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ABSTRACT

Hidden Markov models (HMMs) are the predominant
methodology for automatic speech recognition (ASR) sys-
tems. Ever since their inception, it has been said that HMMs
are an inadequate statistical model for such purposes. Re-
sults over the years have shown, however, that HMM-based
ASR performance continually improves given enough train-
ing data and engineering effort. In this paper, we argue that
there are, in theory at least, no theoretical limitations to the
class of probability distributions representable by HMMs.
In search of a model to supersede the HMM for ASR, there-
fore, we should search for models with better parsimony,
computational properties, noise insensitivity, and that better
utilize high-level knowledge sources.

1. INTRODUCTION

More than any other statistical technique, the Hidden
Markov model (HMM) has been most successfully applied
to the ASR problem. Recent results have shown that they
are remarkably good even for conversational text-to-speech
[25] — the latest Switchboard word error rates are at around
13%. There are many HMM overviews [21, 8, 15, 10, 24].
In the classic paper [24], for example, an HMM is intro-
duced in a generative way. For statistical speech recogni-
tion, one is not entirely concerned about how HMMs gen-
erate data, but instead, in how they discriminate between
competitive utterances.

This paper argues that, within the paradigm offered by
statistical pattern classification [9, 14], there is no theoreti-
cal limit to HMMs given enough hidden states, rich enough
observation distributions, sufficient training data, adequate
computation, and appropriate training algorithms. Instead,
only a particular individual HMM used in a particular
speech recognition system might be inadequate. This per-
haps provides a reason for the continual speech-recognition
accuracy improvements we have seen with HMM-based
systems, and for the difficulty there has been in producing a
model to supersede HMMs in all cases.

This paper does not argue, however, that HMMs should
be the final technology for speech recognition. On the con-

trary, a main hope is that by examining a list of what HMMs
can do, a better understanding of their limitations may be
found so they ultimately will be abandoned in favor of a su-
perior model. A main thrust should be searching for inher-
ently more parsimonious models, ones that utilize knowl-
edge, and that incorporate only the distinct properties of
speech utterances relative to competing speech utterances
with respect to this knowledge. The rest of this paper is
thus devoted to what HMMs can do.

2. HIDDEN MARKOV MODELS

We begin immediately with the definition of an HMM.

Definition 2.1. Hidden Markov Model A hidden Markov
model (HMM) is collection ofT discrete scalar ran-
dom variablesQ1:T and T other variablesX1:T (ei-
ther discrete or continuous, and either scalar- or vector-
valued). These variables have a joint probability distri-
bution p(Q1:T , X1:T ) which factorizes with respect to the
Bayesian network shown in Figure 1

According to the rules of Bayesian network factoriza-
tion [19], the definition implies the following conditional
independence properties:

{Qt:T , Xt:T }⊥⊥{Q1:t−2, X1:t−1}|Qt−1 (1)

Xt⊥⊥{Q¬t, X¬t}|Qt (2)

for eacht ∈ 1 : T , whereX¬t
∆= X1:T \ Xt. The variable

Qt may take values in a finite setQ called the state space of
the HMM, with has cardinality|Q|.

Note that definition 2.1 does not limit the number of
states|Q| in the Markov chain, does not require the ob-
servationsX1:T to be either discrete, continuous, scalar-,
or vector- valued, does not designate the implementation of
the dependencies (e.g., general regression, probability table,
neural network, etc.), does not determine the model fami-
lies for each of the variables (e.g., Gaussian, Laplace, etc.),
does not force the underlying Markov chain to be time-
homogeneous, and does not fix the parameters or any tying



mechanism. Summing overQ1:T , we get a marginal distrib-
ution overX1:T that forms a general discrete time stochastic
process with, as we will see, great flexibility. In fact,

p(x1:T ) =
∑
q1:T

∏
t

p(xt|qt)p(qt|qt−1) (3)

This holds regardless of the form used forp(x|q). The fac-
torization properties of an HMM makes for extremely effi-
cient computation ofp(x1:T ) [24], and which is a special
case of statistical inference on the Bayesian network shown
in Figure 1 ([26, 24]).
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Fig. 1. A Hidden Markov Model

3. WHAT HMMS CAN DO

This HMM definition and Equations 1 and 2 can be used to
better understand the capabilities of HMMs. In particular,
it is possible to consider a particular quality in the context
of conditional independence, in an effort to understand how
and where that quality might apply, and its implications for
using HMMs in a speech recognition system. The rest of
this paper therefore compiles and then analyzes in detail a
list of such qualities.

3.1. Observations i.i.d.

Given Equation 3, it can be seen that an HMM overX1:T

is not i.i.d. since in generalp(x1:T ) cannot factorize as
p(x1)p(x2) . . . (xT ) unless only one state in the hidden
Markov chain has non-zero probability for all times (which
is never the case in practice).

3.2. Backwards-time influence

Equations (1) and (2) imply a large assortment of condi-
tional independence statements including that the future is
independent of the past given the present. The definition
does not imply, givenQt−1, thatQt is unaffected by future
variables. In fact, the distribution ofQt could dramatically
change, even givenQt−1, when the variablesXτ or Qτ+1

change, forτ > t.

3.3. Conditionally i.i.d. observations

HMMs are i.i.d. conditioned on certain state sequences
since

p(x1:T |q1:T ) =
∏

t

p(xt|qt).

But this is not an inherent limitation. When sampling
from an HMM, each sample will possess a different hid-
den Markov chain assignment. Unless one and only one
state assignment has non-zero probability, the hidden state
sequence will change with each sample. Therefore, the fact
that HMMs are conditionally i.i.d. do not (necessarily) have
repercussions when HMMs are actually used since HMM
probabilities of a speech signal are obtained from the mar-
ginal distributionp(x1:T ), and not from the conditional dis-
tributionp(X1:T |Q1:T ) where conditional i.i.d. holds.

3.4. Viterbi i.i.d.

HMMs are also not i.i.d. conditioned on the Viterbi path[24,
15], defined as follows:

q∗1:T = argmax
q1:T

p(x1:T , q1:T )

When using an HMM, often the joint distribution is taken
as the effective Viterbi distribution:

pvit(x1:T ) ∝ p(x1:T , q∗1:T )

Even under this approximation, however, the resulting dis-
tribution is not necessarily i.i.d. unless the Viterbi paths for
all observation assignments are identical. Since the Viterbi
path is typically different for eachx1:T , and the max opera-
tor does not commute with the product,pvit(x1:T ) does not
in general factorize.

3.5. Uncorrelated observations

Two observations at different times might be dependent, but
are they correlated? IfXt andXt+h are uncorrelated, then
E[XtX

′
t+h] = E[Xt]E[Xt+h]′. Consider an HMM that

has single component Gaussian observation distributions,
i.e., p(x|q) ∼ N(x|µq,Σq) for all statesq. Under these
assumptions, and assumingp(q) is currently at a stationary
distributionπ, and lettingA be the matrix with(i, j)th en-
try p(j|i), it can be shown [2] that cov(Xt, Xt+h) may be
expressed as:

∑
ij

µiµ
′
j(A

h)ijπi −

(∑
i

µiπi

)(∑
i

µiπi

)′

a quantity that is not in general the zero matrix. Therefore
HMMs, even as simple as ones that use single Gaussian
observation distributions and under a stationary Markov



chain, can capture correlation between feature vectors (see
also [22]). To empirically demonstrate this correlation, the
mutual information [7] in bits was computed between fea-
ture vectors from speech data sampled using 4-state per
phone word HMMs trained from an isolated word task using
MFCCs and their deltas [28]. Figure 2 compares the aver-
age pair-wise mutual information over time of this HMM
with i.i.d. samples from a Gaussian mixture. The HMM
clearly shows more correlation than the true i.i.d. process,
since the HMM’s hidden variables indirectly encode this in-
formation, and as the number of hidden states increases, so
does the amount of information that can be encoded.
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Fig. 2. HMM frame correlation vs. true i.i.d. process.

3.6. Piece-wise or segment-wise stationary

An HMM is stationary overX1:T whenever

p(Xt1:n+h = x1:n) = p(Xt1:n = x1:n)

for all n, h, t1:n, andx1:n. It can be shown [2] that this
conditional holds whenp(Qt1+h = q1) = p(Qt1 = q1) for
all h. Therefore, the HMM is stationary only when the un-
derlying hidden Markov chain is stationary, even when the
Markov chain is time-homogeneous. An HMM therefore
does not necessarily correspond to a stationary distribution.

For ASR, HMMs commonly have non-ergodic left-to-
right state-transition topologies where transition matrices
are upper triangular (P (j|i) = 0 ∀j < i). More strongly,
any left-to-right HMM is not stationary unless all non-final
states have zero probability [2]. HMMs are also unlikely to
be “piece-wise” stationary, in which an HMM is in a par-
ticular state for a time segment and where observations in
that time segment are i.i.d. and therefore stationary. Recall,
each HMM sample uses a separate sample from the hidden
Markov chain. As a result, a segment (a sequence of identi-
cal state assignments to successive hidden variables) in the
hidden chain of one HMM sample will not necessarily be
a segment in the chain of a different sample. Therefore,

HMMs are not stationary unless either 1) every HMM sam-
ple always results in the same hidden assignment for some
fixed-time region, or 2) the hidden chain is always stationary
over that region. With standard left-to-right HMMs, neither
is true in practice.

3.7. Within-frame stationary

Speech is a band-limited continuous-time signal. A feature
extraction process generates speech frames at regular time
intervals (e.g., 10ms) over a window (e.g., 25ms). An HMM
then characterizes the distribution over this discrete-time set
of frame vectors. Might HMMs have trouble representing
speech because information encoded by within-frame vari-
ation is lost via the framing of speech? This also is un-
likely to produce problems since the properties of speech
that convey any message are band-limited in the modula-
tion domain, and if the rate of hidden state change is high
enough, and if the frame-window width is small enough,
framing of speech would not result in any information loss.

3.8. Geometric state distributions

In a Markov chain, the time durationD that a specific
state i is active is a random variable distributed accord-
ing to a geometric distribution. That is,D has distribution
P (D = d) = pd−1(1 − p) whered ≥ 1. It seems possible
that HMMs might be deficient because their state duration
distributions are inherently geometric, and geometric distri-
butions do not accurately represent typical speech unit (e.g.,
phoneme or syllable) durations.1

HMMs, however, do not necessarily have such prob-
lems, and this occurs because of “state-tying”, where mul-
tiple different states can share the same observation distri-
bution. In general, a collection of HMM states sharing the
same observation distribution may be combined in both se-
ries and parallel. If a sequence ofn states using the same
observation distribution are strung together in series, and
each of the states has self transition probabilityα, then the
resulting distribution (the sum ofn independent geometri-
cally distributed random variables) has a negative binomial
distribution (a discrete version of the gamma distribution)
[27]. Unlike a geometric distribution, a negative binomial
distribution has a mode located away from zero. When
combined in parallel, the resulting distribution is a weighted
mixture of the individual distributions. This process can of
course be combined (see Figure 3) and repeated recursively
as well. Therefore, simply by increasing the hidden state
space cardinality, an HMM can produce an broad class of
speech-unit duration distributions.

1It has been suggested that a gamma distribution is a more appropriate
speech-unit durational distribution[20].
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Fig. 3. Three speech-unit duration distributions with an HMM, and their respective Markov chain topologies.

3.9. First-order hidden Markov assumption

As described in [16], anynth-order Markov chain may be
transformed into a first-order chain. Therefore, assuming a
first-order Markov chain possess a sufficient states, there is
no inherent fidelity loss when using a first-order as opposed
to annth-order HMM.

3.10. Conditions for HMM Accuracy

Suppose thatp(X1:T ) is the true distribution of the obser-
vation variablesX1:T . If an HMM must represent this dis-
tribution accurately, necessary conditions on the number of
hidden states and the necessary complexity of the observa-
tion distributions may be found. Letph(X1:T ) be the joint
distribution over the observation variables under an HMM.
HMM accuracy can be defined as KL-divergence [7] be-
tween the two distributions being zero. The following theo-
rem is proven in [2].

Theorem 3.1. Necessary conditions for HMM accuracy.
An HMM with joint distributionph(X1:T ) will accurately
model the true distributionp(X1:T ) (zero KL-divergence)
only if the following three conditions hold for allt:

• Ih(X¬t;Qt) ≥ I(Xt;X¬t),

• Ih(Qt;Xt) ≥ I(Xt;X¬t), and

• |Q| ≥ 2I(Xt;X¬t)

whereIh(X¬t;Qt) (resp. Ih(Qt;Xt)) is the mutual infor-
mation betweenX¬t and Qt (resp. Qt and Xt) under an
HMM, and I(Xt;X¬t) is the true mutual information be-
tweenI(Xt;X¬t).

SinceQt is the “channel” representation through which
information about the past and future must travel, too few

states can overburden the hidden variables and lead to inac-
curacies. If there are enough states, and if the information in
the surrounding acoustic context is appropriately encoded in
the hidden states, the information may be compressed and
represented byQt. To achieve high accuracy, it is likely
that a finite number of states is required since signals rep-
resenting natural real-world phenomena will have bounded
mutual information. Can sufficient conditions for HMM ac-
curacy be found? An initial attempt is given in [2], but
more results are needed. It moreover remains to be seen if
simultaneously necessary and sufficient conditions can be
derived for HMM accuracy, if it is possible to derive suffi-
cient conditions for continuous observation vector HMMs
under reasonable conditions (e.g., finite power), and what
conditions might exist for an HMM that is allowed to have
a fixed upper-bound KL-divergence error.

3.11. Synthesis vs. Recognition

Given a speech utteranceM , an HMM for M is a represen-
tation of the distributionp(X1:T |M) which can be viewed
as a synthesis or generative model because sampling from
this distribution should produce (or synthesize) an instance
of the a speech sound. For ASR, however, one instead
desiresP (M |X) which is a recognition or discriminative
model since such a quantity achieves Bayes error. That
HMMs inherently representp(X|M), however, is less re-
strictive than what might initially appear.

First, p(M |X) = p(X|M)p(M)/p(X) so if an HMM
accurately representsp(X|M) and with accurateP (M),
an accurate posterior will ensue. Approximating a distri-
bution such asp(X|M) might require more effort (para-
meters, training data, and compute time) than necessary to
achieve good classification accuracy. Representing the en-
tire set of class conditional distributionsp(X|M), which
includes regions between decision boundaries, is more diffi-



cult than necessary to achieve good performance. One may
instead produce any approximating distributionph(X|M)
that achieves the same Bayes error, so classification accu-
racy will not be compromised. A sample from such a con-
ditional distribution will not necessarily result in a “good”
speech utterance, but this is of no consequence to classifica-
tion accuracy. Moreover, using a simpler modelph(X|M)
can have statistical parameter estimation benefits as well
[13]. Under this view, an HMM is the temporal analog of
the Naive Bayes classifier.

Moreover, even under a generative model, the degree to
which decision boundary information is represented by an
HMM depends on the parameter training method. Discrim-
inative training methods have long ago been developed (and
are currently usefully employed [25]) that adjust the para-
meters of each model to increase not the individual like-
lihood but rather approximate the posterior probability or
Bayes decision rule [1, 6, 11, 12, 18, 17, 23]. Apart from the
training method, the degree to which boundary information
is represented can depend on each model’s intrinsic ability
to produce an accurate distribution at decision boundaries
vs. its ability to represent the regions between boundaries.
This is the inherent discriminability of the structure of the
model for each class, independent of its parameters, a prop-
erty that has been called structurally discriminative [5].

How structurally discriminative are HMMs when at-
tempting to model the distinctive attributes of speech utter-
ances? Certainly, the left-to-right Markov chain topology
helps significantly, since there is much discriminative infor-
mation in the hard sequencing properties of such HMMs. At
the very least, HMMs are not structurally indiscriminate be-
cause, even when trained using maximum likelihood proce-
dure, HMM-based speech recognition systems perform rea-
sonably well. Moreover, the structure of an HMM might
be further adjusted to improve discriminability [3]. Earlier
sections of this paper suggested that HMM distributions are
not lacking in their flexibility, but this section claims that for
recognition, HMM need not even accurately represent the
true likelihoodp(X|M) to achieve high classification accu-
racy. While HMMs are powerful, a fortunate consequence
of the current discussion is that HMMs need not capture
many of the nuances in a speech signal, and are thus allowed
to be simpler still as a result. In other words, just because a
particular HMM does not accurately represent speech does
not mean it is poor at the recognition task.

4. WHAT HMMS CAN’T DO

From the above, there appears to be little an HMM can not
do. One problem might be the way an HMM is used: a
particular HMM trained in a particular way might be inac-
curate due to too too few hidden states, weak observation
distributions, or when it is trained non-discriminatively or

without sufficient training data. These problems, of course,
can be corrected still staying within the HMM framework.
Considering also an HMM’s extremely good computational
properties, it is in fact be a difficult model to surpass. In our
quest for a new model for speech recognition, therefore, we
should be concerned not with what is wrong with HMMs,
and rather seek a model that is inherently more parsimo-
nious, more intrinsically discriminative, equally computa-
tionally tractable, and where knowledge-rich speech and
language representations can be much more easily incor-
porated. It is believed by this author that graphical mod-
els [19, 4] satisfy all of the above requirements and are
thus most likely, once computational frameworks are read-
ily available, to eventually overtake the HMM.
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