
On Triangulating Dynamic Graphical Models

Jeff A. Bilmes and Chris Bartels
Departmant of Electrical Engineering

University of Washington
Seattle, WA 98195

Abstract

This paper introduces improved methodol-
ogy to triangulate dynamic graphical mod-
els and dynamic Bayesian networks (DBNs).
In this approach, a standard DBN template
can be modified so the repeating and un-
rolled graph section may dissect the origi-
nal DBN time slice and may also span (and
partially intersect) many such slices. We in-
troduce the notion of a “boundary” which
divides a graph into multi-slice partitions
each of which has an interface, and de-
fine the “boundary algorithm”, a method
to find the best boundary (and correspond-
ing interface) between partitions in such
models. We prove that, after using this
algorithm, the sizes of the best forward-
and backward- interface (and also the corre-
sponding fill-ins) are identical. The bound-
ary algorithm allows for constrained elim-
ination orders (and therefore graph trian-
gulations) that are impossible using stan-
dard slice-by-slice constrained elimination.
We describe the above using the Graphical
Model ToolKit (GMTK)’s notion of dynamic
graphical model, slightly generalizing stan-
dard DBN templates. We report triangu-
lation results on hand-concocted graphs,
novel speech recognition DBNs, and ran-
dom graphs, and find that the boundary al-
gorithm can significantly improve both tree
width and graph weight.

1 Introduction

Finding high quality Bayesian network triangula-
tions is essential for tractable exact probabilistic infer-
ence. Unfortunately, finding the optimum triangula-
tion is NP-complete, so heuristic approaches must be

used. A good triangulation, however, is often re-used
many times for exact inference thereby amortizing the
(sometimes very large) cost of the original triangula-
tion procedure.

Triangulation in dynamic Bayesian networks (DBNs)
[5] is distinctively difficult. First, the typical dy-
namic model is much wider than it is taller, ren-
dering standard triangulation heuristics less effec-
tive on such graphs. Standard triangulation heuris-
tics include greedy schemes where elimination or-
ders are produced by choosing next nodes accord-
ing to their current fill-ins, sizes, or weights [15].
These schemes, however, can easily start eliminat-
ing nodes with neighbors that span many time slices
and thereby produce correspondingly large cliques.
Second, evidence will typically come in at differ-
ent lengths meaning the graphs will vary in size.
For example, in speech recognition, evidence corre-
sponds to unknown speech utterances whose time-
length will vary between utterances. Therefore, for
each evidence set, the graph and the number of ran-
dom variables will change. The standard approach
to triangulation (triangulate the graph once and then
reuse it multiple times as evidence comes in) will not
work when applied in its simplest of forms — a trian-
gulation for a length T graph might not easily apply
to a length T + 1 graph.

There are several possible solutions. First, one can re-
triangulate the freshly unrolled graph each time ev-
idence becomes available. Second, one can triangu-
late once using a very long utterance (say length T),
and hope to find periodicity. One can splice out sec-
tions of the triangulated graph (and its correspond-
ing junction tree) and re-form an appropriately trian-
gulated graph for any utterance of length less than
T . Neither of these approaches is entirely satisfactory
however. The first is lacking because finding an op-
timum triangulation is intractable and running even
a poor heuristic multiple times for each length can be
wasteful. The second approach is inadequate because
given an arbitrary triangulation, one might not find

such periodicity. And even if it exists, algorithms for
finding it and manipulating the graph can be com-
plex. Both approaches suffer from the fact that as
the graph length grows so does the number of pos-
sible triangulations thereby making it more difficult
(and less likely) to find high quality triangulations. Of
course, one can resort to approximate inference tech-
niques in DBNs [6, 12] but with a good triangulation,
some even quite complex networks can be utilized ex-
actly.

The most promising work on DBN triangulation and
exact inference uses a constrained elimination scheme
[8, 10, 16, 4, 12, 13]. In this case, rather than consid-
ering all possible elimination orders in an unrolled
graph, one places a priori constraints on the elimina-
tion order that severely restrict the number of elimi-
nation orders but (hopefully) do not severely restrict
the triangulation quality. Specifically, in slice-by-slice
elimination [8, 10, 16, 4, 12] the nodes in slice t are
completely eliminated before any nodes in slide t+1,
making the maximum clique size (roughly) bounded
by the “height” of the network. Moreover, rather than
unrolling and then triangulating the graph anew for
each evidence set, these approaches create fractional
slices (a slice plus either its interface to the next slice
[8, 10] or its interface to the previous slice [16, 4], and
called the “1.5DBN” in [12, 13]). The fractional slices
can be triangulated individually, repeated to any de-
sired length, and then stitched together to form a
valid unrolled and triangulated graph. Experimen-
tal evidence has even shown certain constrained tri-
angulation heuristics to be superior to unconstrained
heuristics [4], presumably because the search space is
much larger in the unconstrained case.

In this paper, we introduce improved methodology to
triangulate dynamic graphical models where a stan-
dard DBN template can be modified so that the re-
peating and unrolled graph section may dissect the
original DBN time slice and may also span (and par-
tially intersect) many such slices. We introduce the
notion of a “boundary” which divides a graph into
multi-slice “partitions” each of which has an inter-
face, and define the “boundary algorithm”, a method
to find the best boundary (and corresponding inter-
face) between partitions in such models. We also
define a “partition algorithm” that utilizes the re-
sult. These algorithms operate entirely in the space
of undirected rather than directed graphs (meaning
a DBN must first be moralized). This significantly
simplifies the partitioning step and the interface def-
initions. We prove that, after using this algorithm,
the sizes of the best forward- and backward- inter-
face (and also the corresponding fill-ins) are identi-
cal. The boundary algorithm allows for constrained
elimination orders (and therefore graph triangula-

tions) that are impossible using standard slice-by-
slice constrained elimination. We describe and im-
plement the above using the Graphical Model ToolKit
(GMTK)’s notion of dynamic graphical model, gen-
eralizing on standard DBN templates. We report tri-
angulation results on hand-concocted graphs, novel
speech recognition DBNs, and random graphs. Us-
ing various quality measures (maxclique size, state-
space, etc.), the boundary algorithm can significantly
improve both tree-width and graph weight.

Section 2 provides general background on con-
strainedly triangulated dynamic graphs. Section 3 in-
troduces the GMTK DBN model, one that slightly ex-
tends standard DBNs. Section 4 describes the bound-
ary algorithm, and proves that the best left- and right-
interfaces are equal in quality. Section 5 describes the
new GMTK triangulation engine. Section 6 describes
our results, and Section 7 concludes. Throughout this
paper, we assume basic knowledge of graphical mod-
els [11] and their set-theoretic description.

2 Technical Background

A DBN [5] of length T is a directed acyclic graph
G = (V,E) = (

⋃T
t=1 Vt, ET ∪

⋃T−1
t=1 Et∪E→t) with node

set V and edge set E comprising pairs of nodes. If
uv ∈ E for u, v ∈ V , then uv is an edge of G. The sets
Vt are the nodes at slice t, Et are the intra-slice edges
between nodes in Vt, and E→t are the inter-slice edges
between nodes in Vt and Vt+1. An undirected dynamic
graphical model takes a similar form but all edges are
undirected. A DBN does not typically have this much
flexibility — that is, a DBN is specified using a “rolled
up” template giving the nodes that are repeated in
each slice, the intra-slice edges among those nodes,
and the inter-slice edges between nodes of adjacent
slices. This template is then unrolled to any desired
length T to yield the DBN G.

The following theorem is relied upon by most work
on DBN triangulation:
Theorem 2.1. Rose (Lemma 4 in [14]).
Let G = (V,E) be an undirected graph with a given
elimination ordering that maps G to G′ = (V,E′) where
E′ = E ∪ F , and where F are the fill-in edges added dur-
ing elimination. Then uv ∈ E′ is an edge in G′ iff there is
a path with endpoints u and v, and where all nodes on the
path other than u and v are eliminated before u and v.

This theorem is critical for constrained slice-by-slice
DBN elimination schemes for the following reason. If
there is a path between two nodes u, v ∈ Vt where all
the path nodes (except the endpoints) lie entirely in
previous time slices (< t), and if all nodes are elimi-
nated in slices less than t before any in slice t, then u
and v will be connected after triangulation.

When all nodes earlier than time t + 1 are eliminated
and when there is one connected component per slice,
there will be a set of nodes that are forced to be com-
plete in slice t+1, namely those nodes entirely in slice
t + 1 that either have parents in slice t or have chil-
dren with other parents in slice t. In a directed model,
those nodes have been called the interface [8, 10, 4],
backward interface [16], or the incoming interface [13]
and have been denoted by I←t ⊆ Vt+1. Given the
sets V←t , Vt ∪ I←t , and the “1.5 slice” induced sub-
graphs G←t , G[V←t], it is possible to form a slice-by-
slice constrained elimination by first moralizing G←t
to yield G←mt , next completing the nodes I←t−1 within
G←mt (since by Theorem 2.1 they would be made com-
plete by eliminating nodes up to slice t−1), and finally
eliminating all of the nodes Vt within G←mt to yield the
complete set I←t . The resulting triangulated 1.5 slice
subgraphs can be denoted G/

t = (V←t , E/
t), where E/

t

consists of original edges of G←mt plus the fill-in edges
added during elimination. It can be shown (corol-
lary 1 of [10]) that the cliques of these subgraphs form
an edge clique cover of a constrainedly triangulated
graph G/ = (

⋃T
t=1 Vt,

⋃T
t=1 E/

t). In particular, the re-
sulting triangulation of G is one that can be obtained
using a constrained slice-by-slice elimination scheme.
Therefore, given a DBN template, rather than un-
rolling to length T and then triangulating the entire
graph G, it is possible to triangulate only one instance
of the 1.5 slice subgraph (and do it only once), taking
the resulting cliques repeated over time as an edge
clique cover for a validly triangulated version of G. It
is not necessary to re-triangulate the graph for each
length T , something that can yield large savings.

If, on the other hand, all nodes later than slice t are
eliminated before those in slice t, certain nodes in slice
t will be completed, again by Theorem 2.1. These are
the nodes in slice t that have children in slice t+1, and
have been called the forward interface [16, 4] or out-
going interface [12] and have been denoted I→t ⊆ Vt.
One can similarly form 1.5 slice induced subgraphs
G→t , G[V→t] where V→t , Vt ∪ I→t−1, and then moral-
ize G→t , complete the nodes I→t , and eliminate nodes
Vt yielding the completed I→t−1 and the corresponding
triangulated G.

t . These subgraphs form an edge clique
cover for G. = (

⋃T
t=1 Vt,

⋃T
t=1 E.

t) which is also a tri-
angulation of G [4, 12], this one yielding a slice-by-
slice elimination order in the reverse time direction.

Since moralization can only remove independence
properties when going from the directed to the
undirected model [11], one can easily see using
Markov properties via graph separation in the mor-
alized (and therefore undirected) graphs that either
form of interface renders its past conditionally in-
dependent of its future. Specifically, we have that
V1:t⊥⊥ (Vt+1:T \ I←t) |I←t for the left interface, and

E
6

F
0

S
0

O
0

S
1

O
1

S
6

O
6

S
2

O
2

S
5

O
5

S
3

O
3

Frame 0

Frame 1 Frame 2 Frame 3

S
4

O
4

Frame 4 Frame 5

Frame 6

A 2-frame prologue A 2-frame epilogueA 3-frame Chunk

E
T-1

F
0

S
0

O
0

S
1

O
1

S
T-1

O
T-1

S
2

O
2

S
T-2

O
T-2

S
3

O
3

Frame 0

Frame 1 Frame 2 Frame 3

S
4

O
4

Frame 4

S
5

O
5

S
6

O
6

Frame 5 Frame 6

S
7

O
7

Frame 7 Frame T-2

Frame T-1

A 2-frame prologue A 2-frame epilogueUnrolled Chunk 1 Time

Figure 1: A multi-frame GMTK template (top) with
a two-frame prologue P, a 3-frame chunk C, and a 2-
frame epilogue E and unrolled one time (bottom).

(V1:t \ I→t)⊥⊥Vt+1:T |I→t for the right interface. This is
a property any interface must have for it to be useful
for inference. Also, since the left or right interfaces
are completed in the above two procedures, one can
see that a lower bound on the maxclique size of G us-
ing the “better” of the two schemes is min(|I→t |, |I←t |).
Moreover, a naive triangulation of G would just com-
plete the sets V→t or V←t which corresponds to the
worst a slice-by-slice elimination scheme could pos-
sibly do [4]. Therefore, an upper bound of the max-
clique size of G using the better of the two schemes,
is min(|V→t |, |V←t |). Therefore, it has been argued that
one might choose to use either the left or right inter-
face depending on their sizes. It has been noted that
some graphs have smaller interfaces and others have
smaller forward interfaces, and that when all “tem-
poral” edges are persistent (between corresponding
nodes in successive slices), the left interface can be no
better than the right interface [16, 4, 12]. It has also
been noted that neither the right nor the left interface
need be optimal [16].

3 The GMTK Template

Before moving on, we next describe the GMTK tem-
plate, a generalization of a standard DBN template
that also helps to motivate our novel triangulation
procedures. Note, however, that the triangulation
procedures described in this paper are entirely appli-
cable to standard DBN templates. The graphical mod-
eling toolkit (GMTK) [2] is a general purpose software
system for developing graphical-model based speech
and language systems. While being graphically ori-
ented, GMTK also has features that are contained
in common speech/language toolkits (e.g., pruning,
scaling factors, etc.). In this section, we describe only
its extended DBN representation — other features are
described in [2, 1].

As mentioned above, a typical DBN template is de-

scribed using slice nodes and their intra- and inter-
set of edges. A GMTK template extends a standard
DBN template in three ways: first, it allows for back-
ward time links (so the future need not be indepen-
dent of the past given the present); second, it allows
for slices to span multiple time points, so slices are
called chunks; third, it allows for a different special
structure to occur at both the beginning and the end
of the unrolled network. Specifically, a GMTK tem-
plate consists of a prologue subgraph P = (V p, Ep),
a chunk subgraph (to be unrolled) C = (V c, Ec),
an epilogue subgraph E = (V e, Ee), and interface
edges Epc between P and C, Ece between C and E,
and inter-chunk edges Ecc between nodes in the pre-
vious and current chunk. Each of these subgraphs
can be any number of time slices long and we let
T (P) denote the number of slices contained within
P (similarly for C and E). Therefore, the number of
slices in an unrolled GMTK-DBN GT is allowed to be
T = T (P) + kT (C) + T (E) for k a positive integer. GT

may be specified as follows:

GT =

(
V p ∪

k⋃
t=1

V c
t ∪ V e, Epcc ∪

k⋃
t=2

(Ec
t ∪ Ecc

t) ∪ Ecee

)

corresponding to a graph unrolled k− 1 times, where
Epcc = Ep∪Epc∪Ec

1 and Ecee = Ece∪Ee. Specifying
the graph with k = 1 corresponds to the basic GMTK
template G = [P,C,E], and we refer to P, C, and E as
the template partitions.

As mentioned above, the latest GMTK allows not
only forward but also backward temporal edges,
thereby increasing the size of the family of express-
ible models (of course, directed cycles are still dis-
allowed). This allows the representation of certain
reverse-time causal effects such as coarticulation in
human speech, usually defined as a change in the
acoustic-phonetic content of a speech segment due
to anticipation and/or preservation of adjacent seg-
ments — the realization of a segment can thus depend
on both the past and the future (see Figure 1).

Note that either P or E (but not both) may be empty.
Therefore, a GMTK template generalizes and can eas-
ily represent a standard DBN — make E empty, and
have P and C both be one slice long. We refer to Ecc

as the basic boundary edges.

It is relatively easy to apply the constrained elimina-
tion schemes of Section 2 to a GMTK-DBN, but the
definition of “interface” must change due to the po-
tential presence of backward time edges. Given a ba-
sic GMTK template, let V p

R ⊆ V p be the nodes of V p

that either: 1) have children within V c (correspond-
ing to forward time edges); or 2) have parents within
V c (backward time edges) or have children within
V p having parents in V c (edges due to moralization).

P PR
C

CL CR
E

EL

A

B

C

D

E

F

A

B

C

D

E

F

G

H

I

J

E

F

G

H

I

J

Boundaries

Figure 2: A GMTK-DBN template (top) and its mor-
alization (bottom). Here, T (P) = 2, T (C) = 3, and
T (E) = 2. The left and right interfaces for each par-
tition have been labeled in each graph, and is much
simpler to define in the undirected version. The basic
boundary between subgraphs PR and CL, and the one
between CR and EL, are both shown as a think line.

Similarly, let V c
L ⊆ V c be the nodes of V c that either:

1) have children within V p (backward time edges) or
2) have parents within V p (forward time edges) or
have children within V c having parents in V p (moral-
ization). One can analogously define V c

R and V e
L , and

the corresponding induced interface subgraphs PR, CL,
CR, and EL as shown in Figure 2.

Rather than continuing to define the interface sub-
graphs in this convoluted way, it is much simpler
to define an interface after moralization has taken
place and using the resulting undirected graph. We
therefore define the left interface of a partition to be
all nodes that directly connect to the adjacent parti-
tion on the left, where adjacency is with respect to
the moralized and therefore undirected graph. In
Figure 2, the left interface of C consists of the nodes
CL = {A3, B3, C3, D3} where 3 is the frame num-
ber. As can be seen, it is much easier to determine
using the moralized (bottom) graph in Figure 2. We
similarly define the right interface of a partition to be
all nodes that directly connect to the adjacent parti-
tion on the right. In other words, constructs such as
nodes that have “children within V c having parents
in V p” in this section and in Section 2 is accounted
for entirely by the moralization step. Moreover, using
the Markov properties of undirected graphs and their
correspondence to simple graph separation [11], it is
easy to see that the interfaces under these definitions
render the left portion of the graph conditionally in-
dependent of the right portion (similar to as described
in Section 2).

Henceforth, we refer to left and right interfaces using
only the undirected dynamic graphical model (one
possibly obtained via moralization). In a graph with

forward only temporal edges, the left interface will
tend to be bigger since moralization will only increase
its size. Similarly, a graph having backwards only
time edges will tend to have a larger right interface.

A slice-by-slice elimination order therefore applies
in the analogous way, but in this context it would
be called a chunk-by-chunk elimination. For example,
with a left interface, one creates a “1.5 chunk” left in-
terface subgraph, say Co

t , Ct ∪ C(t+1)L (where now
t is chunk number), completes the nodes V (CtL) and
V (C(t+1)L) within Co

t , and then eliminates the result
to obtain triangulated graph C/

t . The analogous re-
sult exists for the 1.5 chunk right interface subgraph
Cn

t . In either case, the boundary (see bottom Figure 2)
therefore connects the left interface (i.e., the nodes just
on the right of the boundary) with the right interface
(the nodes just on the left of the boundary).

3.1 Example GMTK Templates
It is illustrative at this point to examine several
GMTK-DBN templates, some of which are currently
being used as speech and language research systems.
Due to space limitations, details are left unspecified
and only graph structures are given (e.g., certain de-
pendencies might be deterministic). The graphs are
displayed in Figure 3.1 The top left (A) shows a stan-
dard GMTK template used for a number of speech
recognition systems [2, 3]. The top right (B) shows
a template currently being used for connected-word
continuous speech recognition. The bottom left (C) is
a graph used to illustrate a property of the boundary
algorithm below. The middle right (D) shows a graph
[13] and its 2×-unrolled version where standard slice-
by-slice elimination fails to achieve the obvious size-2
maxclique. The bottom right (E) shows a “snake-like”
graph, one where no constrained elimination scheme
will achieve its size-2 maxclique.

4 Boundary Based Triangulation

As can be seen in Figure 2, the basic boundary yields
a left and right interface both with size four, imply-
ing that using this boundary would produce trian-
gulations with a maxclique of at least that size. The
chunk-based view of a frame makes it clear, how-
ever, that an improved boundary (and correspond-
ing interface) can be found. Inspecting the figure, the
nodes E3, F3 appear to be candidates for a good (ei-
ther left or right) interface of size only two (see Top
Figure 4). These nodes can thus define one side of
a new boundary, but choosing them would break C

into two pieces, making standard unrolling impossi-
ble. Drawing inspiration from software-pipelining al-

1(B) is by Özgür Çetin, Brian Lucena provided the idea
for (C), and (D) is by Kevin Murphy [13]

P C E P C

P C E
P C E

P C E

A B

C D

E

Figure 3: Example GMTK-DBN Templates

gorithms, it is possible using this new boundary to re-
cover an unrollable graph by creating a new chunk C′

consisting (on its left) of the second portion of C and
(on its right) of the first portion of C. The new chunk
C′ is what gets unrolled, and the residual portions of
C get absorbed into P (thereby creating P′) and E (cre-
ating E′). For Figure 2, this is depicted in the bottom
of Figure 4, and is shown more generally in Figure 5-
A. The approach is of course applicable to a standard
DBN template, since C can be thought of as one long
“slice” even if it corresponds to multiple time slices.

More generally still, there is no reason the bound-
ary should be limited only to one chunk — rather,
a boundary could instead span across M ≥ 1 suc-
cessive chunks. While there is no guarantee that an
(M > 1)-boundary will yield a better triangulation
than M = 1 for all graphs, there are indeed certain
graphs for which only M > 1 will allow a constrained
elimination procedure to be optimal. For examples,
consider Figure 3-D, where in the unrolled version the
maxclique size is two, but a constrained slice-by-slice
elimination scheme will produce a maxclique size of
at least three (the right interface size). The chunk in
this graph, however, is not a connected component.
Figure 3-C shows an example where each chunk is in-
deed connected, but a slice-by-slice elimination will
still produce a larger maxclique than necessary (the
tree width of this graph is only 4, also see Figure 7 for
a similar example). These graphs demonstrate that
if a boundary is allowed to span multiple chunks (or
slices in a standard DBN), it may be possible to ob-

P C E
C'L'

P' C' E'
C'L' E'L'

Figure 4: Top: Figure 2 but with a different boundary,
one that has only two nodes adjacent on its right. Bot-
tom: a re-partitioning of the graph based on this new
boundary. This re-partition defined a new and better
GMTK-DBN template G′ = [P′,C′,E′].

tain better triangulations. In Figures 3-C and -D, the
boundary would need to span 3 chunks.

We now define the boundary algorithm, a method to
find the optimal chunk-spanning boundary. Given
partitions P, C, and E, define CM ,

⋃M
t=1 Ct as M

copies of chunk C corresponding to the GMTK tem-
plate unrolled M − 1 times. If P or E is empty, we un-
roll one additional time and replace the missing par-
tition with an additional single copy of C. For sim-
plicity, the algorithm will be described using set op-
erators on graph names, but they actually operate on
the graphs’ vertex sets. Also, define J() to be a func-
tion on left interfaces that provides a numerical rat-
ing of the interface quality (discussed further in Sec-
tion 4.2). The boundary algorithm is defined as fol-
lows:

1: Function Boundary(P,CM ,E)
2: Let CL be the left interface of CM .
3: Note current interface & quality J(CL).
4: Call BoundaryRecurse(CL, ∅).
5: Function BoundaryRecurse(CL,BL)
6: for all v ∈ CL do
7: if (ne(v) ∩ E) 6= ∅, continue.
8: B̂L ← BL ∪ {v}.
9: if B̂L contains entire first chunk, continue.

10: ĈL ←
(
CL ∪

(
ne(v) ∩ CM

))
\ B̂L.

11: if memoized(ĈL), continue.
12: Note current interface & quality J(ĈL).
13: Call BoundaryRecurse(ĈL, B̂L) .
14: end for

The algorithm starts out with the standard left inter-
face, and at each step advances the boundary across
a single node in the current interface (see Figure 6).
At each boundary advance, the algorithm defines a
new boundary and a new corresponding left inter-
face. The algorithm considers all possible left inter-

P C1 C2 C3P C1 EC2

P C1 E P' C' E'

P C1 EC2 C3 C4 C5

P' C' E'

A

B C

D

E

Figure 5: Boundary example for M = 1 (A-left) and
its repartitioning with S = 1 (A-right), and boundary
example for M = 2 (B) and M = 3 (C). Left interfaces
are shown as dashed lines. D: Graph repartitioning
with a new boundary and M = 3 and S = 2.

faces — this is true since given any left interface, there
is a path of reverse boundary advances that will lead
to the initial left interface. The algorithm uses an aux-
iliary variable BL, consisting of the nodes past which
the boundary has advanced at a given moment —
in other words, one might say that these are nodes
to the “left” of the current boundary but that lie en-
tirely within CM (thus, BL starts out empty, line 4).
Note, the left interface consists of the nodes that are
directly to the “right” of the boundary and that have
nodes adjacent to the boundary. The routine (line 5)
goes through each element v (line 6) in the current
left interface and advances the boundary past that
node. Given this new boundary, it creates a new left
of boundary set B̂L (line 8). The check (line 7) ensures
termination by not letting a boundary advance too far
— in particular, the boundary never advances beyond
the point where its left interface is identical to the ba-
sic starting right interface. An additional check (line
9) ensures that a boundary does not move entirely be-
yond an entire chunk, since that would lead to redun-
dant boundaries. The new left interface ĈL (line 10)
is constructed starting with the old left interface CL,
adding the neighbors of v that are on the right of the
new boundary (all neighbors of v are initially added,
but those in B̂L are removed), and ensuring v is not
part of the new left interface (subtracting off B̂L re-
moves v). Since the same boundary could be encoun-
tered multiple times, a memoizing check ensures that
this does not happen (line 11). If the interface quality
is better than what has been seen so far, the current in-

A B

C
D

E F

G H

I J

K L

M
N

A

B

E

F

c

d

A

B

E

F

c

d

P C

P' C' E'

Figure 6: Example of the boundary algorithm to find
the best left interface. Thick dark arrows depict the
tree structure of the recursive algorithm, and bound-
aries and their interfaces are shown for each call. A:
a basic GMTK template with E = ∅. Capital letter
named variables have high cardinality, and lower-
case letter variables have low cardinality. B: The start-
ing point of the algorithm. The initial boundary is
shown as a thick line and the basic left interface is in-
dicated by white nodes. C: the boundary advances
past node A, leading to a new left interface (white
nodes) and left of boundary set BL (red/gray nodes).
D: the boundary advances past node B. E-M: the var-
ious boundaries (as think curves), left interfaces (as
white nodes), and left of boundary sets BL (red/gray
nodes) are shown, where D calls F and H, C calls E
and I, and so on. N: the partitions defining the new
template G′ corresponding to boundary C.

terface and its quality is remembered (line 12). Lastly,
the algorithm is called recursively on the new inter-
face ĈL and the left of boundary set B̂L. An example
of a run of this algorithm is given in Figure 6, and
Figure 7 shows how the set of nodes comprising the
optimal interface can sometimes be quite unexpected.

Interestingly, a right interface version of the algorithm
is obtained simply by invoking the procedure using
Boundary(E,CM ,P) (i.e., swapping the first and third
argument). In such case, the initial left interface be-
comes the standard right interface, and the boundary
advances from right to left across nodes. Note fur-
ther that the boundary algorithm defines the optimal
boundary implicitly via the optimal (left or right) in-
terface that it produces. To get the actual boundary

A
A

B1

B2

B3

C1

C2

C3

D

1 2 3 4 5 B

C D

E P'+C'L C'+E'L E'

Figure 7: An optimal interface can sometimes be sur-
prising. A: a graph similar to Figure 3-C. On a first
glance, it appears the best interface size in this graph
could be quite large; B: moralized version, where ad-
ditional edges are dashed; C: the initial boundary and
left interface (white nodes); D: an optimal bound-
ary, left interface (white nodes), and BL (red/gray
nodes). Therefore, in this graph the set of nodes
{At, At+1, At+2} separates the graph into two con-
ditionally independent subgraphs. E: The resulting
template partitions with interfaces using boundary D.

edges Ecc, we simply take the left (resp. right) adja-
cent edges of the left (resp. right) interface.

All interfaces considered by the boundary algorithm
will render the left of the graph conditionally in-
dependent of the right portion given the interface.
Clearly this is true for the initial interface. Given
an interface having this property, a new interface is
formed by moving the boundary over one interface
node v. But separation is preserved since all neigh-
bors of v on the right of the new boundary are added
to the new left interface. Therefore, we have the fol-
lowing theorem:

Theorem 4.1. Separation Property of Interface
The boundary algorithm only considers boundaries and
their interfaces that separate the left from the right of the
graph, and therefore make the left conditionally indepen-
dent of the right given the interface.

A small amount of analysis makes it quite clear that
the algorithm has (at least) exponential complex-
ity. When considering the simple horizontal ladder
graph, for example, the complexity grows as O(3n)
where n is the number of slices in the chunk. There-
fore, when considered together with the triangulation
problem, we arrive at an exponential number of sepa-
rate NP-complete problems. Fortunately, most of the
graphs we have encountered are small enough that
one can run the complete boundary algorithm in at
most from a few seconds to about an hour’s worth of
wall-clock time on a modern workstation. More im-
portantly, once a good boundary (and corresponding
triangulation) has been discovered, the cost is amor-
tized over the usage life of the graph (which can be
years). This makes it well worth any initial effort in
finding a good boundary and good triangulation. In
any case, Section 7 discusses future plans for a greedy
approximate boundary algorithm.

4.1 Boundary-Dependent Graph Re-Partitioning

Given a boundary, one must next use it to partition
the graph G. In our approach, we start with a stan-
dard template (P,C,E), partially unroll it to obtain G′,
and then use the boundary to re-partition the partially
unrolled graph giving new partitions [P′,C′,E′]. The
new graph and partition is treated as an original, and
unrolling becomes a matter of repeating C′.

Given boundary edges Ecc spanning M chunks, one
still has an option regarding how many chunks to
skip between each boundary. We call this the chunk
skip parameter S ≥ 1. Given a GMTK-DBN tem-
plate, the approach is to partially unroll it M + S − 1
times thus allowing room enough for two boundary
edge sets Ecc

1 and Ecc
2 spaced S chunks apart. The

first boundary is “layed across” the first M chunks,
and the second boundary is layed across chunks
S + 1 through S + M . These boundaries then re-
partition the graph into the new graph G(M,S) =
[P′,C′,E′]. This is depicted in Figure 5-D for M =
3 and S = 2. We thus have the partition algo-
rithm.

1: Function Partition(G,M, S)
2: From G = [P,C,E], unroll to extract CM .
3: Call Boundary(P,GM ,E) to obtain Ecc.
4: From G, unroll M + S − 1 times to extract CM+S .
5: Create boundary Ecc

1 spanning chunks 1 through
M and boundary Ecc

2 spanning chunks S + 1
through S + M .

6: P′ ← P ∪ L-cut(Ecc
1 ,C1:M).

7: E′ ← E ∪ R-cut(Ecc
2 ,CS+1:M+S).

8: C′ ← R-cut(Ecc
1 ,C1:M+S) ∩ L-cut(Ecc

2 ,C1:M+S).
9: Return G(M,S) = [P′,C′,E′].

Note that a boundary Ecc cuts a collection of chunks

into two pieces, the “left cut” (L-cut) and the “right
cut” (R-cut). Therefore, the function L-cut(Ecc

1 ,C1:M)
returns the nodes to the left of Ecc

1 within C1:M , R-
cut(Ecc

1 ,C1:M) returns the nodes to the right of Ecc
1

within C1:M , an so on. Since the boundary can be
arbitrarily shaped, a “left cut” means the sub-graph
that is connected to nodes on the left-most side of the
graph (and analogously for right cut). For example,
in Figure 5-D, we have that L-cut(Ecc

1 ,C1:3) = P′ \ P.

With a boundary spanning M and skipping S chunks,
the use of a re-partitioned GMTK-DBN template
G(M,S) implies that the number of slices in unrolled
graphs must correspond to T = T (P) + (M +
kS)T (C) + T (E) for k a positive integer.2

4.2 Measuring Boundary Quality

There are a number of different ways of measuring
boundary quality. Three simple ways are the interface
size J(CL) = |CL|, the number of fill-in edges (i.e.,
J(CL) = the number of edges needed to complete CL),
and interface weight (the state space of the collection
of random variables contained within CL). In each
case, the quality measure is local, meaning one never
looks outside the interface itself to judge its quality.
Interestingly, the quality the best left and best right
interface will be identical under these J()’s.

Theorem 4.2. Left & Right Interface Parity
When J() is local, running the left-interface algorithm
Boundary(P,CM ,E) will produce an identical quality in-
terface as when running the right-interface algorithm
Boundary(E,CM ,P).

Proof. Let C∗L be the best left interface. Move the left
interface nodes to the left of the interface’s bound-
ary. These nodes become a right interface for the new
boundary. Since the boundary algorithm searches all
boundaries, it will always find the best both left and
right interface, which from the above are identical.
The other direction clearly holds by symmetry.

There are measures of interface quality other than the
local ones mentioned above. A number of global qual-
ity measures J(CL) for a given interface CL are also
possible, global since J() is a function of the entire
graph. These include: 1) the tree width of the result-
ing triangulated graph G/; 2) the tree width of the re-
sulting repeated chunk; 3) the state space of the re-
sulting triangulated graph; or 4) the state-space of the
repeated chunk (this last one is particularly impor-
tant since this indicates the degree to which complex-
ity grows with unrolling amount k). Within each of

2Note that it is also possible to append extra subgraphs
at the end in order to allow for any number of slices.

the above lie also the different options for triangulat-
ing a graph (heuristics, annealing, etc.). With a global
measure, therefore, one is not guaranteed that the left
and right interface are identical unless one can solve
the optimum triangulation problem. From a heuris-
tic perspective, therefore, one might try both. Fortu-
nately, it is easy using the boundary algorithm to do
both as mentioned above.

5 GMTK Triangulation Search Engine

The algorithms above were recently implemented
into the GMTK system along with all aforementioned
J() functions. Still, a number of ways exist to triangu-
late a set of partitions. The GMTK triangulation en-
gine solves this using multiple prioritized heuristics.
The heuristics include clique size, fill-in, weight, tem-
poral position, file position, user-supplied hint, and
random. The heuristics are provided in order by the
user. The highest-priority heuristic is used to deter-
mine an elimination order, with lower priority heuris-
tics used only to break ties when they occur. GMTK
also supports simulated annealing [9] and maximum
cardinality search.

If chunks are small enough, it is possible even to ex-
haustively search all elimination orders. More inter-
estingly, it is possible to produce an exhaustive search
over all triangulations (the space of triangulations via
elimination do not span the space of all triangula-
tions of a graph). In this latter case, it is possible to
produced constrained triangulation schemes that lie
outside the space of unconstrained triangulations by
elimination, sometimes very useful when determinis-
tic and sparse implementations of dependency exist.
GMTK supports both methods of exhaustive search.

Users of GMTK, however, often do not wish to con-
cern themselves with the intricacies of graph triangu-
lation. Therefore, GMTK supports a simple anytime
algorithm where an amount of time is given (1 minute,
2 hours, 3 days, etc.), and the engine searches for the
best triangulation possible in that amount of time. We
have found this approach quite satisfying from the
toolkit user’s perspective — one can provide the time
they are willing to spend triangulating (a 3-day week-
end) before using the graph for research purposes.

6 Triangulation Results

This section provides initial results on hand-
concocted graphs, random graphs, and DBNs used in
speech recognition research systems.

Table 1 shows results for the hand-concocted graphs
from Figures 2, 3, 6, and 7. It also gives results for
graphs given in [4] and [12]. The columns give the

number of nodes in the resulting interface and largest
clique (“mc” for maximum clique) from the triangu-
lation. A graph’s weight is the log base 10 of its state
space. In the case of Figure 6 the graph weight for a
network unrolled 500 times is listed because the max-
imum clique size stays constant. Results are given
using the minimum of the basic left and right inter-
faces (|I�

t |), and using the boundary algorithm with
M = 1, 2, 3 all with S = 1 where the left interface size
|CL| is reported. As can be seen, both the interface
and the clique size can improve dramatically.

Table 2 shows results for randomly generated graphs
(using methods based on [7]). The first five graphs
contain forward only temporal edges and the sec-
ond five contain both forward and backward. Each
network contains 5, 10, 15, or 20 nodes per frame
with random variable cardinalities chosen uniformly
at random from 2 to 50. All the weights are given
for a network unrolled 500 times. All graphs were
first partitioned using the basic left and right inter-
faces with the smallest size. The sizes of the left and
right interfaces are given in the first two columns. The
partitions were triangulated using all available meth-
ods and the size of the smallest maximum clique is re-
ported. The same partitions were triangulated again
optimizing for weight. Next, partitions were created
using boundary with M = S = 1, with M = 2, S = 1,
with M = 1, S = 2, and with M = S = 2. The size
of the interface and the best maximum clique size are
reported. The graphs were partitioned and triangu-
lated separately optimizing for weight. The boundary
algorithm improved clique size in four of the graphs,
and improved state space in five. In one case the state
space was over 80 times smaller. The results were
typically worse using the bulkier partitions with M
or S greater than one, but in one case† M = 2, S = 1
gave the best clique size (also∗, |CL| = 10 corresponds
to the maxclique optimization but was = 11 for the
weight optimization). In another case‡ M = S = 2
gave the best weight. In all the others, |CL| was iden-
tical for the two strategies.

Table 3 shows weights for the speech research sys-
tems 3. The first column shows our baseline results
using the triangulation method (the Frontier algo-
rithm [18]) used in [2]. The second column is the
best weight from partitions created from the stan-
dard forward/backward interface with minimum
size. The third column is the best weight from a
variety of boundary partitions. The boundary algo-
rithm shows improvements in two of the graphs. Al-
though boundary shows a definite advantage, the re-
sults are not as dramatic as with the random or con-
cocted graphs. An explanation is that the random
graphs have equal probability of an edge between

3Livescu Decode A & B are by Karen Livescu

variables within a frame and between variables in ad-
jacent frames. Real world graphs tend to be more
densely connected within the frame and have fewer
temporal edges.

Table 1: Results on hand-concocted graphs.

(|I←t |, |I→t |) M = 1 M = 2 M = 3

|I�
t | mc |CL| mc |CL| mc |CL| mc

Figure 2 4 5 2 4 2 4 2 4
Figure 3-C 9 10 9 10 6 7 3 5
Figure 3-D 3 4 3 4 2 3 1 2

Figure 7 7 8 7 8 5 6 3 5
Fig 2 of [4] 1 3 1 3 1 3 1 3

Fig 3.14 of [12] 3 4 3 4 2 3 1 3
Figure 6 2 8.90 2 8.60 2 8.60 2 8.60

Table 2: Results on random graphs, 500× unrolling.
min(|I←t |, |I→t |) Boundary

Nodes |I←t | |I→t | mc Weight |CL| mc Weight
→5 4 3 5 10.2735 2 5 10.2733
→10 9 9 11 16.2617 8 10 15.0698‡

→15 12 13 13 20.2952 10∗ 12† 19.3594
→15 13 11 12 16.5115 9 11 14.7054
→20 16 17 17 25.4712 14 17 23.5510
↔5 4 5 6 12.0194 4 6 12.0194
↔10 8 10 9 14.9034 8 9 14.9034
↔15 14 13 14 21.0783 12 13 20.4408
↔15 14 13 14 22.1653 12 14 22.1653
↔20 18 20 19 27.0521 18 19 27.0521

Table 3: Weights on speech graphs, 500× unrolling.
Structure Baseline min(|I←t |, |I→t |) Boundary

Figure 3-A 6.40814 5.8020 5.6603
Figure 3-B 14.2418 11.7260 11.7260

Livescu Decode A 11.2024 10.9910 10.9907
Livescu Decode B 7.03116 6.7382 6.7382
Muli-Stream [17] 8.36556 7.4553 7.3595

7 Discussion

In this paper, we introduced the boundary algorithm,
a new method for facilitating the triangulation of dy-
namic graphical models. We plan in future work
to define and experiment with greedy and random-
ized approximate boundary procedures. We also plan
to develop a better theoretical understanding of the
properties of dynamic graphs and their relationship
to M and S in order to predict a-priori the best values
of M and S to use.

This work greatly benefited from discussions with
both Thomas Richardson and Brian Lucena. We also
wish to thank the three anonymous reviewers for
their useful comments on clarifying the paper. This
work was supported by NSF grant IIS-0093430 and
an Intel Corporation Grant.

References

[1] J. Bilmes. The GMTK documentation, 2002. http:
//ssli.ee.washington.edu/˜bilmes/gmtk .

[2] J. Bilmes and G. Zweig. The Graphical Models Toolkit:
An open source software system for speech and time-
series processing. Proc. IEEE Intl. Conf. on Acoustics,
Speech, and Signal Processing, 2002.

[3] O. Çetin, H. Nock, K. Kirchhoff, J. Bilmes, and M. Os-
tendorf. The 2001 GMTK-based SPINE ASR system. In
In Proceedings ICSLP, 2002.

[4] A. Darwiche. Constant space reasoning in dynamic
Bayesian networks. In International Journal of Approxi-
mate Reasoning, volume 26, pages 161–178, 2001.

[5] T. Dean and K. Kanazawa. Probabilistic temporal rea-
soning. AAAI, pages 524–528, 1988.

[6] Z. Ghahramani. Lecture Notes in Artificial Intelligence,
chapter Learning Dynamic Bayesian Networks, pages
168–197. Springer-Verlag, 1998.

[7] J S. Ide and F.G. Cozman. Generating random
Bayesian networks. In Brazilian Symposium on Artificial
Intelligence, Recife, Pernambuco, Brazil, 2003.

[8] U. Kjærulff. A computational scheme for reasoning
in dynamic probabilistic networks. In Proceedings of
the 8th Conference on Uncertainty in Artificial Intelligence
(UAI-92), pages 121–129, San Francisco, 1992. Morgan
Kaufmann Publishers.

[9] U. Kjærulff. Optimal decomposition of probabilistic
networks by simulated annealing. Statistics and Com-
puting, 2(7-17), 1992.

[10] U. Kjærulff. dHugin: A computational system for
dynamic time-sliced Bayesian networks. International
Journal of Forecasting, Special Issue on Probability Forcast-
ing, 1995. Also, Aalborg University. Technical report.

[11] S.L. Lauritzen. Graphical Models. Oxford Science Pub-
lications, 1996.

[12] K. Murphy. Dynamic Bayesian Networks: Representation,
Inference and Learning. PhD thesis, U.C. Berkeley, Dept.
of EECS, CS Division, 2002.

[13] K. Murphy. Dynamic Bayesian Networks. In M. Jor-
dan, editor, Probabilistic Graphical Models. 2003. To ap-
pear.

[14] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic
aspects of vertex elimination on graphs. SIAM Journal
Computing, 5(2):266–282, 1976.

[15] D.J. Rose. A graph-theoretic study of the numerical
solution of sparse positive definite systems of linear
equations. In R.C. Reid, editor, Graph-Theory and Com-
puting. Academic Press, N.Y., 1972.

[16] Yang Xiang. Temporally invariant junction tree for in-
ference in dynamic Bayesian network. Lecture Notes in
Computer Science, 1600:473–487, 1999.

[17] Y. Zhang, Q. Diao, S. Huang, W. Hu, C. Bartels, and
J. Bilmes. DBN based multi-stream models for speech.
In Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal
Processing, Hong Kong, China, April 2003.

[18] G. Zweig and S. Russell. Probabilistic modeling with
Bayesian networks for automatic speech recognition.
Australian Journal of Intelligent Information Processing,
5(4):253–260, 1999.

http://ssli.ee.washington.edu/bilmes/gmtk
http://ssli.ee.washington.edu/~bilmes/gmtk
http://ssli.ee.washington.edu/~bilmes/gmtk

	Introduction
	Technical Background
	The GMTK Template
	Example GMTK Templates

	Boundary Based Triangulation
	Boundary-Dependent Graph Re-Partitioning
	Measuring Boundary Quality

	GMTK Triangulation Search Engine
	Triangulation Results
	Discussion

