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1 Introduction

Graphs are a two-dimensional visual formalism that can be used to describe many different phenomena and

are used in wide variety of fields including computer science, data and control flow, entity relationships

and social networks, Petri and neural networks, software/hardware visualization, and parallel computation.

The popularity of graphs is owing to their ability represent complex situations in an intuitive and visually

appealing way.

Statistical graphical modelsare a family of graphical abstractions of statistical models, where important

aspects (e.g., factorization) of such models are represented using graphs. In recent years and due to a

wide range of research, it has become apparent that graphical models offer a mathematically formal but

widely flexible means for solving many of the problems in speech and language processing. Graphs are

able to represent events at the very high level (such as relationships between linguistic classes), at the very

low level (such as correlations between spectral features or acoustic landmarks), and at all levels in between

(such as lexical pronunciation). A fundamental advantage of graphical models israpidity — with a graphical

model, it is possible to quickly express a novel complicated idea in an intuitive, concise, and mathematically

precise way, and to speedily and visually communicate that idea between colleagues. Moreover, with the

right software, it is possible to rapidly prototype that idea on a standard desktop workstation.
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This article discusses the foundations of the use of graphical models for speech recognition [42, 16, 26,

47, 25], giving detailed accounts of some of the more successful cases. Our discussion will in particular

employ dynamic Bayesian networks (DBNs), and a DBN extension using the Graphical Model Toolkit’s

(GMTK’s) basic template, a dynamic graphical model representation that is more suitable for speech and

language systems. While this article will concentrate on speech recognition, it should be noted that many of

the ideas contained here are also applicable to natural language processing and general time-series analysis.

This article assumes some familiarity with basic speech-to-text concepts [42, 16, 26, 46, 47, 25] and

the basics of graphical models [41, 28, 32, 29], including notions such as hidden and observed variables,

evidence, and factorization and conditional independence. Moreover, we will use the Matlab-like notation

1 :N to denote the set of integers{1, 2, . . . , N}. A set ofN random variables (RVs) is denoted asX1:N .

Given any subsetS ⊆ 1:N , whereS = {S1, S2, . . . , S|S|}, then the subset of random variables is denoted

asXS = {XS1 , XS2 , . . . , XS|S|}. Lastly, we use upper case letters (such asX, Q) to refer to random

variables, and lower case letters (such asx, q) to refer to random variable values.

2 Dynamic Graphical Models

Graphical models [32, 41, 27, 29] are a set of formalisms each of which describes families of probabil-

ity distributions. There are many different types of graphical models [41, 27, 32, 31] each having its own

semantics[10] that govern how the graph specifies a set of factorization constraints on multi-variate proba-

bility distributions. Of course factorization and conditional independence go hand-in-hand, so factorization

constraints typically (but not always) involve conditional independence properties. Bayesian networks are

one type of graphical model where the graphs are directed and acyclic (DAG). In a Bayesian network (BN),

the probability distribution over a set of variablesX1:N factorizes with respect to a directed acyclic graph

(DAG) asp(x1:N ) =
∏

i p(xi|xπi) whereπi ⊂ 1 :N are the set of indices ofXi’s immediate parents ac-

cording to the BN’s DAG. This factorization is called the directed factorization property [32]. There are

many additional (and provably equivalent) characterizations of BNs, including the notion of d-separation

[41, 32], but this one suffices for our discussion. It should be clear that because of the strong relation-

ship between factorization and conditional independence, the above factorization implies that a Bayesian

network expresses a large number of conditional independence statements to the extent that it has missing

edges in the graph. Moreover, it should be clear that it is the common factorization properties of the family

of probability distributions that makes for efficient probabilistic inference [41, 32, 28, 29].

Speech is inherently a temporal process, and any graphical model for speech must take this into account.
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Accordingly, dynamic graphical models [5] are graphs that represent the temporal evolution of the statistical

properties of a speech signal, and ideally in such a way to improve automatic speech recognition (ASR)

accuracy. For speech recognition, dynamic Bayesian networks (DBNs) [15, 51, 49, 37, 50, 10] have been

most successfully used. DBNs are simply Bayesian networks with a repeated “template” structure over

time. Other than this regularity, however, DBNs have exactly the same semantics as Bayesian networks.

Specifically, a DBN of lengthT is a directed acyclic graphG = (V,E) = (
⋃T

t=1 Vt,ET ∪
⋃T−1

t=1 Et∪E→t )

with node setV, and edge setE comprising pairs of nodes. Ifuv ∈ E for u, v ∈ V, thenuv is an edge of

G. The setsVt are the nodes at time slicet, Et are theintra-sliceedges between nodes inVt, andE→t are

the inter-sliceedges between nodes inVt andVt+1. A DBN, however, does not typically have this much

flexibility. That is, a DBN is specified using a “rolled up” template giving nodes that are repeated in each

slice, the intra-slice edges among those nodes, and the inter-slice edges between nodes of adjacent slices.

In other words,Vt andVt+τ have the same set of random variables that are different only in that the time

indexes of the variables differ byτ . The same is true forEt andEt+τ and alsoE→t andE→t+τ . The DBN

template is then unrolled to any desired lengthT to yield the DBNG. As in any BN, the collection of edges

pointing into a node corresponds to a conditional probability function (CPF). In a DBN, the CPF of a node is

shared (or tied) with the CPF of all other nodes that have come from the same underlying node in the DBN

template. In other words, ifVt ∈ Vt with parentsVπt , thenp(Vt = v|Vπt = vπ) = p(Vτ = v|Vπτ = vπ)

for all t, τ and for all scalar valuesv and vector valuesvπ. Therefore, it is possible to represent a DBN of

unbounded length, but with only a finite description length and a finite number of parameters.

Figure 1: Simple two-

stream Markov chain

It is well known that the hidden Markov model (HMM) is one type of DBN

[44]. Even given its success and flexibility, however, the HMM is only one

small model within the enormous family of statistical techniques representable

by DBNs. Like an HMM, a DBN makes a temporal Markov assumption, mean-

ing that the future is independent of the past given the present. In fact, it is true

that many (but not all, see Section 3.7) DBNs can be “flattened” into a corre-

sponding HMM, but staying within the DBN framework has several advantages.

First, in DBN form, there can be exploitable computational advantages since the

DBN explicitly represents factorization properties, and factorization is the key to tractable probabilistic in-

ference [29]. These factorizations, however, are lost when the model is flattened. Secondly, the factorization

specified by a DBN implies that there are constraints that the model must obey. For example, consider

Figure 1 which shows a two-Markov chain DBN with chains(Q1
t , Q

2
t ). A flattened HMM would have one
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chainRt ≡ (Q1
t , Q

2
t ) with transition probabilities set as follows:

p(Rt = rt|Rt−1 = rt−1) = p(Q1
t = q1

t , Q
2
t = q2

t |Q1
t−1 = q1

t−1, Q
2
t−1 = q2

t−1)

wherert ≡ (q1
t , q

2
t ) is the joint HMM state space. Such flattening, however, ignores the factorization

constraint expressed by the graph, which is:

p(Q1
t = q1

t , Q
2
t = q2

t |Q1
t−1 = q1

t−1, Q
2
t−1 = q2

t−1)

= p(Q1
t = q1

t |Q1
t−1 = q1

t−1)p(Q2
t = q2

t |Q1
t−1 = q1

t−1, Q
2
t−1 = q2

t−1)

In other words, not all possiblep(rt|rt−1) CPFs are allowed given the graph due to its conditional indepen-

dence property — in the above, other things in addition toQ1
t−1 would influence the distribution ofQ1

t if no

assumptions were made. Of course the HMM can represent a distribution designed under these constraints.

But when training parameters, we must find the optimal solution within the parameter space subject to the

these constraints. Moreover, it is during training (when the amount of training data might be limited) that

one wants to reduce the amount of parameter freedom (via a set of constraints on the model) as much as

possible. Since a DBN naturally expresses factorization, it is an ideal candidate to train model parameters

in this case. A third advantage of DBNs is that they convey structural information about the underlying

problem. Such structure might represent anything from the result of data-mining process [3] on the training

data to dependencies over high-level knowledge sources, or both. In either case, information about a domain

is visually and intuitively portrayed.

Loosely speaking, DBN probabilistic inference (a generalization of the Baum-Welch procedure for

HMMs [42]) has a computational cost upper bound (i.e., it is possible to show that this is the worst case)

equal to very roughly the joint state space (the number of combined variable assignments that can occur

with non-zero probability) of all the variables in two time slices of the graph [5, 37, 49, 50, 51] multiplied

by the total number of time slicesT . Therefore, one must be careful when adding variables to a DBN that

the cost does not become prohibitive. While this article does not get into the specifics of DBN inference, it

should be known that this cost often strongly depends on the DBN triangulation method used [5, 1]. In other

words, adding variables will often, but not necessarily, cause a significant increase in computational cost.

2.1 The GMTK Dynamic Template

Before exploring various ASR constructs using graphical models, we define the Graphical Models Toolkit’s

(GMTK) [7, 5] extension of a DBN template. This extension facilitates the expression of graphical models

for speech recognition and natural language processing.
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Figure 2: A multi-frame GMTK template (top)

with a two-frame prologueP, a 3-frame chunkC,

and a 2-frame epilogueE and unrolled one time

(bottom).

A GMTK template extends a standard DBN tem-

plate in five distinct ways. First, it allows for not only

forward but also backward directed time links. This al-

lows for a richer model specification that enables, for

example, representations of reverse-time effects such as

coarticulation in human speech (see Figure 2). Second,

network slices may span multiple time frames, so slices

are calledchunks. This allows for the specification of

multi-rate models with rationally related rates. Either

of these first two extensions means that the future need

not always be independent of the past given the present

(directed cycles are of course still disallowed). For ex-

ample, we might have a variableVt with parentsWt−1 andWt+1, so conditioning onVt does not render

Wt−1 andWt+1 independent. Alternatively,Vt might haveWt−2 as a parent, so conditioning on variables

at timet − 1 does not renderVt andWt−2 independent. Third, a GMTK template includes a built-in spec-

ification mechanism for switching parents (see Section 3.1). Fourth, parents of a variable may be multiple

chunks in the past or into the future, so not only are past and future no longer independent given the present,

the temporal Markov property common in HMMs might still not be present even at the chunk level (but it

is present if we agglomerate all chunks together inclusively between children and their parents). Fifth, it

allows for different special multi-frame structures to occur at both the beginning and the end of the unrolled

network. Specifically, a GMTK template consists of a prologue subgraphP = (V p, Ep), a chunk subgraph

(to be unrolled)C = (V c, Ec), an epilogue subgraphE = (V e, Ee), and appropriate edges in between. Each

of these subgraphs can be any number of time slices long. LettingT (P) denote the number of time frames

contained withinP (similarly for C andE), the number of frames in an unrolled GMTK-DBNGT may thus

be T = T (P) + kT (C) + T (E) for k a positive integer. As we will see in the following sections, using

this extended template definition can decrease the time required to express both standard as well as novel

statistical models for speech recognition systems.

3 Graphical Model Speech Architectures

In this section, we describe a number of graphical architectures for various speech recognition decoder con-

structs. Note that each of the graphs presented are meant only for speech recognition ”decoding” (meaning,
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producing a sequence of words from the acoustic waveform). In general, the graphical architectures used

when training the parameters of a speech recognition system will be slightly different (and will include

sub-graph structures for constructs such as counters, sequencers, lattices, and so on). Each of the following

graphs falls under one or more of the following broad goals for using graphs for ASR.

The first goal for graphical models in ASR is to design structures that explicitly and efficiently represent

typical or novel ASR control constructs. These may include features such as parameter tying, the sequenc-

ing of states through a list or lattice, smoothing by mixing, the ordern in ann-gram language model, the

size of the context in context-dependent phone models (e.g., mono- or tri-phones), the type of this context

(within-word or cross-word tri-phones), single or multiple pronunciations per word, and so on. Any given

ASR system might or might not implement some of these features (e.g., System X supports bi-grams but not

tri-grams). Within the graphical models framework, however, essentially all features are available (given the

appropriate general and efficient software). Such models, pioneered by [51], are now called “explicit graph

representations” [7], where random variables can exist for such purposes as word identification, numerical

word position, phone or phoneme identity, the indication of a phone transition, a count of the number of

phones, and direct copies of variables from other time frames. There indeed can be multiple possible repre-

sentations of the same underlying control structure, but these representations might have different degrees of

conceptual simplicity and/or computational requirements. It is therefore imperative to design structures that

are both simple to explain and fast to run. Explicit models stand in contrast to the fully “implicit approach”,

where much of this control information is represented by a single hidden Markov chain with a large sparse

transition matrix, and where an integer state encodes all contextual and control information determining the

allowable sequencing. The implicit approach, in fact, corresponds roughly to the result of flattening (e.g.,

composition and minimization [36]).

The implicit and explicit approaches are useful in different circumstances. The explicit approach allows

for the representation of an unlimited number of constructs. Moreover, when the underlying set of hidden

variables must have factorization constraints, it is natural to use an explicit model. If the underlying model

consists of multiple hierarchies, the explicit approach is again quite natural. On the other hand, if no factor-

ization is needed, if the CPFs are often sparse (containing many zeros), and if the underlying operation is

always a single hierarchical composition of multiply-nested Markov chains, then the implicit approach can

be both natural and very fast [36].

A second goal in forming graphical models for ASR is in latent knowledge modeling. Here, a set of

(partially) factored dynamic hidden variables are used to represent any unknown but presumed to exist phe-

nomenon (or “cause”) of the speech signal. This includes knowledge from very high linguistic levels to
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the very low acoustic level. For example, hidden variables can represent dialog act, word or phrase cate-

gory, pronunciation variant, speaking rate, mode/style/gender, word morphology, vocal-tract or articulatory

configuration, acoustic channel condition, noise condition, or Gaussian component. Knowledge modeling

using graphical models is a promising area for further research as many believe that high-level knowledge

is underutilized in existing state-of-the-art speech recognition systems. Graphical models can provide the

infrastructure in which this knowledge can be exploited.

A third goal consists of properobservation modeling. Most speech recognition systems represent speech

as a sequence of feature vectors corresponding to overlapping windows of speech. The feature vectors

(most often Mel-frequency cepstral coefficients, or MFCCs) are then represented by state-conditional multi-

variate Gaussian mixtures. It is quite easy to extend such a representation by allowing relationships between

individual elements of the current feature vector and elements in other feature vectors either before, during,

or after the current one. Such a model can more appropriately match the underlying statistics extant in

speech as represented by the current series of feature vectors.

Lastly, the most challenging problem (involving all three of the above) is that of automatic structure

learning. Here, the problem is to automatically determine a best graph structure (or a set of good structures)

using the available training data [10]. This problem is particularly difficult when learning hidden structures,

as not only is data for the hidden structure unavailable (making it difficult to learn), the existence of each such

hidden variable can be put into question. Therefore, many standard statistical model selection techniques

are inappropriate.

In the next several sections, we will see how these four goals arise when we examine a number of

different graphs for representing the speech recognition process. We will start with a fairly basic graph (for

a bi-gram decoder) and expand on this idea to the much more elaborate.

3.1 Basic phone-based bi-gram decoding structure

Our first model is a simple phone-based decoder that uses bi-gram language models and single-state phones

(Figure 3). The figure corresponds to a GMTK template unrolled one time: the first frame is the prologue

P, the second and third frames are each a chunkC, and the last frame is the epilogueE. The structure

explicitly represents the unflattened and hierarchical constructs that go into building such an ASR system

with these attributes even though, when flattened, it can be represented by an HMM. Each such attribute

is implemented using a separate temporal layer of random variables in the graph. We define the following

random variables at timet: Wt is the word,Wtr
t is the word transition,Wps

t is the word position,Ptr
t is

the phone transition,Pt is the phone, andOt is the acoustic feature vector. The graph thus specifies the

7



      :Word-

Transition

   :Acoustic
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       :Word-
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 Transition
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Figure 3: Explicit representation of a phone-based ASR decoder with a bi-gram language model. Observa-

tions are depicted as shaded nodes, and hidden variables are unshaded. Also, deterministic dependencies

are represented by straight lines, and purely random ones are represented by wavy lines. If a line is both

straight and wavy, it switches between deterministic and random based on a switching parent, connected via

a finely-dashed edge. Each time frame has (from top to bottom) a variable for: word identity, word transi-

tion, word position (position of current phone within a word), phone transition, phone, and acoustic feature

vector. Note that the final word transition binary variable is observed to equal the value 1, thus disabling any

decodings that do not end in a complete word.

following factorization for a lengthT utterance:

p(W1:T ,Wtr
1:T ,Wps

1:T ,Ptr
1:T ,P1:T ,O1:T )

=
∏

t

p(Ot|Pt)p(Ptr
t |Pt)p(Pt|Wps

t ,Wt)p(Wtr
t |Wt,W

ps
t ,Ptr

t )p(Wps
t |Wtr

t−1,W
ps
t−1,P

tr
t−1)p(Wt|Wt−1,W

tr
t−1)

Note, however, that it is always the case thatWtr
T = 1 to ensure that a proper final word is decoded. Some

of the CPFs are deterministic (represented by straight lines in the figure, see two paragraphs below for

further explanation) and some are purely random (represented by zig-zagged or wavy lines). To compute

the probability of the observations, we must perform the sum:

p(O1:T ) =
∑

W1:T ,Wtr
1:T ,Wps

1:T ,Ptr
1:T ,P1:T

p(W1:T ,Wtr
1:T ,Wps

1:T ,Ptr
1:T ,P1:T ,O1:T )

and then exploit the factorization property as specified by the graph to best distribute sums into products to

reduce computation. It should be noted that in this graph, many of the terms in the sum will have value zero

since one or more of the factors at each time frame will themselves be zero. This is because many of the

factors correspond to CPFs that are deterministic. One of the goals of inference in such graphs, therefore, is
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Figure 4: Tri-gram language model decoder

to take advantage of this sparsity in order to avoid the unnecessary computation of summing multiple zeros

together which takes time but does nothing.

We next describe each individual CPF. First, the acoustic featuresOt are a random function of the phone

in the CPFp(Ot|Pt). As is typical in an HMM system, each value forPt will select a particular Gaussian

mixture to be used to produce probability scores for that phone. Next, the phone transition variablePtr
t is a

binary indicator that specifies when the model should advance to the next phone —Ptr
t takes its cue from

the phone variablePt in the CPFp(Ptr
t |Pt), meaning that each phone may have its own separate geometric

duration distribution. Note that the phone transition variable is also purely random, since for each phone

there is a non-zero probability of both staying at that phone state and moving on to the next phone (similar

to the state transition probability in the classical HMM).

The phone variablePt is a purely deterministic function of its parentsW
ps
t andWt. This means that,

given the current word and word position, the phone is known with certainty. Another way of saying this is

thatp(Pt = i|Wps
t = k, Wt = l) = 1 if i = f(k, l) for a deterministic functionf(k, l) of its argumentsk, l,

and the probability is zero otherwise. In this model, therefore, each position of a word corresponds to one

and only one phone (so multiple pronunciations are not represented, although they easily could be). Another

deterministic relationship is the word transition. Here, a word transitionWtr
t = 1 occurs only if the model

makes a phone transitionPtr
t = 1 out of the last positionWps

t = k of a given wordWt = w wherew is the

index of a word that is comprised ofk total phones.

At the beginning of the utterance, the word variableW1 starts out using a unigram distribution over

words in the vocabulary. Also, the word positionW
ps
1 starts out at value0 with probability1 (e.g.,p(Wps

1 =
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Figure 5: Cross-word tri-phone decoder

0) = 1). After the first frame, these variables take on more complex distributions. First, the word position

variableW
ps
t has essentially three behaviors depending on the value of its parents: 1) it might not change

from a frame to the next frame, 2) it might increment in value by one (i.e.,W
ps
t = W

ps
t−1 + 1), or 3) it might

reset to zero. First, if there is no phone transition (Ptr
t−1 = 0) then the word position does not change (so

p(Wps
t = i|Wps

t−1 = i,Wtr
t−1 = j,Ptr

t−1 = 0) = 1, and this is true for allj, 0 or 1 in this case, but note

that whenPtr
t−1 = 0 we will always have thatWtr

t−1 = 0). If there is a phone transition (Ptr
t−1 = 1) and

the model is not in the last position of the word, then the word position will increment with probability one.

Lastly, if there is a phone transition (Ptr
t−1 = 1) and also the model is in the last position of the word, then

that will cause a word transition to occurWtr
t−1 = 1 which will subsequently cause the next word position

to be reset to zero (sop(Wps
t = 0|Wps

t−1 = i,Wtr
t−1 = 1,Ptr

t−1 = 1) = 1, for all i). Note that this behavior

is entirely deterministic, and could easily be described using a set of if-then rules or a decision tree. The

deterministic behavior of the graph is in fact what helps to implement various ASR control structures.

The final variable needing description is the word variable at frames greater than one. The word variable

uses the switching parent functionality (see also [9]), where the existence or implementation of an edge can

depend on the value of some other variable(s) in the network, referred to as the switching parent(s). The

edge from the switching parent to its child is drawn as a finely dashed edge in our graphs. In this case, the
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Figure 6: Tree-structured decoder

switching parent is the word transition variable. When the word transition is zero (Wtr
t−1 = 0), it causes the

word variableWt to copy its previous value, i.e.,Wt = Wt−1 with probability one. When a word transition

occursWtr
t−1 = 1, however, it switches the implementation of the word-to-word edge to use a “bi-gram”

language model probabilityp(Wt|Wt−1). Strictly speaking, this graph does not switch parents, but it does

switch implementations of a CPF, from a deterministic function to a random bi-gram language model.

Looking broadly at the graph, we see that most of the variables are hidden (unshaded) but some are

observed. The observed variables include the acoustic feature vectors (e.g., MFCCs). As an ASR system

typically uses featurevectors(modeled say using a Gaussian mixture), here the vector is represented simply

using a single node. By doing this, any statistical assumptions made at the acoustic level between individual

feature vector elements are not explicitly stated (but see Section 3.7 below). The other observed variable

is the final word transition, which is always observed to be one. By insisting that the final word transition

is unity, the graph ensures that all decodings end in a word transition. This makes sure that any decodings

representing only a partial final word (meaning the final word transition would have value zero) are never

considered. The ability of having this special behavior in the last frame is easily enabled by the extended

DBN template (Section 2.1).
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3.2 Basic phone-based tri-gram decoding architecture

In many ASR systems, moving from a bi-gram to a tri-gram language model can require a significant change

in internal system implementation. Under the graphical models framework, however, it is easy to express

such a construct. In fact, the graph from the previous section can be extended in only a minor way to

represent tri-gram language models. As is well known, going from a bi-gram to a tri-gram will increase the

state space of the model by a factor of|W |, the vocabulary size [26], and our case is no exception. The ease

of going to this new model, however, will be quite apparent.

In this and other graphs, all the variables evolve at the rate of the frame, rather than the rate of the

word. Therefore, to implement a tri-gram it is not sufficient to just add an edge in Figure 3 fromWt−2 to

Wt. This is because the word from two frames ago is most often the same as the current word, and is not

the same as the unique word that occurred before the previous unique word, which for a given hypothesis

might have occurred many frames into the past. Instead, we must explicitly keep track of the identity of

the word that was most recently different — i.e., the identity of the word just before the previous word

transition, regardless of when in the past that transition took place. We do this with an additionalprevious

wordvariableW
pr
t in Figure 4. When there is no word transition (Wtr

t = 0), both the wordWt and previous

word W
pr
t variables do not change when moving to timet + 1. When a word transition (Wtr

t = 1) occurs,

the new previous wordWpr
t+1 gets a copy of the previous current wordWt with probability one. Moreover,

the new current wordWt+1 is chosen with the tri-gram probability, but it conditions on the previous current

wordWt and thepreviousprevious wordWpr
t , as needed by a tri-gram.
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3.3 Cross-word tri-phone architecture

Another technique that is typically employed by speech recognition systems is that of cross-word tri-phones

[46]. Tri-phone models are those where the acoustic observation is conditioned not only on the currently

hypothesized phone, but also makes the assumption that the current acoustics are significantly influenced by

the preceding and following phonetic context (i.e., coarticulation). Tri-phone models do this by saying that

the distribution over the acoustic frame depends on the current, previous, and next phone.

We solve this problem again in a graphical setting. Our solution makes use of a novel feature in the

GMTK template, namely the use of backwards time edges. The solution is shown in Figure 5. The top

part of the graph shows the graph construct for the tri-gram language model we saw before — in particular,

the phone variable is a deterministic function of the word and word position. But in this case the phone

layer of the graph has three (rather than one) variables, the previous phone variableP
pr
t and a next phone

variablePnx
t which when combined together with the phonePt produce the tri-phone variableP×3

t . When

a phone transition does not occurPtr
t = 0, the phone variable keeps its same valuePt+1 = Pt from frame

to frame (since neither the word changes,Wt+1 = Wt, nor does the position increment,W
ps
t+1 = W

ps
t ), the

nextprevious phone retains its valuePpr
t+1 = P

pr
t , and thecurrentnext phonePnx

t simply copies its future

value fromPnx
t+1. When a phone transition does occur (Ptr

t = 1), then the current phonePt gets copied to

the nextprevious phonePpr
t+1, a new phonePt+1 is chosen based on the incremented new word position

13
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W
ps
t+1, and that new phone is then copied backwards in time into thecurrentnext phone, i.e.,Pnx

t = Pt+1

via the backwards time edge for use at timet. The backwards time edges have thus represented anticipatory

coarticulation effects in the speech process. Note, however (and similar to the tri-gram language model

case), that it is not sufficient to place a link fromPt+1 directly to the tri-phone variableP×3
t or observation

Ot because most oftenPt+1 will just be the same asPt. That is,Pt+1 is the phone of the next frame, but it

is not the phone that will next be used —Pt+1 is the next used phone only whenPtr
t = 1, at which point it

is copied back to the current next phonePnx
t , and to earlier current next phonesPnx

τ , for τ < t as needed

until the previous phone transition.

This process also works across word boundaries yielding a true cross-word tri-phone model. When the

model starts a new word, the last phone of the previous word is copied intoP
pr
t . Moreover, when we are at

the last phone of a word,Pnx
t will indicate the first phone of whatever the next word will be, regardless of

when in the future it starts.

3.4 Tree-structured lexicon architecture

Even for HMM-only large vocabulary speech recognition systems, the decoding search space can be com-

putationally prohibitive. It is most often necessary to arrange and reorganize states in this space in a manner

that is efficient to search, and one way is to use atree-structured lexicon[46] where the prefixes of each word

are represented explicitly, and the state space probabilistically branches only when extending the prefixes of
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words that no longer match.

Such a construct can be represented using the graph structure shown in Figure 6. In this graph, a variable

is used which corresponds to a phone treeTt. This variable encodes the prefix-tree for the entire word

lexicon in a large but very sparse stochastic matrix. Each state of this variable either corresponds to a “non-

terminal” state (which represents multiple words all of which have some prefix in common), and “terminal”

states (which represent a single word). There are two operationsTt might do over a frame depending on the

phone tree transition variableTtr
t−1 which also acts as a switching parent (dashed edge fromTtr

t−1 to Tt). If

Ttr
t = 0 (so there is no phone tree transition), thenTt+1 = Tt with unity probability. If there is a phone

tree transition, however, then the next phone tree state is governed by the sparse phone tree probability table

p(Tt+1 = j|Tt = i,Ttr
t = 1,Wtr

t = 0). At some point, we will reach a terminal phone tree state that

corresponds to the end of a word, lets sayTt = k. When making a phone tree transition out of this state

(Ttr
t = 1), this will cause a word transitionWtr

t = 1 to occur which will choose a new word. The issue,

however, is that we have not yet applied the true language model probability score for this new word (since

it was not known until now) in the context of the two previous words. Moreover, it is not possible simply

to allow the language model structure (top two rows in the graph) to probabilistically choose the next word,

since the word at this point is already pre-determined by the terminal state in the phone tree. Therefore, a

soft evidence [4, 41] construct is employed. Here, a special and always observed link variableLt = 1 is

used to insist on consistency between the word corresponding to the terminal state of the phone tree variable

and the next word chosen by the tri-gram language model, but this consistency is enforced only when a

word-transition occurs. This is realized by havingWtr
t be a switching parent ofLt. When there is no word

transition (Wtr
t = 0), thenLt is uncoupled from its other parentsWt+1 andTt (and thus has no effect).

When there is a word transition, the eventLt = 1 is explained (with non-zero probability) only when the

next wordWt+1 = w is the word corresponding to the terminal state of the current phone tree variableTt.

We can moreover extend this model to provide early state pruning by allowing the phone tree probability

table to have scores for the most optimistic of the subsequent words [46]. We can also provide for the

context dependence of such scores by including edges fromWt andW
pr
t to Tt (indicated in the figure by

long-dashed edges). Also, we can model the case when certain phone tree states are both non-terminal and

terminal, meaning that a valid word might be a prefix of another word. Both cases must be considered, and

this can be done by having the word transitionWtr
t be a stochastic function of the phone treeTt so that such

a state will both indicate a word, but also continue on to cover the words for which it is a prefix.

In summary, using just deterministic and random variables, and the soft-evidence construct, we have

re-created a tree-structured speech decoder system, but again all out of the same basic building blocks used
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to produce other models.

3.5 Transition Explicit Model

One advantage of the graphical modeling approach is that it helps to solve problems that under more con-

ventional approaches are more difficult to deploy. In this section, we describe one possible example. In

the past, it has been argued that speech regions corresponding to spectral transitions might include much if

not all of the underlying message [20, 6]. By making a simple modification to the graph in Figure 3, it is

possible to include a construct that puts different emphasis on the speech signal depending on the current

phone-transition condition.

In Figure 7, relative to Figure 3, we have attached to the phone transitionPtr
t another edge and observed

variable. The observation could, for example, consist of features that are designed to provide information

about spectral transition [20]. One option, say in an HMM system, would be to append this information to

the standard feature vector, perform dimensionality reduction or feature selection, and hope for the best. The

potential problem, however, is that the novel information might be relevant only part of the time, might not

be needed at this level of classification (between different phones), and thus might even introduce noise in

the system. Instead, in the figure we have focused this information directly on the part of the speech recog-

nition system most likely to be beneficially influenced, namely the phone transition variable. Therefore, the

graphical modeling framework and its machinery have made expressing this novel model very easy.

3.6 Multi-observation & multi-hidden stream semi-asynchronous architecture.

It is also easy to define a generic semi-asynchronous multi-stream and/or multi-modal model for speech

recognition as shown in Figure 8. The streams may lie both over the observation space (e.g., multiple

streams of feature vectors) and also over the hidden space (multiple semi-synchronous streams of hidden

variables).

The word variable,Wt, is at the top of the structure. In the previous models each word was composed of

a sequence of phones, but now we generalize this to being composed of two sequences of generic “states.”

This allows us to have two independent representations of a word. Examples include an audio and a video

feature stream [22, 21, 40, 39, 2], differing streams of audio features [48], different articulatory sequences

[17, 30, 34, 43, 33, 19], or different spectral sub-band streams [35, 14, 23]. The position variablesS1ps and

S2ps are counters which define the current position in the sequence. The current state,S1st
t (respectively

S2st
t ), is calculated fromWt andS

1ps
t (respectivelyS2ps

t ). The state variables could have unique values for

each word and counter value combination, or (as in a phone representation) could have the same values
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for many word and counter value combinations. The transition variables,S1tr
t andS2tr

t , are random and

determine when the sequences transition into the next state. The word transition variable,Wtr
t , determines

the end of the word. The state sequences are free to evolve at different rates for the duration of the word, but

in order for a word transition to occur, both sequences must transition out of their last state for the current

word – this means that forWtr
t = 1 we must have that bothS1tr

t = 1 andS2tr
t = 1, and also thatS1ps

t and

S
2ps
t are at their last respective value for the current wordWt. Note that there is no requirement that the

two sequences use the same number of states per word, nor is there any requirement that the two sequences

line-up in any way — effectively, in accumulating the probability of the word, all alignments are considered

along with their corresponding alignment probability. Moreover, additional constraints can be placed on the

various alignments by including edges directly between the variablesS
1ps
t , S1st

t and the variablesS2ps
t , S2st

t .

Alternatively, a soft evidence [4, 41] mechanism can be used to place symmetric constraints on the stream

variables. In either case, certain alignments can be either probabilistically weighted or entirely removed

from consideration with non-zero probability.

In this model, words are the points of synchrony because the two streams must start and end together at

word boundaries. One can also envision a model where the points of synchrony are not the words but are

rather sub-word (syllables, articulatory gestures), or suprasegmental (phrases, sentence boundaries) aspects

of speech. Moreover, it is quite easy to generalize to more than two streams.

3.7 Architectures over Observed Variables

In this last example, we see a graph that explicitly represents various factorization properties over the ob-

servation vectors themselves (Figure 9). In this graph, the observation explicitly shows the lengthM vector

of acoustic features at timet (this is written asO1:M,t), and where each of the scalar observation elements

Oj,t might depend on a different scalar observation elementOi,τ at a different position and/or different time,

either earlier or later. Note that this model shows that the dependencies over observations switch from

frame to frame, and they switch based on both the current phonePt and the current phone transition state

Ptr
t , variables that are both normal and switching parents, and so both solid and finely-dashed edges are

displayed. Note that such models have been called auto-regressive HMMs [45, 11], or for the case with

specific element-wise dependencies as depicted in the figure, Buried Markov models (BMMs) [3].

Unlike the models of the earlier sections, BMMs cannot be flattened into an equivalent HMM because

the additional edges are between continuous feature vectors, and so this influences the model in non-discrete

uncountable ways, something that can not be exactly flattened into a countable (or even finite) state space.

Moreover, BMMs provide a promising vehicle for structure learning [8, 18] since the structure to be learned
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is over sequences of only observed feature vectors (rather than hidden variables). Efficient and provably

optimal structure learning methods exist in certain cases when the variables are observed [12, 24, 38]. In

past work, in fact, it was shown how to learn the structure in a discriminative fashion over such variables

[3].

3.8 Architecture Summary

Looking over the architectures from the previous sections, we see that many of the constructs are already

available in ASR systems. A key advantage of GMs is that all of these constructs can be represented in a

single, unified framework. In general under this framework, many other modifications to the above given

structures can be quickly utilized (Section 3.5 shows one such example), and even slight modifications can

lead to quite different ASR systems. While some of these modifications will improve performance and

others will not, graphical model machinery can make it easy to both express a new model, and with the

right software tools, to rapidly prototype it in a real ASR system. In addition, since the space of possible

directed graphical models is so large, it is likely that even radically new ideas can be represented and rapidly

prototyped in this framework without having to re-write an entire ASR system. This is the most important

promise of the graphical modeling paradigm, but it does require a working toolkit.

4 Graphical Models Software Infrastructure

Building implementations of the aforementioned graphical architectures is greatly facilitated with a graph-

ical models toolkit tuned specifically to speech and language processing. The Graphical Models Toolkit

(GMTK), is one such system [7]. GMTK’s goal is to provide the researcher with a rich and flexible set

of abilities to express models in terms of graphs, but at the same time hide many of the technical details

regarding the specifics of graphical algorithms. The process by which a speech researcher uses GMTK is

as follows: First, a user specifies a graphical model using GMTK’s extended DBN language (described in

Section 2.1). Given the graph specification, off-line processing is performed [5] that partitions the graph

into three disjoint sections distinct from the prologue, chunk, and epilogue. Next, the three new partitions

of the graph are separately triangulated [1, 29], and junction trees for each section are formed and then

merged to form a joint triangulated junction tree template. Once the graph is triangulated, it can be used

by the inference algorithm for EM training, Viterbi-style decoding, or sampling. The overall goal of this

processing is to improve computational efficiency to the extent possible. How precisely inference works

and the underlying complexity of the models requires a detailed discussion requiring space much greater
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than is available in this article, but such a discussion will appear in future publications (for now, the reader

may refer to [41, 13, 28, 37]). The researcher can thus concentrate on what is important, namely the model

specification according to the four goals in Section 3. More details may be found in [7, 5, 1].

5 Conclusion

In this article, we have described in detail a number of graphical models that can be used to express speech

recognition systems. We have demonstrated how graphical models solve problems for the speech scientist

for which more conventional methods (e.g., HMMs) would either be unsuitable or at best a poor platform

in which to rapidly prototype such a new idea. A key promise of graphical models is that by allowing

researchers to experiment quickly, it will be possible to reject ideas that perform poorly, and advance ideas

that perform well. This, of course, is not possible without a good software infrastructure. In the future, it

indeed may be possible that the speech community will experience a wealth of new ideas, all expressed and

implemented in this new graphical modeling paradigm.
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[24] K-U. Höffgen. Learning and robust learning of product distributions. InProceedings of the sixth

annual conference on Computational learning theory, pages 77–83. ACM Press, 1993.

[25] X.D. Huang, A. Acero, and H.-W. Hon.Spoken Language Processing: A Guide to Theory, Algorithm,

and System Development. Prentice Hall, 2001.

[26] F. Jelinek.Statistical Methods for Speech Recognition. MIT Press, 1997.

[27] F.V. Jensen.An Introduction to Bayesian Networks. Springer, 1996.

21



[28] F.V. Jensen.Bayesian Networks and Decision Graphs. Springer, 2001.

[29] M.I. Jordan and C. M. Bishop, editors.An Introduction to Graphical Models. to be published, 200x.

[30] K. Kirchhoff. Syllable-level desynchronisation of phonetic features for speech recognition. InProc.

Int. Conf. on Spoken Language Processing, 1996.

[31] F. R. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.IEEE

Trans. Inform. Theory, 47(2):498–519, 2001.

[32] S.L. Lauritzen.Graphical Models. Oxford Science Publications, 1996.

[33] K. Livescu and J. Glass. Feature-based pronunciation modeling with trainable asynchrony probabili-

ties. InProc. Int. Conf. on Spoken Language Processing, Jeju, South Korea, October 2004.

[34] K. Livescu, J. Glass, and J. Bilmes. Hidden feature models for speech recognition using dynamic

bayesian networks. InEuropean Conf. on Speech Communication and Technology (Eurospeech), 7th,

Geneva, Switzerland, 2003.

[35] N. Mirghafori and N. Morgan. Combining connectionist multi-band and full-band probability streams

for speech recognition of natural numbers. InProceedings of the International Conference on Spoken

Language Processing, pages 743–746, 1998.

[36] M. Mohri, F. C. N. Pereira, and M. Riley. The design principles of a weighted finite-state transducer

library. Theoretical Computer Science, 231(1):17–32, 2000.

[37] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, U.C.

Berkeley, Dept. of EECS, CS Division, 2002.

[38] M. Narasimhan and J. Bilmes. PAC-learning bounded tree-width graphical models. InUncertainty

in Artificial Intelligence: Proceedings of the Twentieth Conference (UAI-2004). Morgan Kaufmann

Publishers, 2004.

[39] A. Nefian, L. Liang, X. Pi, and K. Murphy. Dynamic bayesian networks for audio-visual speech

recognition.EURASIP, Journal of Applied Signal Processing, 11:1—15, 2002.

[40] A. Nefian, L. Liang, X. Pi, L. Xiaoxiang, C. Mao, and K. Murphy. A coupled hmm for audio-visual

speech recognition. InProc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, 2002.

22



[41] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan

Kaufmann, 2nd printing edition, 1988.

[42] L.R. Rabiner and B.-H. Juang.Fundamentals of Speech Recognition. Prentice Hall Signal Processing

Series, 1993.

[43] M. Richardson, J. Bilmes, and C. Diorio. Hidden-articulator Markov models for speech recognition.

Speech Communication, 41:511, October 2003.

[44] P. Smyth, D. Heckerman, and M.I. Jordan. Probabilistic independence networks for hidden Markov

probability models. Technical Report A.I. Memo No. 1565, C.B.C.L. Memo No. 132, MIT AI Lab and

CBCL, 1996.

[45] C.J. Wellekens. Explicit time correlation in hidden Markov models for speech recognition.Proc. IEEE

Intl. Conf. on Acoustics, Speech, and Signal Processing, pages 384–386, 1987.

[46] S. Young. A review of large-vocabulary continuous-speech recognition.IEEE Signal Processing

Magazine, 13(5):45–56, September 1996.

[47] S. Young, J. Jansen, J. Odell, D. Ollason, and P. Woodland.The HTK Book. Entropic Labs and

Cambridge University, 2.1 edition, 1990’s.

[48] Y. Zhang, Q. Diao, S. Huang, W. Hu, C. Bartels, and J. Bilmes. DBN based multi-stream models for

speech. InProc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, Hong Kong, China,

April 2003.

[49] G. Zweig.Speech Recognition with Dynamic Bayesian Networks. PhD thesis, U.C. Berkeley, 1998.

[50] G. Zweig. Bayesian network structures and inference techniques for automatic speech recognition.

Computer Speech and Language, 17:173—193, April—July 2003.

[51] G. Zweig and S. Russell. Speech recognition with dynamic Bayesian networks.AAAI-98, 1998.

23


	Introduction
	Dynamic Graphical Models
	The GMTK Dynamic Template

	Graphical Model Speech Architectures
	Basic phone-based bi-gram decoding structure
	Basic phone-based tri-gram decoding architecture
	Cross-word tri-phone architecture
	Tree-structured lexicon architecture
	Transition Explicit Model
	Multi-observation & multi-hidden stream semi-asynchronous architecture.
	Architectures over Observed Variables
	Architecture Summary

	Graphical Models Software Infrastructure
	Conclusion
	Acknowledgments

