
In any event, just increasing the number of components b oo

in a Gaussian mixture system or increasing the number of
hidden units in an MLP system does not necessarily improve £
HMM accuracy because the bottle-neck ultimately becomes o
the fixed number of hidden states (i.e., valug@f). Al- Zp z1.7) log ———= p(@17)

ternatively, simply increasing the number of HMM hidden P pr(a17)

states might not increase accuracy if the observation model = D(p(Xv.1)||pn(X1.1))

is too weak. Of course, any increase in the number of model

parameters must accompany a training data increase to yield" ©ther words, the HMM is a perfect representation of the
reliable low-variance parameter estimates. true distribution, proving the following theorem.

Can sufficient conditions for HMM accuracy be found? Theorem 5.2. Sufficient conditions for HMM accuracy.

Hf p(re|r<t)
z1.7)lo
2 plavr)log SRR TS
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An HMM as defined above (Definition 3.1) with a joint How many hidden states are needed? From the pre-
discrete distributionp, (X1.7) will accurately represent a  vious section, HMM accuracy might require a very large
true discrete distributiop(X;.7) if the following conditions ~ number. The computations associated with HMMs grow
hold for all ¢: quadraticallyO(T'N?) with N the number of states, so
_ while increasing the number of states is simple, there is an
o pn(Xs = 21lge_.) = p(Xs = 2e| X ot = 21). appreciable associated computational cost (not to mention
< the need for more training data).

It remains to be seen if simultaneously necessary and  In general, given enough hidden states and a suffi-
sufficient conditions can be derived to achieve HMM ac- ciently rich class of observation distributions, an HMM can
curacy, if it is possible to derive sufficient conditions for accurately model any real-world probability distribution
continuous observation vector HMMs under some reason-HMMs therefore constitute a very powerful class of prob-
able conditions (e.qg., finite power, etc.), and what condi- abilistic model families. In theory, at least, there is niti
tions might exist for an HMM that is allowed to have a fixed to their ability to model a distribution over signals repes

upper-bound KL-distance error. ing natural scenes.
Any attempt to advance beyond HMMs, rather than
6. What HMMs “Can’'t” Do striving to correct intrinsic HMM deficiencies, should in-

stead start with the following question: is there a class of
From the previous sections, there appears to be little anmodels thatinherently leads to more parsimonious represen
HMM can't do. If under the true probability distribution, tations (i.e., fewer parameters, lower complexity, or poth
two random variables possess extremely large mutual infor-the relevant aspects of speech, and that also provides the
mation, an HMM approximation might fail because of the same or better speech recognition (or more generally, clas-
required number of states required. This is unlikely, how- sification) performance, better generalizability, or etb-
ever, for distributions representing objects containethen ~ bustness to noise? Many alternatives have been proposed,
natural world. some of which are discussed in subsequent paragraphs.

One problem with HMMs is how they are used; the One HMM alternative, similar to adding more hidden

conditional independence properties are inaccurate wherstates, factors the hidden representation into multiple in
there are too few hidden states, or when the observationdependent Markov chains. This type of representation is
distributions are inadequate. Moreover, a demonstrationshown as a graphical model in Figure 12. Factored hid-
of HMM generality acquaints us not with other inherently den state representations have been called HMM decom-
more parsimonious models which could be superior. This is position [83],[84], and factorial HMMs [85],[86]. A re-

explored in the next section. lated method that estimates the parameters of a composite
HMM given a collection of separate, independent, and al-
6.1 How to Improve an HMM ready trained HMMs is called parallel model combination

[87]. A factorial HMM can represent the combination of
The conceptually easiest way to increase an HMM'’s accu- multiple signals produced independently, the charadiesis
racy is by increasing the number of hidden states and theof each described by a distinct Markov chain. For example,
capacity of the observation distributions. Indeed, this ap one chain might represent speech and another could repre-
proach is very effective. In speech recognition systenis, it sent some dynamic noise source [88] or background speech
common to use multiple states per phoneme and to use col{84]. Alternatively, the two chains might each represert tw
lections of states corresponding to tri-phones, quad-efion underlying concurrent sub-processes governing the eealiz
or even penta-phones. State-of-the-art speech recagnitio tion of the observation vectors [89] such as separate articu
systems have achieved their performance on difficult speecHatory configurations [90], [91]. A modified factorial HMMs
corpora partially by increasing the number of hidden states couples each Markov chain using a cross-chain dependency
For example, in the 1999 DARPA Broadcast News Work- at each time step [25], [86],[92],[93]. In this case, thetfirs
shop [82], the best performing systems used penta-phoneshain represents the typical phonetic constituents ofdpee
(a phoneme in the context of two preceding and two suc- and the second chain is encouraged to represent articulator
ceeding phonemes) and multiple hidden states for eachattributes of the speaker (e.g., the voicing condition).
penta-phone. At the time of this writing, some advanced The factorial HMMs described above are all special
systems condition on both the preceding and succeedingcases of HMMs. That is, they are HMMs with tied parame-
five phonemes leading to what could be called “unodeca-ters and state transition restrictions made accordingéo th
phones.” Given limits of training data size, such systems factorization. Starting with a factorial HMM consisting of
must use methods to reduce what otherwise would be antwo hidden chaing); and R;, an equivalent HMM may be
enormous number of parameters — this is done by automat-constructed usingR||R| states and by restricting the set of
ically tying parameters of different states together [83h state transitions and parameter assignments to be those onl
the other hand, recent systems have had sufficient trainingallowed by the factorial model. A factorial HMM using
data available to make possible systems with mixtures of M hidden Markov chains each witi states that all span
full-covariance Gaussians [1]. over T time steps has complexi (7T M KM+1) [85]. If
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Qi_1 Q Qi+1 Qo Xy in_an adjacgnt frame (;sa;\jt,l) Fhat is not supplied by

the hidden variabl€);. This is equivalent to the statement
that the conditional independence propekyl X; 1|Q:

is inaccurate. As a consequence, one may define correla-
Ri_1 R; Ris+1 Riso tion [100] or conditionally Gaussian [101] HMMs, where
an additional dependence is added between adjacent obser-
vation vectors. In general, the variab¥g might have as a
parent not only the variabl@; but also the variableX;_;

foril =1,2,..., K forsomeK. The case wher& = 1 is
shown in Figure 13.

Xi_1 X4 Xi1 Xiso A K''-order Gaussian vector auto-regressive (AR)
process [13] may be exemplified using control-theoretic
state space equations such as:

Fig.12 A factorial HMM with two underlying Markov chaing); and
R: governing the temporal evolution of the statistics of theeshation
vectorsX;. K

one translates the factorial HMM into an HMM haviig , _
states, the complexity becom@¢T K 2M). The underlying where Ay, is a matrix that controls the dependence:pbn

o ) ; - )
complexity of an factorial HMM therefore is significantly the&™" previous observation, andis a Gaussian random
smaller than that of an equivalent HMM. An unrestricted variable with some mean and variance. As described in Sec-

HMM with KM states, however, has more expressive powert'on 3, a Gaussian mixture HMM may also be described us-

than a factorial HMM with\/ chains each withs states be- g Similar notation. Using this scheme, a gené¢él order
cause in the HMM there can be fewer transition restrictions conditionally mixture-Gaussian HMM may be described as

via the dependence represented between the separate chairl@/IOWs:

More generally, dynamic Bayesian networks (DBNSs) q¢ = i with probabilityp(Q; = i|q;—1)
are Bayesian networks consisting of a sequence of DGMs %
strung together with arrows pointing in the direction oféim 2y~ Z A9+ Njtgyns Sqpn)

(or space). Factorial HMMs are an example of DBNs. Cer-
tain types of DBNs have been investigated for speech recog-
nition [25], [80], [94]-[97].

k=1
with prob.cg,, forn ={1,2,...,N}

whereK is the auto-regression ordeti” is the regression
matrix ande;,, is the mixture coefficient for stateand mix-
Qt—l Qt Qt+ 1 Qt+2 turen (with > ¢;, = 1 for all ¢), and NV is the number
of mixture components per state. In this case, the mean of
the variableX; is determined using previous observations
and the mean of the randomly chosen Gaussian component
Hgin-

Although these models are sometimes called vector-
Xi_1 Xy Xiv1 Xito valued auto-regressive HMMs, they are not to be con-
fused with auto-regressive, linear predictive, or hiddkerfi
HMMs [34], [56], [64], [65] which are HMMs that, inspired
from linear-predictive coefficients for speech [34], use th
observation distribution that arises from coloring a rando

Some HMMs use neural networks as discriminatively source with a hidden-state conditioned AR filter.
trained phonetic posterior probability estimators [6&B] Gaussian vector auto-regressive processes have been
By normalizing with prior probabilitiesp(q), posterior attempted for speech recognition witi = 1 and N =
probabilities p(¢|x) are converted to scaled likelihoods 1. This was presented in [100] along with EM update
p(z|q)/p(x). The scaled likelihoods are then substituted for equations for maximume-likelihood parameter estimation.
HMM observation distribution evaluations. Multi-layered Speech recognition results were missing from that work,
perceptrons (MLP) or recurrent neural networks [81] are the although an implementation apparently was tested [102],
usual posterior estimator. The size of the MLP hidden-layer [103] and found not to improve on the case without the ad-
determines the capacity of the observation distributidghe ditional dependencies. Both [75] and [104] tested imple-
input layer of the network typically spans, both into thetpas mentations of such models with mixed success. Namely,
and the future, a number of temporal frames. Extensions toimprovements were found only when “delta features” (to
this approach have also been developed [98],[99]. be described shortly) were excluded. Similar results were

A remark that can be made about a specific HMM is found by [105] but for segment models (also described be-
that additional information might exist about an obsensti  low). In [106], the dependency structure in Figure 13 used

Fig.13 An HMM augmented with dependencies between neighboring
observations.
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discrete rather than Gaussian observation densities. #nd i There areT time frames and- segments where thé”
[107], a parallel algorithm was presented that can effigfent segment has hypothesized length The collection of
perform inference with such models. lengths are constrained so thai;_, ¢; = 7. For a hy-
The use of dynamic or delta features [108]-[111] has pothesized segmentation and set of lengths;‘theegment
become standard in state-of-the-art speech recognit®en sy starts at time framé(q;.-, 1., ¢, 1) and ends at time frame
tems. While incorporating delta features does not corre-t(¢1.+, ¢1.,¢,%;). In this general case, the time variable
spond to a new model per se, they can also be viewed agould be a function of the complete Markov chain assign-
an HMM model augmentation. Similar to conditionally mentgq;.., the complete set of currently hypothesized seg-
Gaussian HMMs, dynamic features also represent depenment lengthg;.., the segment numbeyrand the frame po-
dencies in the feature streams. Such information is gadhere sition within that segment through/;. It is assumed that
by computing an estimate of the time derivative of each fea- t(¢1.+, ¢1.+, 4, £;) = t(q1:r, 17,7 + 1,1) — 1 for all values
ture %Xt = X, and then augmenting the feature stream of every quantity.
with those estimates, i.eX; = {X;, %Xt}- Accelera- Renumbering the time sequence for a hypothesized
tion, or delta-delta, features are defined similarly and are segment starting at one, the joint distribution over the ob-
sometimes found to be additionally beneficial [112],[113]. servations of a segment s given by:
The way in which delta features discriminatively improve
a HMM is described in [114] where it is argued that even p(a1; 22, e, lq) = plar, 22, el q)p(fla)
though the way an HMM system typically uses delta fea-
tures is “wrong” from a generative perspective, from a dis-
criminative perspective not including generative edges ac
tually improves modeling power by increasing local mutual
information between features and classes. Other comple
mentary explanations for why delta features perform well
are given in [115],[1186]. ¢
In general, one can consider the model plar, z2, ... 2l q) = [ p(z5lq)
j=1

wherep(z1, z2, .. ., z¢|¢, q) is the joint segment probability
for length? and for hidden Markov staig and where(¢|q)
is the explicit duration model for state

An HMM occurs in this framework ip(¢|q) is a geo-
‘metric distribution in? and if

qr = 7 with pI’Ob.p(Qt = i|qt_1)

2t = Fy(Teo1,To2y- s Tooi) for a state specific distributiop(z|q). The stochastic seg-

ment model [119] is a generalization which allows observa-
whereF; is an arbitrary random function of the previokis  tions in a segment to be additionally dependent on a region

observations. In [117],[118], the model becomes within a segment
K ¢
Ty = Z Dae,t,kTt—k + g t T €q, p(xh L2500 7xf|€7 Q) = ]i[p(wﬂrj7 q)
k=1 j=1

whereg; ¢ i, is a dependency matrix for stat@nd time lag  wherer; is one of a set of fixed regions within the segment.
k and is a polynomial function of, g;. is a fixed mean A slightly more general model is called a segmental hidden
for statei and timet, ande; is a state dependent Gaussian. Markov model [120]
Improvements using this model were also found with feature
streams that included delta features. ¢

Another general class of models that extend HMMs (%1, %2, .., z¢ll, ) = /p(qu) Hp(%"“"nd“
are called segment or trajectory models [101]. In a seg- i=1
ment model, the underlying hidden Markov chain governs \yhere ; is the multi-dimensional conditional mean of the
the statistical evolution not of the individual observatio segment and where the resulting distribution is obtained
vectors. Instead, it governs the evolution of sequences (Ol integrating over all possible state-conditioned means i
segments) of observation vectors where each sequence may’gayesian setting. More general still, in trended hidden
be described using an arbitrary distribution. More specifi- \1arkov models [117],[118], the mean trajectory within a
cally, a segment model uses the joint distribution of a vari- segment is described by a polynomial function over time.
able length segment of observations conditioned on the hid'Equation 14 generalizes many models including the con-

den state for that segment. In a segment model, the jointyitional Gaussian methods discussed above. An excellent

distribution of features can be described as follows: summary of segment models, their learning equations, and
_ a complete bibliography is given in [101].
X117 = x1. 14 : .
(X xl'T)T (14) Markov Processes on Curves [121] is a dynamic model
. Z Z Z H (@ o , that may represent speech at various speaking rates. iCertai
a Pt(arr trir i) To(quir 7 :2)0 measures on continuous trajectories are invariant to some

T qiir b1, =1

transformations, such as monotonic non-linear time warp-
e ey i) Ll G T)P(Gi | gi1, T)P(T) ings. The arc-length, for example, of a trajectafy) from
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time ¢, to timets is given by: able from the posterior probability) determines new depen-
t dencies. Since it attempts to minimally correct only those
/ :/ [j;(t)g(a:(t))ab(t)]l/Q dt measured. deflc!enc_les in a particular HMM, and since it
ty does so discriminatively, this approach has the poterdial t

. d ) . L produce better performing and more parsimonious models
wherei(t) = $-x(t) is the time derivative of(t), andg(z) for speech recognition.

is an arc-length metric. The entire trajectorit) is seg- Conditional random fields (CRFs) [126] are another
mented into a collection of discrete segments. Associatedyrm of model that are often used to represent sequences
With each segment o_f the trajectory _i_s a partiCL_JIar_state of (typically natural language processing applications).RFC

a hidden Markov chain. The probability of staying in each ;5 5 conditional-only model, where we model the condi-
Markov state is controlled by the arc-length of the observa- tjonal distribution of some hidden variableg,.; given

tion trajectory. _The re_sulting_Markov process on curves IS some input (observed) random variablgy. It is only the

set up by defining a differential equation pr(t) which is  qngitional distributionp(Q1.7|X1.7) that is represented.
the probability of being in statéat timet. This equation  ag with an HMM, factorization is used to make the CRF
takes the form: tractable. In the case of a sequence model, it is assumed

dp; . g1/2 that the conditional model factors into functions that in-
o —Aipi [£(t)9:(x(t))2(2)] volve no more than two successive hidden variables, so that
+ D Ajpsazi [#(0)g; (o)1) P(Qur|Xur) = T1,6(@Qr Qua|Xur). In other words,

conditioned onX;.r, the conditional distribution o€);.1
factors according to a first order undirected Markov chain.
where)\; is the rate at which the probability of staying in These models being conditional, they are often trained in
state; declinesg;; is the transition probability of the under- — a way that is inherently “discriminative”, whereas an HMM
lying Markov chain, andy;(z) is the length metric for state  may be trained either generatively or discriminatively. i8R
4. From this equation, a maximum likelihood update equa- might or might not involve hidden variables during train-
tions and segmentation procedures can be obtained [121]. ing: when everything is observed during training, the under
The hidden dynamic model (HDM) [122] is another ap- lying discriminative optimization problem is often convex
proach to speech recognition. In this case, the hidden spacavhich can be a big advantage. In theory, a discriminatively
is extended so that it can simultaneously capture both thetrained HMM should be able to perform just as well as a
discrete events that ultimately are needed for words and senCRF on a given application, but there may be some practi-
tences, and also continuous variables such as formant frecal advantages of a CRF regarding feature selection. More
guencies (or something learned in an unsupervised fashion)recently still, Vapnik’s max-margin approach has been gen-
This model attempts to explicitly capture coarticulatongp eralized to undirected graphical models (Markov networks)
nomena [123], where neighboring speech sounds can influ-with promising results [127].
ence each other. In an HDM, the mapping between the hid- All the models described above (and many others not
den continuous and the observed continuous acoustic spacteferenced herein) are interesting in different ways. They
is performed using an MLP. This model is therefore similar each have a natural mode where, for a given number of para-
to a switching Kalman filter, but with non-linear hidden to meters, they succinctly describe a certain class of sigitals
observed mapping between continuous spaces rather than i& apparent that Gaussian mixture HMMs are extremely well
Gaussian regressive process. suited to speech as embodied by MFCC [67] features. It may
A Buried Markov model (BMM) [80],[124],[125] is  be the case that other features [72],[128]-[130] are more
another approach to speech recognition. A BMM is basedappropriate under these models. As described in Section 5,
on the idea that one can quantitatively measure where ahowever, since HMMs are so flexible, and since structurally
specific HMM is failing on a particular corpus, and extend discriminative but not necessarily descriptive modelsare
it accordingly. For a BMM, the accuracy is measured of quired for speech recognition, it is uncertain how much ad-
the HMM conditional independence properties themselves.ditional capacity these models supply. Nevertheless, they
The model is augmented to include only those data-derived all provide interesting and auspicious alternatives when a
sparse, and hidden-variable specific dependencies (betweetempting to move beyond HMMs.
observation vectors) that are most lacking in the original
model. In general, the degree to whiéh_, 1 X;|Q: is 7. Conclusion
true can be measured using conditional mutual information
I(X:—1; X¢|Q+) [11]. If this quantity is zero, the model is  This paper has presented a list of possible HMM properties
perfect and needs no extension. The quantity indicates aand subjected them to an HMM definition inspired by graph-
modeling inaccuracy if it is greater than zero. Augmenta- ical models — and it was found that HMMs are extremely
tions based on conditional mutual information alone isljike  powerful, given enough hidden states and sufficiently rich
to improve only synthesis and not recognition, which re- observation distributions. Moreover, even though HMMs
quires a more discriminative model. Therefore, a quantity encompass a rich class of variable length probability idistr
called discriminative conditional mutual information (e butions, for the purposes of classification, they need rest pr

J#i
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cisely represent the true conditional distribution — evien i
a specific HMM only crudely reflects the nature of a speech
signal, there might not be any detriment to their use in the
recognition task, where a model need only internalize the
distinct attributes of its class. This later concept hambee
termed structural discriminability, and refers to how inhe
ently discriminative a model is, irrespective of the partane
training method. In our quest for a new model for speech
recognition, therefore, we should be concerned less with
what is wrong with HMMs, and rather seek models lead-
ing to inherently more parsimonious representations of onl
those most relevant aspects of the speech signal.
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