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ABSTRACT trary, a main hope is that by examining a list of what HMMs

Hidden Markov models (HMMs) are the predominant ¢an do, a better_understa.nding of their Iim.itations may be
methodology for automatic speech recognition (ASR) sys- found so they uItlma}ter will be abandoned in favor of.a su-
tems. Ever since their inception, it has been said that HMMs Perior model. A main thrust should be searching for inher-
are an inadequate statistical model for such purposes. Re€ntly more parsimonious models, ones that utilize knowl-
sults over the years have shown, however, that HMM-based€dge, and that incorporate only the distinct properties of
ASR performance continually improves given enough train- speech utterances relative to competing speec_h utterances
ing data and engineering effort. In this paper, we argue thatWith respect to this knowledge. The rest of this paper is
there are, in theory at least, no theoretical limitations to the thus devoted to what HMMs can do.
class of probability distributions representable by HMMs.

In search of a model to supersede the HMM for ASR, there- 2. HIDDEN MARKOV MODELS
fore, we should search for models with better parsimony,
computational properties, noise insensitivity, and that betterWe begin immediately with the definition of an HMM.

utilize high-level knowledge sources.
Definition 2.1. Hidden Markov Model A hidden Markov

model (HMM) is collection ofT" discrete scalar ran-
dom variables@,.7 and T other variables X;.; (ei-
the Hidden ther discrete or continuous, and either scalar- or vector-

Markov model (HMM) has been most successfully applied valt_Jed). These variablies have a joint_ probability distri-
to the ASR problem. Recent results have shown that theybUt'O” p(Qu7, X1.7) which factorizes with respect to the
are remarkably good even for conversational text-to-speechBayesian network shown in Figure 1

[250] — the latest Switchboard word_error rates are at around | According to Fh.e. rulgs OT Bayesian ngtwork fag:t'oriza-
13%. There. are many HMM overviews [21, 8, 15',10_' 24]. tion [19], the definition implies the following conditional

In the glassm paper [24], for examplle,' an HMM is intro- _independence properties:

duced in a generative way. For statistical speech recogni-

1. INTRODUCTION

More than any other statistical technique,

tion, one is not entirely concerned about how HMMs gen- {Qur, Xer Y 1{Qrit—2, X141 H Q11 (1)
erate data, but instead, in how they discriminate between ' ' ' '
competitive utterances. XA {Q-y, X }|Q: 2)

This paper argues that, within the paradigm offered by
statistical pattern classification [9, 14], there is no theoreti- for eacht € 1 : T, whereX_, = X1.7 \ X¢. The variable
cal limit to HMMs given enough hidden states, rich enough @; may take values in a finite stcalled the state space of
observation distributions, sufficient training data, adequatethe HMM, with has cardinalityQ|.
computation, and appropriate training algorithms. Instead, = Note that definition 2.1 does not limit the number of
only a particular individual HMM used in a particular states|Q| in the Markov chain, does not require the ob-
speech recognition system might be inadequate. This perservationsX;.7 to be either discrete, continuous, scalar-,
haps provides a reason for the continual speech-recognitioror vector- valued, does not designate the implementation of
accuracy improvements we have seen with HMM-based the dependencies (e.g., general regression, probability table,
systems, and for the difficulty there has been in producing aneural network, etc.), does not determine the model fami-
model to supersede HMMs in all cases. lies for each of the variables (e.g., Gaussian, Laplace, etc.),
This paper does not argue, however, that HMMs should does not force the underlying Markov chain to be time-
be the final technology for speech recognition. On the con- homogeneous, and does not fix the parameters or any tying



mechanism. Summing ovéJ;.r, we get a marginal distrib-  3.3. Conditionally i.i.d. observations
ution overX.r that forms a general discrete time stochastic

process with, as we will see, great flexibility. In fact, HMMs are i.i.d. conditioned on certain state sequences

since

pere) = S [[p@lap@lar) @ pevrlaa) =] [ptela)

quT t .. . L .
" But this is not an inherent limitation. When sampling

This holds regardless of the form used fdr:|q). The fac-  from an HMM, each sample will possess a different hid-

torization properties of an HMM makes for extremely effi- den Markov chain assignment. Unless one and only one
cient computation op(z1.7) [24], and which is a special ~ State assignment has non-zero probability, the hidden state
case of statistical inference on the Bayesian network shownsequence will change with each sample. Therefore, the fact

in Figure 1 ([26, 24]). that HMMs are conditionally i.i.d. do not (necessarily) have
repercussions when HMMs are actually used since HMM
0, 0 0., 0,., probabilities of a speech signal are obtained from the mar-
t— t t+ t+

ginal distributionp(z;.7), and not from the conditional dis-

tribution p(X1.7|Q1.7) where conditional i.i.d. holds.
3.4. Viterbii.i.d.
Xt—l Xt Xt+1 Xt+2

HMMs are also not i.i.d. conditioned on the Viterbi path[24,
15], defined as follows:
Fig. 1. A Hidden Markov Model X
ig idden Markov Mode ¢hr = argmaxp(z1.z, qir)
q1:T
When using an HMM, often the joint distribution is taken
3. WHAT HMMS CAN DO as the effective Viterbi distribution:

This HMM definition and Equations 1 and 2 can be used to pyit (T11) < p(T1r, ¢i.r)

better understand the capabilities of HMMs. In particular, i o _ _

it is possible to consider a particular quality in the context E_ven_ ““‘?'ef this approx[mgt!on, however, th_e res_ultmg dis-
of conditional independence, in an effort to understand howtrlbutlon is not necessarily i.i.d. unless the Viterbi paths for

and where that quality might apply, and its implications for all observation assignments are identical. Since the Viterbi
using HMMs in a speech recognition system. The rest of Path is typically different for each,.r, and the max opera-

this paper therefore compiles and then analyzes in detail al°" d0€s not commute with the produpt (1) does not

list of such qualities. in general factorize.

3.5. Uncorrelated observations
3.1. Observations i.i.d. _ ) ) )
Two observations at different times might be dependent, but

Given Equation 3, it can be seen that an HMM ovér. are they correlated? X, and X, are uncorrelated, then

is not i.i.d. since in genergb(z;.7) cannot factorize as  E[X, X/, ,| = E[X/|E[X;;]’. Consider an HMM that
p(x1)p(x2) ... () unless only one state in the hidden has single component Gaussian observation distributions,
Markov chain has non-zero probability for all times (which i.e., p(z|q) ~ N(z|u,, Z,) for all statesg. Under these

is never the case in practice). assumptions, and assumip(@y) is currently at a stationary
distribution7, and lettingA be the matrix with(i, 7)t" en-

try p(j]7), it can be shown [2] that c@X;, X;;,) may be

3.2. Backwards-time influence expressed as:

Equations (1) and (2) imply a large assortment of condi- /

tional independence statements including that the future is ARy o . .

independent of the past given the present. The definition %:MZMJ (4 )”m (Z Mﬂh) (zL: mm)

does not imply, giver®);_1, that@, is unaffected by future

variables. In fact, the distribution @; could dramatically = a quantity that is not in general the zero matrix. Therefore
change, even give@;_;, when the variableX, or Q. HMMs, even as simple as ones that use single Gaussian
change, forr > t. observation distributions and under a stationary Markov



chain, can capture correlation between feature vectors (se¢diMMs are not stationary unless either 1) every HMM sam-
also [22]). To empirically demonstrate this correlation, the ple always results in the same hidden assignment for some
mutual information [7] in bits was computed between fea- fixed-time region, or 2) the hidden chain is always stationary
ture vectors from speech data sampled using 4-state pepver that region. With standard left-to-right HMMs, neither
phone word HMMs trained from an isolated word task using is true in practice.

MFCCs and their deltas [28]. Figure 2 compares the aver-

age pair-wise mutual information over time of this HMM o )

with i.i.d. samples from a Gaussian mixture. The HMM 3.7. Within-frame stationary

clearly shows more correlation than the true i.i.d. process,Speech is a band-limited continuous-time signal. A feature

since the HMM’s hidden variables indirectly encode this in- . .
. . : extraction process generates speech frames at regular time
formation, and as the number of hidden states increases, sQ .
. ; intervals (e.g., 10ms) over a window (e.g., 25ms). An HMM
does the amount of information that can be encoded.

then characterizes the distribution over this discrete-time set
-3 of frame vectors. Might HMMs have trouble representing
' speech because information encoded by within-frame vari-
ation is lost via the framing of speech? This also is un-
likely to produce problems since the properties of speech
that convey any message are band-limited in the modula-
tion domain, and if the rate of hidden state change is high
enough, and if the frame-window width is small enough,
framing of speech would not result in any information loss.

x 10
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3.8. Geometric state distributions

~foo ' 0 In a Markov chain, the time duratio®® that a specific
stated is active is a random variable distributed accord-
ing to a geometric distribution. That i§) has distribution
P(D = d) = p?~1(1 — p) whered > 1. It seems possible
that HMMs might be deficient because their state duration
distributions are inherently geometric, and geometric distri-

Fig. 2. HMM frame correlation vs. true i.i.d. process.

3.6. Piece-wise or segment-wise stationary butions do not accurately represent typical speech unit (e.g.,
An HMM is stationary overX;., whenever phoneme or syllable) durations.
HMMs, however, do not necessarily have such prob-
P( Xty +h = T1m) = P(Xty,, = T1m) lems, and this occurs because of “state-tying”, where mul-

. tiple different states can share the same observation distri-
for all n, 7, t1.n, @anday.,. It can be shown [2] that this 1, 1ion. In general, a collection of HMM states sharing the
conditional holds whep(Q¢, 1 = 1) = p(Qr, = q) for same observation distribution may be combined in both se-
all h. Therefore, the HMM is stationary only when the un- je5 and parallel. If a sequence ofstates using the same
derlying hidden Markov chain is stationary, even when the ,pservation distribution are strung together in series, and
Markov chain is time-homogeneous. An HMM therefore oach of the states has self transition probabilifghen the
does not necessarily correspond to a stationary ‘.j'St”bUt'O”-resulting distribution (the sum of independent geometri-

~ For ASR, HMMs commonly have non-ergodic left-to- .41y distributed random variables) has a negative binomial
rlght state—tran3|t|on topologles where transition matrices distribution (a discrete version of the gamma distribution)
are upper triangularit(j|i) = 0 ¥j < 4). More strongly,  [27] ynlike a geometric distribution, a negative binomial
any left-to-right HMM is not stationary unless all non-final  jistribution has a mode located away from zero. When
states have zero probability [2]. HMMs are also unlikely 10 ¢ompined in parallel, the resulting distribution is a weighted
be “piece-wise” stationary, in which an HMM is in a par-  yixtre of the individual distributions. This process can of
tlculqr state for a tlme's.egment and where o.bservatlons INcourse be combined (see Figure 3) and repeated recursively
that time segment are i.i.d. and therefore stationary. Recall,55 \yell. Therefore, simply by increasing the hidden state

each HMM sample uses a separate sample from the hiddery,ce cardinality, an HMM can produce an broad class of
Markov chain. As a result, a segment (a sequence of 'de”t"speech-unit duration distributions.

cal state assignments to successive hidden variables) in the
hidden cham of one HMM sam_ple will not necessar”y be 1t has been suggested that a gamma distribution is a more appropriate
a segment in the chain of a different sample. Therefore, speech-unit durational distribution[20].
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Fig. 3. Three speech-unit duration distributions with an HMM, and their respective Markov chain topologies.

3.9. First-order hidden Markov assumption states can overburden the hidden variables and lead to inac-

. . . curacies. If there are enough states, and if the information in
As described in [16], any.‘"*-order Markov chain may be g

. ! . . the surrounding acoustic context is appropriately encoded in
transformed into a first-order chain. Therefore, assuming a. . nidden states. the information may be compressed and
first-order Markov chain possess a sufficient states, there ist'epresented by, ' To achieve high accuracy, it is likely

na inherent fidelity loss when using a first-order as OIOpOSGdthat a finite number of states is required since signals rep-

to ann'"-order HMM. resenting natural real-world phenomena will have bounded
mutual information. Can sufficient conditions for HMM ac-

3.10. Conditions for HMM Accuracy curacy be found? An initial attempt is given in [2], but

more results are needed. It moreover remains to be seen if

i . o simultaneously necessary and sufficient conditions can be
vation variables,.. If an HMM must represent this dis derived for HMM accuracy, if it is possible to derive suffi-

tribution accurately, necessary conditions on the number Ofcient conditions for continuous observation vector HMMs

hidden states and the necessary complexity of the observal—mder reasonable conditions (e.g., finite power), and what
tion distributions may be found. Let, (X1.7) be the joint g P ’

distribution over the observation variables under an HMM. conditions might exist for an HMM that is allowed to have

HMM accuracy can be defined as KL-divergence [7] be- a fixed upper-bound KL-divergence error.

tween the two distributions being zero. The following theo- _ N
rem is proven in [2]. 3.11. Synthesis vs. Recognition

Suppose thap(X;.r) is the true distribution of the obser-

Given a speech utterandé, an HMM for M is a represen-
tation of the distributiorp(X;.7|M) which can be viewed
as a synthesis or generative model because sampling from
this distribution should produce (or synthesize) an instance
of the a speech sound. For ASR, however, one instead

Theorem 3.1. Necessary conditions for HMM accuracy.
An HMM with joint distributionpy, (X;.7) will accurately

model the true distributiop(X1.7) (zero KL-divergence)
only if the following three conditions hold for ati

o In(X_4; Q) > I(Xy; X—yp), desiresP(M|X) which is a recognition or discriminative
model since such a quantity achieves Bayes error. That
o In(Qu; Xy) = I(Xy; X—y), and HMMs inherently represent(X|M), however, is less re-

strictive than what might initially appear.

First,p(M|X) = p(X|M)p(M)/p(X) so if an HMM
whereZ, (X-.: Q:) (resp. Tn(Qs; X)) is the mutual infor-  accurately represents(X|M) and with accurateP(M),
mation betweerX_, and Q; (resp. Q; and X,) under an @ accurate posterior will ensue. Approximating a distri-

HMM, and I(X,; X_,) is the true mutual information be- ~Pution such ag(X|M) might require more effort (para-
tweenl (X;; X ). meters, training data, and compute time) than necessary to

achieve good classification accuracy. Representing the en-
SinceQ): is the “channel” representation through which tire set of class conditional distributiong X |M), which
information about the past and future must travel, too few includes regions between decision boundaries, is more diffi-

o [Q] > 21(X6X-0



cult than necessary to achieve good performance. One mayithout sufficient training data. These problems, of course,
instead produce any approximating distribution X |M) can be corrected still staying within the HMM framework.
that achieves the same Bayes error, so classification accu€onsidering also an HMM’s extremely good computational
racy will not be compromised. A sample from such a con- properties, it is in fact be a difficult model to surpass. In our
ditional distribution will not necessarily result in a “good” quest for a new model for speech recognition, therefore, we
speech utterance, but this is of no consequence to classificashould be concerned not with what is wrong with HMMs,
tion accuracy. Moreover, using a simpler mogg(X | M) and rather seek a model that is inherently more parsimo-
can have statistical parameter estimation benefits as welhious, more intrinsically discriminative, equally computa-
[13]. Under this view, an HMM is the temporal analog of tionally tractable, and where knowledge-rich speech and
the Naive Bayes classifier. language representations can be much more easily incor-
Moreover, even under a generative model, the degree toporated. It is believed by this author that graphical mod-
which decision boundary information is represented by an els [19, 4] satisfy all of the above requirements and are
HMM depends on the parameter training method. Discrim- thus most likely, once computational frameworks are read-

inative training methods have long ago been developed (andly available, to eventually overtake the HMM.

are currently usefully employed [25]) that adjust the para-
meters of each model to increase not the individual like-
lihood but rather approximate the posterior probability or
Bayes decisionrule[1, 6,11, 12, 18, 17, 23]. Apart from the
training method, the degree to which boundary information
is represented can depend on each model’s intrinsic ability
to produce an accurate distribution at decision boundaries
vs. its ability to represent the regions between boundaries.
This is the inherent discriminability of the structure of the
model for each class, independent of its parameters, a prop-
erty that has been called structurally discriminative [5].

How structurally discriminative are HMMs when at-
tempting to model the distinctive attributes of speech utter-
ances? Certainly, the left-to-right Markov chain topology
helps significantly, since there is much discriminative infor-
mation in the hard sequencing properties of such HMMs. At
the very least, HMMs are not structurally indiscriminate be-
cause, even when trained using maximum likelihood proce-
dure, HMM-based speech recognition systems perform rea-
sonably well. Moreover, the structure of an HMM might
be further adjusted to improve discriminability [3]. Earlier
sections of this paper suggested that HMM distributions are
not lacking in their flexibility, but this section claims that for
recognition, HMM need not even accurately represent the
true likelihoodp(X | M) to achieve high classification accu-
racy. While HMMs are powerful, a fortunate consequence
of the current discussion is that HMMs need not capture
many of the nuances in a speech signal, and are thus allowed
to be simpler still as a result. In other words, just because a
particular HMM does not accurately represent speech does
not mean it is poor at the recognition task.
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